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Spatial prediction of spring locations in data poor region

of Central Himalayas

Rabin Raj Niraula, Subodh Sharma, Bharat K. Pokharel and Uttam Paudel
ABSTRACT
This research explores the methods for understanding groundwater springs distribution and

occurrence using Geographic Information System (GIS) and Machine Learning technique in data poor

areas of the Central Himalayas. The objectives of this study are to analyse the distribution of natural

springs, evaluate three random forest models for its predictability and establish a model for the

prediction of occurrence of springs. This study evaluates the primary causal factors for occurrence of

springs. The data used in this study consists of 20 parameters based on topography, geology,

lithology, hydrology and land use as causal factors, whereas 621 spring location and discharge

(n¼ 621) measured during 2014–2016 and 815 non-spring locations (generated by GIS tool) use as

supporting evidence to train (80%) and test (20%) the prediction model. Results show that the

Bootstrap method is comparatively reliable (92% accuracy) over Boosted tree (64% accuracy) and

Decision tree (74% accuracy) methods to classify and predict the occurrence of springs in the

watershed. Bootstrap Forest shows the high Prediction rate for True Positive (82% actual spring

predicted as a spring) and True Negative (89% actual non-spring predicted as non-spring), and the

model seems consistent in both responses. This model was then applied to an independent dataset

to predict spring location estimates with 75% accuracy. Therefore, spatial statistical methods prove

efficient at predicting spring occurrence in data poor regions.
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HIGHLIGHTS

• A novel approach to predict groundwater spring in areas lacking the inventory of groundwater

sources.

• High applicability in data poor scenario of Central Himalayas.

• The study identifies elevation as a limiting (redundant) factor to regression problems.

• Results show discharge predictive ability of the model based on the spatial parameter is very

poor.

• The model applied to an independent dataset producing promising results.
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GRAPHICAL ABSTRACT
INTRODUCTION
Springs are the primary source of water in mountainous and

hilly areas of the Himalaya. The distribution of the springs

and their condition determines the livelihood opportunities

of the community, including agriculture, livestock farming

as well as provision of clean water for drinking, sanitation

and hygiene (Pariyar ). Groundwater in the form of

mountain springs ensure water security for the majority of

the rural population, though springs are mostly overlooked

against studies at the basins and sub-basins (Rasul ).

Recent problem faced by local communities, mainly

drying up of such springs has caused severe problems in

such mountain communities (Rasul ; Rawat ).

Water shortages in the central Himalayas occur during the

dry periods from March to May sometimes up to mid-June

due to low precipitation (Merz et al. ). Recent climate

change studies have come up with results of drying up

springs throughout the Himalaya (Gentle & Maraseni ;

Tiwari et al. ). A gap of knowledge exists on how the

impacts of climate change on recharge mechanism may

vary according to aquifers and regions (Meixner et al. ).
://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
Springs are hydrogeological features defined by geomor-

phological characteristics (Alfaro & Wallace ) fed by

groundwater and are largely recharged by rainwater infiltra-

tion (Tambe et al. ). Classification of springs can be deep

seated waters and shallow waters into volcanic, fissures,

faults and depression, contact and artesian springs (Bryan

) but consistent classification is still lacking (Springer

& Stevens ).

Spatial prediction of groundwater is studied using GIS

and Remote Sensing (Ozdemir a); Weight of Evidence

and Artificial Neural Networks (Corsini et al. ); Bivari-

ate statistical model (Moghaddam et al. ); binary logistic

regression method (Ozdemir b) and multicriteria data

analysis (Chenini et al. ). Studies show that groundwater

occurrence is controlled by lithology, structures and land-

forms where GIS and remote sensing proves to be a

powerful tool (Solomon & Quiel ). A study on ground-

water potential modelling considered lineaments, drainage

density, topographic wetness index, relief and convergence

index as determining factors (Liu et al. ). Statistical
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maps depict the relative probability of occurrence without

considering the time factor (Catani et al. ).

Decision trees can efficiently discover new and unex-

pected patterns, trends and relationship compared to other

spatial techniques. Decision trees are easy to build and inter-

pret and can automatically handle interactions between

both continuous and categorical variables. Random Forests

(RF) are a combination of tree predictors (Breiman )

basically a machine-learning algorithm (Catani et al. )

for decision-making. Random forests have recently emerged

as one of the most commonly applied nonparametric statisti-

cal methods in various scientific areas (Shih ) and real

world applications (Oshiro et al. ). RFs is widely used

in remote sensing and landslide mapping (Brenning ;

Stumpf & Kerle ; Catani et al. ) due to their good

performance. RF belongs to the family of ensemble methods

(Genuer et al. ) and exhibits high accuracy, robustness

against over-fitting the training data (Puissant et al. )

also reduces the noise effect (Breiman ).

The objectives of this study are: (i) To compare various

‘Random Forest’ prediction models and establish a best

model to predict spring sources, (ii) To apply and evaluate

the predictive model for spring location and discharge

based on spatial parameters and (iii) To compare the

result of the prediction model in sub-watershed level and

evaluate the model by testing in independent dataset.
STUDY AREA AND DATA

The study was conducted in Melamchi watershed in the

Central Mid-Hills of Nepal, 40 km north east of the Kath-

mandu valley (Figure 1). The Melamchi River, a tributary

of the Indrawati river in Koshi basin, originates from the

high snowy mountain of the Jugal Himal at an elevation of

5,875 m. The length of the river is 41 km and the catchment

area of confluence is 324 Km2. The mean annual flow is

9.7 m3/s. The climate ranges from sub-tropical in the lower

valleys to cool temperate in the upper mountains. The

annual average rainfall in the Melamchi basin is about

2,800 mm which is concentrated mostly during four

months of the monsoon of mid-June to mid-September.

Jalkanya and Bhimeshwor sub-watershed in Sindhuli

district in the Mahabharat range are selected as a testing
om http://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
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site due to similarity in topography. The study site and the

testing site both lie in the Koshi basin, but varies in topogra-

phical, hydrological, and geological condition. This site

provides adequate opportunity for testing the method and

comparing the results.

Geologically, metamorphic quartzite rocks with soils of

colluvial nature dominate the area. The areas is seismically

active with frequent earthquake and recent was during 2015

and possesses highly fractured geology. Springs mainly orig-

inate from the weathered, jointed, or fractured rock aquifers

in the high-grade metamorphosed rocks. The climate of the

study area is temperate (mesothermal) with a range of climate

from valley to mountain tops in the watershed. Based on the

Koppen’s classification, the area falls under Cwa or Cwb

which demonstrate Monsoon affected Subtropical highland

climate with dry winters; coldest month, averaging above

0 �C, all months with average temperatures below 22 �C, and

at least four months averaging above 10 �C. At least ten

times as much rain in the wettest month of summer as in

the driest month of winter (an alternative definition is 70%

or more of average annual precipitation received with the

warmest six months) (Köppen ; Kottek et al. ). The

12-month rainfall and temperature data of the area based on

the nearest climatological station at Nagarkot (Lat: 27.42,

Lon: 85.31, elevation: 2163 established: 1971) is studied.

Data collection

This study was conducted during 2014–2016 for data collec-

tion and periodic (15 days) discharge data collection for

selected 11 springs was carried out during August 2015 to

August 2016. The supporting evidence, i.e. the location of

springs in the study area was mapped with GPS based

field surveys with accuracy of 10 m and discharge measure-

ment was conducted by bucket watch (container/stopwatch)

method with average of 3 consecutive measurement records

calculating flow using the discharge equation, Q¼V/t

where Q is the discharge rate calculated based on Volume

(V) of discharge collected in time (t). Discharge measure-

ment of springs in mountain topography is difficult (Rawat

) and significant creativity and troubleshooting may

require on the part of field technicians (Tubman ). A

total of 621 springs was mapped in the study area as the

dependent variable of the study. Similarly, during 2015,



Figure 1 | The study area – Melamchi watershed in Sindhupalchok district and testing area in Sindhuli district.
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eighty spring sources were measured at the Sindhuli testing

site with the location and discharge of the springs. The test-

ing data were prepared to validate and test the method (data

available as Supplementary Material).

The studied springs are located between 1,000 m to

3,000 m of elevation, with discharge ranging from 0.01 litre

per second (lps) to 5 lps, with a mean of 0.36 lps as recorded

during dry periods (March–May) of the year. The distribution

is highly skewed (skewness >1) with high discharge springs

being less frequent. High occurrence (67%) of the springs to

scatter around 1,000–2,000 m altitude and 37% springs located

around 180–270 degrees’ aspect (South and South West).

Discharge data of representative 11 springs measured

every 15 days for 1 year (Figure 2) clearly suggests that, average

discharge of spring measured in litre per sec starts to increase

from August (mean 0.25± sd 0.15) up to October (mean

0.66± sd 0.35) and gradually decreases until February (mean

0.22± sd 0.12). March onwards the discharge goes as low as

drying up in some of the sources which reach the lowest

during June (mean 0.08± SD 0.07) and slowly starts to rise

from July onwards, which is typical for the springs depending
://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
on the Monsoon precipitation that is received throughout the

country during June to September. The discharge behaviour of

these springs suggests that all springs are geologically identical

(Bryan ) and are recharged in a similar pattern during

monsoon as winter precipitation is insignificant.

GIS datasets

The independent variables as causal factors taken for the

study are generated from Digital Elevation Model (DEM)

with resolution 30 m × 30 m, Land use and Land cover

maps from the Department of the survey, Soil Map provided

by Soil and Terrain (SOTER) database and Geological Map

provided by Department of Mines and Geology (maps avail-

able as Supplementary Material). This study uses DEM

derived topographic features previously used in spring pre-

diction research (Corsini et al. ; Chenini et al. ;

Ozdemir a; Moghaddam et al. ).

Although the DEM-derived parameters represent distinct

terrain properties and processes, their interrelationship may

lead to multicollinearity. However, for Springs mapping,



Figure 2 | Spring discharge trend observed during August 2015 to August 2016 in the studied springs. Data available as Supplementary Material.
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study (Harrell ) suggests that multicollinearity does not

influence the predictions from training and testing datasets if

both have the same type of collinearities. This applies to this

study because the parameters used with the training and test-

ing datasets are mathematical derivatives of the same 30 m

DEM. The derivatives are explained in Tables 1 and 2.
Table 1 | Primary topographic attributes derived from a digital elevation model

Data Attribute (Acronym) Definition/Significance

Elevation (el) Height above sea level

Aspect (as) Slope azimuth

Slope (sl) Inclination of the terrain

Distance to drainage (d2d) Distance from drainage lines

Drainage density (dd) Total length of drainage lines per unit
area

Total curvature (cr) Total surface curvature

Plan curvature (plc) Contour curvature

Profile curvature (pfc) Slope profile curvature

Distance to ridge (d2r) Distance from ridge lines

Drop (dr) Hydrologic slope. Flow, erosion

om http://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
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METHODS

Statistical model

Random Forest (RF) is chosen as the machine learning tool

in this study for its superiority in predictive capabilities

amongst other present day algorithms (Trigila et al. )

and it can handle categorical data, unbalanced data as

well as data with missing values. Random forest is a

widely applied and efficient algorithm based on model

aggregation ideas for both classification and regression pro-

blems (Breiman ). Random Forest is a partitioning

method which is good for exploring relationships without

having a good prior model, handling large problems produ-

cing interpretable results. The predictor variables as well as

response variables can be either categorical or continuous

(Cutler et al. ). Random Forest is a supervised learning

process which has two steps: Training and Testing. Training

involves learning a model using training data samples while

the second involves testing the model using remaining

data samples to assess the model accuracy. Partitioning is

conducted in JMP Pro 12 statistical software where



Table 2 | Secondary topographic attributes derived from a digital elevation model

Topographic Attribute/
(Acronym) Description

Elevation- relief ratio (hi)
(Hypsometric Integral)

The Hypsometric integral (HI)
represents the relative proportion
of the basin area below a given
height or zonal mean.
HI¼ (Hmean- Hmin)/
(Hmax – Hmin)
where Hmean¼mean elevation,
Hmin¼minimum elevation and
Hmax¼maximum elevation

Internal Relief (ir) Characteristics of terrain roughness

Stream Power Index (spi) SPI gives the potential of channel
erosion and sediment transport
process
SPI¼ ln (As × tan B)
where As is the specific
catchment area

Sediment Transport
Capacity Index (stci)

STCI is equivalent to the length-
slope factor of the Revised
Universal Soil loss Equation
STCI¼ (mþ 1)(A/22.12)m(sinB/
0.0896)n

where A is the upslope
contributing area (m2), B is the
local slope gradient (in degrees)
and m and n are constants

Terrain Characterization
Index (tci)

TCI is related to the spatial
variability of soil depth and
sediment transportation capacity
TCI¼Cr lnAs

Topographic Wetness Index
(twi)

TWI is related to soil moisture
distribution and is useful for
groundwater studies
TWI¼ lm (As/ tanB)
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groundwater spring data is provided as Response variable

‘Y’ and topographical, hydrological, geological, soil and

land use data are fed as predictor variable ‘X’. Random

forest can assess the variable importance but cannot show

the relationship between the response and independent vari-

ables and it should be understood as a predictive tool and a

not a descriptive tool.

Training and validation datasets

Classification data used in an RF model for springs mapping

should contain information about both springs and non-
://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
springs areas. Random points as ‘non-springs’ were gener-

ated in ArcGIS 10.3 software in the study area to provide

non-supportive evidence data set against supportive datasets

of ‘springs point’ to avoid over-learning (Corsini et al. ).

Out of 621 known spring points, 3 data were excluded as

an outlier and finally dataset included 618 spring points

and 815 non-spring points, a total of 1,433 data. The data

(57% springs and 43% non-springs) for the study area con-

sist of 1,433 rows each with 20 columns. The data were

randomly divided into training (80%) and validation (20%)

datasets.

Model evaluation

In statistical classification models, a receiver operating

characteristic (ROC) curve evaluates their effectiveness

and overall fit (Gorsevski et al. ). The area under the

ROC curve (AUC) characterizes the quality of a prediction

model and are used to evaluate the trade-off between true-

and false-positive rate of the classification or prediction

algorithm (Moghaddam et al. ). AUC varies from 0.5

(diagonal line) to 1, with higher values indicating a better

predictive capability of the model. AUC values less than

0.7 correspond to poor predictive ability, between 0.7 and

0.8 to moderate, between 0.8 and 0.9 to good and >0.90

to excellent (Trigila et al. ). RF models in this study

were evaluated using their predictive accuracy and AUC.

A confusion matrix is used to describe the performance of

a classification model (classifier or predictor) on a set of

test data for which the true values are known which we

use in the case of springs and non-springs.

Parameter tuning

Random forest has regression problem in which the range of

values response variable can take is determined by the

values already available in the training dataset. Unlike

linear regression, RF cannot take on value outside the train-

ing data. This study identified elevation as a limiting

(redundant) factor with regression problem in expanding

the prediction model beyond the upper and lower limits of

mapped spring sources (1,000 m–3,000 m). To overcome

this, for a generalized prediction model, this study excludes

elevation as a factor for predicting the occurrence of spring



Table 4 | Comparison of AUC for springs prediction among all 3 partition model
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sources. The results follow this adjustment to improve the

prediction model by excluding elevation as a causal factor.

Predictor AUC SE Lower 95% Upper 95%

Prob(springs¼Yes)
Decision Tree

0.64 0.01 0.62 0.67

Prob(springs¼Yes) Bootstrap
Forest

0.92 0.01 0.91 0.94

Prob(springs¼Yes)
Boosted Tree

0.74 0.01 0.72 0.76

Table 5 | Hypothesis testing for All AUCs are equal

Test ChiSquare DF Prob> χ2

All AUCs equal 659.763 2 <.0001*
Goodness of Fit

As response variable is categorical, this implies bootstrap

partitioning to produce Generalized R-Square (R2) statistics

instead of Mean and standard deviation. The Measure of fit

report shows predictors comparison based on R squared

statistics, Root Mean Square Error (RMSE) and correspond-

ing Area under curve (AUC) for each model. Generalized

RSquare is based on likelihood function L and is scaled to

have a maximum value of 1 where perfect predictor has

RSquare 1 and 0 for a poor model. Misclassification Rate

measures the responses where highest fitted probability dif-

fers from the observed responses.
RESULTS AND DISCUSSION

Comparison of prediction models

In this study, Decision Tree, Bootstrap Forest and Boosted

Tree methods, are undertaken as powerful predictive

models to compare their performances for provided data

of 618 springs (excluding 3 outliers) and 815 non-spring

points. In all three methods, 80% of 1,433 data were used

as training samples and 20% of the same were used as vali-

dation samples. As observed, Bootstrap Forest method out-

performed other two models with 92% Accuracy based on

Area Under Curve (Tables 3 and 4), where Decision tree

resulted in 64% accuracy and Boosted tree resulted in 74%

accuracy produced as the ability to predict validation data.

The null hypothesis of all AUCs produced by 3 models are

equal was rejected (Table 5) and the difference between

AUCs (Table 6) were also observed to be significant.
Table 3 | Measures of goodness of Fit

Method Entropy R2 Generalized R2 Mean -Log p

Decision tree Partition 0.088 0.152 0.624

Bootstrap Forest 0.426 0.592 0.392

Boosted Tree 0.135 0.226 0.591

om http://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
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Based on the Confusion Matrix of the prediction of the

data, the Bootstrap Forest method was observed to have

high accuracy, precision and predictive ability of the True

Positive (TP) as well as True Negative (TN) (Tables 7 and

8) which was comparatively poorly demonstrated by

Decision Tree and Boosted Tree. The result indicates that

the Bootstrap Forest method is consistent and reliable parti-

tioning method in the prediction of springs location based

on the available spatial parameters.
Sub-watershed comparison

Comparison between sub-watersheds is considered as a

reliable method to compare the results of the model based

on the evaluation of causal factors within a watershed.

The data of springs and non-springs was further divided

into sub watersheds in this study (Figure 3), as 7 watersheds

were selected based on the adequate number of spring data

(N> 30). The bootstrap forest method could establish pre-

diction model with accuracy ranging from 58% to 100%.

In this case, small watershed and insufficient validation

data affects the accuracy but this provides comparative
RMSE Mean abs dev. Misclassification rate N AUC

0.470 0.440 0.38 1,433 0.64

0.346 0.290 0.13 1,433 0.92

0.452 0.427 0.34 1,433 0.74



Table 6 | AUC difference hypothesis testing for three models

Predictor vs. Predictor
AUC
Difference

Std
Error

Lower
95%

Upper
95% χ2 Prob>ChiSq

Prob(springs¼Yes) Decision Tree Prob(springs¼Yes) Bootstrap
Forest

� 0.28 0.01 � 0.304 � 0.261 659.76 <.0001*

Prob(springs¼Yes) Decision Tree Prob(springs¼Yes) Boosted Tree � 0.09 0.01 � 0.115 � 0.076 89.645 <.0001*

Prob(springs¼Yes) Bootstrap
Forest

Prob(springs¼Yes) Boosted Tree 0.18 0.01 0.1637 0.2103 246.94 <.0001*

Table 7 | Confusion matrix showing actual versus predicted for all three models

Decision Tree
Bootstrap
Forest Boosted Tree

Prediction Method
Actual

Predicted Predicted Predicted

springs No Yes No Yes No Yes

No 0.921 0.079 0.898 0.102 0.904 0.096

Yes 0.773 0.227 0.174 0.826 0.654 0.346

Table 8 | Comparison of performance of selected three models

Decision
Tree

Bootstrap
Forest

Boosted
Tree

Accuracy (TPþ TN)/Total 0.62 0.87 0.66

Misclassification
Rate

(FPþ FN)/Total 0.38 0.13 0.34

True Positive Rate TP/Actual Yes 0.23 0.83 0.35

False Positive Rate FP/Actual No 0.08 0.10 0.10

Specificity TN/ Actual No 0.92 0.90 0.90

Precision TP/Predicted Yes 0.69 0.86 0.73
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analysis of similar spatial parameters how they vary in contri-

bution to classify and predict springs and non-springs in the

area. Even size of the watershed should be considered as

important criteria to establish such prediction models. Com-

parison of the contribution of spatial parameters in 7

different watershed shows that all parameters have variety

of contributions, while Aspect, Distance to drainage,

Elevation, Sediment transport capacity index, drop elevation

are few having high contribution in most of the watershed

(Table 9). It is observed that a prediction misclassification

rate of maximum 42% and minimum 0% was produced by

the model. The minimum misclassification is resulted when
://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
the sub-watershed has least number of validation set (sub-

watershed region 26) and highest training accuracy is

observed when the sub-watershed has highest number of

training set (sub-watershed region 23). This demonstrates

that higher number of validation set (here it was 20%) is

required to produce reliable prediction model.
Discharge prediction model

Discharge prediction model was tested based on the boot-

strap forest method where Response category was based

on Discharge data of 621 springs in litre per second categor-

ized in 5 classes to understand the predictive ability of

discharge based on provided spatial parameters. This was

done to reduce discrete data (discharge) into categorical

data. The performance of the model based on 618 springs

(3 outliers reduced) is shown in Table 10.

The discharge predictive ability of the model based on

the spatial parameter is very poor as the observed misclassi-

fication rate of validation set is 62%. This shows that applied

spatial parameters are not sufficient to understand and pre-

dict the discharge of springs in the hill slope. The subsurface

hydrology, below ground geology and characteristic of aqui-

fer is most important to understand the discharge which is

not captured due to data unavailability. Data on Aquifer

characteristics are not available and complicated which

limits the study. So, the model is observed to be weak and

not reliable for prediction of discharge.
Spring occurrence prediction model

Random Forest (Bootstrap) method with 20 causal factors

generated 500 trees for classification and voting produced



Figure 3 | Map showing sub-watersheds in number and springs locations.
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the model with 96% training accuracy and 72% validation

accuracy of the data. As this study aims to identify major

contributors for the classification and prediction of spring

occurrence, the Column contribution statistics shows that

Distance to geological boundary with Generalized R2

49.04 shows highest contribution, while Internal relief (gen-

eralized R2¼ 37.74), Soil classes (generalized R2¼ 35.18),

Distance to drainage (generalized R2¼ 33.84) and Aspect

(generalized R2¼ 33.36) are among the highest contributors

in the model. Yet, the observation when compared with sub-

watershed level contributors shows that not a single
om http://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
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parameter can be a major contributor throughout the water-

shed but there are multiple parameters that interplay.

Additionally, the model showed regression limitation of

elevation parameter which resulted in predicting no springs

above an altitude of 3,000 m. This is a common error of the

method that it cannot train itself beyond training data range.

To improve this, the model was re-run with 19 parameters,

excluding elevation which resulted in the improved predic-

tion model. Though elevation was excluded, Relief,

Hypsometric interval and curvatures are topographic par-

ameter which considers the role of elevation related



Table 9 | Comparison of parameter contribution in selected 7 sub-watersheds

Generalized R Square value

Sub watershed ID 18 22 23 24 25 26 29

Area (sq km) 12.38 9.52 27.21 12.82 6.13 2.68 16.90

Number of samples N 84 75 274 117 55 54 114

Parameters Abv.

Aspect as_30 8.75 4.97 6.47 2.01 4.57 0.00 1.39

Curvature cr_30 0.00 1.21 2.13 0.00 0.00 1.84 2.63

Distance to drainage d2d_30 1.27 1.98 8.92 1.30 0.20 3.83 2.92

Distance to ridge d2r_30 2.43 0.30 4.80 1.77 1.50 0.00 1.39

Drainage density dd_30 0.00 0.47 8.12 0.00 1.42 0.00 2.39

Drop elevation dr_30 0.00 0.74 7.49 3.38 0.00 6.46 3.63

Elevation elev_30 0.00 2.46 10.73 9.23 0.00 4.04 2.48

Geology geo 0.00 0.00 2.52 1.78 0.00 0.00 1.08

Distance to geological feature geo_dis 10.18 1.93 6.92 0.00 1.18 0.00 1.97

Hypsometric interval hi_30 0.00 1.18 11.72 3.12 0.00 0.00 0.38

Internal relief ir_30 2.05 0.66 7.91 0.00 1.01 0.00 1.55

Profile curvature pfc_30 0.00 0.00 2.63 2.42 0.00 0.00 0.59

Plan curvature plc_30 0.00 1.32 3.30 3.03 0.00 0.00 0.82

Land use SA_LU 1.51 1.68 4.87 4.42 0.00 0.00 1.21

Slope sl_30 0.00 2.95 4.52 0.00 0.00 0.00 2.09

Soil category soter_ds 1.75 0.00 2.91 0.00 0.00 4.99 0.44

Stream power index spi_30 0.00 0.00 3.51 0.00 0.00 0.00 0.00

Sediment transport capacity index stci_30 1.40 2.57 4.77 9.20 0.00 1.64 3.12

Terrain characterization index tci_30 3.03 0.00 3.69 0.00 0.00 0.00 1.45

Topographic wetness index twi_30 0.00 0.84 2.79 5.47 1.10 0.00 1.60

Bold values represent five major contributing parameters.
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features. This limitation was not observed in sub-watershed

level model as the training data covered whole sub-
Table 10 | Model performance for discharge prediction

Measure Training Validation Definition

Entropy RSquare 0.3306 0.0285 1-Loglike(model)/
Loglike(0)

Generalized
RSquare

0.6514 0.0842 (1-(L(0)/L(model))
^(2/n))/(1-L(0)^(2/n))

Mean-Log p 0.9670 1.4168 ∑ -Log(ρ[ j])/n

RMSE 0.6102 0.7294 √ ∑(y[ j]-ρ[ j])2/n

Mean Abs Dev 0.5952 0.7150 ∑ |y[ j]-ρ[ j]|/n

Misclassification
Rate

0.3732 0.6160 ∑ (ρ[ j]≠ ρMax)/n

N 493 125 n

://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
watershed. This should be considered important in establish-

ing predictive models while preparing data for training

samples.

Above Fit details report of the model in Table 11 shows

the classification accuracy for training data is (1–0.0403) ×

100% i.e. 96% and the prediction accuracy for validation

data is (1–0.2877) × 100%, i.e. 72%. Also, the confusion

matrix in Table 12 shows how the cases in the data table

were classified and predicted by the current model.

Another important aspect of random forest – Bootstrap

method is that it provides estimates of the variable impor-

tance shown as column contributions. It shows which

variable helps better classify the data for the obtained accu-

racy. Column contribution sorted in descending order of

generalized R square (R2) in Table 13 shows performance



Table 11 | Fit details report of the model

Measure Training Validation Definition

Entropy RSquare 0.4016 0.1274 1-Loglike(model)/
Loglike(0)

Generalized
RSquare

0.5674 0.2138 (1-(L(0)/L(model))^(2/
n))/(1-L(0)^(2/n))

Mean-Log p 0.4102 0.5920 ∑ -Log(ρ[ j])/n

RMSE 0.3441 0.4505 √ ∑(y[ j]-ρ[ j])2/n

Mean Abs Dev 0.3287 0.4313 ∑ |y[ j]-ρ[ j]|/n

Misclassification
Rate

0.0403 0.2877 ∑ (ρ[ j]≠ ρMax)/n

N 1,141 292 n

Table 12 | Confusion matrix for training data of predictive model for spring occurrence

Training Validation

Actual Predicted Count Actual Predicted Count

springs No Yes springs No Yes

No 635 6 No 136 35

Yes 40 460 Yes 49 72

Table 13 | Column contribution statistics for comparison of relevance of variables
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of each variable, how it contributes to partition the data

based on the model and received accuracy. R2 (likelihood-

ration chi-square) is a statistical test to compare the good-

ness of fit of two models, one of which (the null model) is

the special case of the other (the alternative model). Based

on the column contribution, distance to geological features,
om http://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf

21
internal relief, soil, distant to drainage and aspect were the

five most influential parameters among those applied. The

importance of distance to geological feature is highest

(R2¼ 49.04) in defining the occurrence of springs.

This result is valid comparing with the findings from

similar studies (Ozdemir b) where fault lines were used

for prediction of groundwater springs. Additionally, the

importance of internal relief, soil type, distance to drainage

and aspect is also higher in predicting the occurrence of

springs with R2 (likelihood-ratio chi-square) values equal

to 37.74, 35.18, 33.84 and 33.36 respectively. The values

are based on the decision tree splits, their performance

and partitioning of the data.

The Receivers Operation Curve (Figure 4) explains the

training accuracy above 90% is excellent suggesting good

separation in the prediction model, whereas the testing

accuracy is 77% (between 70 and 80%) and is acceptable.

Based on this accuracy assessment, we can accept and

apply the prediction model.

Model testing

The model was tested beyond the study area for its potential to

replicate in unmeasured areas of similar topography. 80 spring

points from Sindhuli were used only as testing samples. The

Bootstrap forest method used 1,433 samples from Melamchi

(618 springs and 815 non-springs) for training and validation

whereas 80 spring points from Sindhuli was exclusively used

as testing samples. The bootstrap forest method applied 18

causal factors for the testing with 1,513 samples. The model

could accurately predict 75% (Table 14) of the spring points

(60 out of 80, see Table 15) even in areas where no training

samples was provided suggesting reliability of the model.
CONCLUSIONS

Distribution of natural springs in hill slopes can be affected by

many spatial parameters, but it cannot be reflected by any

single parameter like elevation or slope aspects, etc.

Though springs are formed based on aquifer and geological

characteristics, spatial features can reflect the patterns how

this occurrence are manifested. In this study, 621 springs

were distributed in the hilly slopes of Melamchi watershed,



Figure 4 | ROC curve for training and validation data of prediction of occurrence.

Table 14 | Model testing performance statistics

Measure Training Validation Test Definition

Entropy R2 0.4573 0.0588 �101.0 1-Loglike(model)/Loglike(0)

Generalized R2 0.6243 0.1032 �203.4 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))

Mean-Log p 0.3720 0.6386 0.6352 ∑ -Log(ρ[ j])/n

RMSE 0.3207 0.4741 0.4700 √ ∑(y[ j]-ρ[ j])2/n

Mean Abs Dev 0.3021 0.4468 0.4648 ∑ |y[ j]-ρ[ j]|/n

Misclassification Rate 0.0271 0.3693 0.2500 ∑ (ρ[ j]≠ ρMax)/n

N 1,146 287 80 n

Table 15 | Confusion matrix showing testing result

Training Validation Test

Actual Predicted Count Actual Predicted Count Actual Predicted Count

springs No Yes springs No Yes springs No Yes

No 641 3 No 125 43 No 0 0

Yes 28 474 Yes 63 56 Yes 20 60
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where 20 different thematic layers were studied as causal fac-

tors to classify springs and non-spring points, which lacks

sub-surface data and rainfall. The springs were more abun-

dant between 1,000 m to 2,000 m elevation (67%) and
://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
between 180–270-degree slope aspect (37%). Bootstrap

method in Random Forest was observed to have better pre-

dictive ability compared to Decision Tree and Boosted Tree

method. Bootstrap method as an statistical model can be
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applied to prepare the ‘spring prediction model’ due to its

machine learning characteristics, ability to analyse categori-

cal as well as continuous data, high accuracy, robustness

against over-fitting the training data (Puissant et al. )

also reduces the noise effect (Breiman ) which was also

observed to be effective in this study as compared to Decision

Tree and Boosted Tree methods. Prediction of discharge of

spring was not reliable as tested in this study. Lack of geologi-

cal faults data is a major limitation in this study where

geological features from Department of Mines, Government

of Nepal was applied, yet the data quality is poor in terms

of coverage. In this study, elevation was a redundant factor

as the recorded location of springs were not beyond

3,000 m altitude, but this limitation was not observed in

sub-watershed comparison. Hence in such scenario, the

model can predict within the recorded elevation range in

the watershed. To overcome this limitation, the model was

re-run by excluding elevation. This improved the prediction

of model beyond the recorded elevation range of 1,000 m to

3,000 m. Additionally, the same method was tested with 80

spring sources in Sindhuli where the model performed well

by accurately predicting 75% of the spring sources. Random

forest method is capable of separating provided data into

training data and validation data where, validation data is

not used for preparing the model but only for the validation

of the model which increases the reliability of the results at

the cost of reduced testing accuracy. Due to this fact, the

model in this study shows 99 percent training accuracy

while it shows lower validation accuracy of 72%.
FUNDING

This work was carried out with the aid of a grant from the

International Development Research Centre, Ottawa,

Canada. The views expressed herein do not necessarily rep-

resent those of IDRC or its Board of Governors.
DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplemen-

tary Information.
om http://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf

21
REFERENCES
Alfaro, C. & Wallace, M.  Origin and classification of springs
and historical review with current applications. Environ.
Geol. 24, 112–124. https://doi.org/10.1007/BF00767884.

Breiman, L.  Random forests. Mach. Learn. 45, 5–32. https://
doi.org/10.1023/A:1010933404324.

Brenning, A.  Spatial prediction models for landslide hazards:
review, comparison and evaluation. Nat. Hazards Earth Syst.
Sci. 5, 853–862. https://doi.org/10.5194/nhess-5-853-2005.

Bryan, K.  Classification of springs. J. Geol. 27, 522–561.
https://doi.org/10.1086/622677.

Catani, F., Lagomarsino, D., Segoni, S. & Tofani, V.  Landslide
susceptibility estimation by random forests technique:
sensitivity and scaling issues.Nat. Hazards Earth Syst. Sci. 13,
2815–2831. https://doi.org/10.5194/nhess-13-2815-2013.

Chenini, I., Mammou, A. B.&May,M. E. Groundwater recharge
zone mapping using GIS-based multi-criteria analysis: a case
study inCentralTunisia (MaknassyBasin).WaterResour.Manag.
24, 921–939. https://doi.org/10.1007/s11269-009-9479-1.

Corsini, A., Cervi, F. & Ronchetti, F.  Weight of evidence and
artificial neural networks for potential groundwater spring
mapping: an application to the Mt. Modino area (Northern
Apennines, Italy). Geomorphology 111, 79–87. https://doi.
org/10.1016/j.geomorph.2008.03.015.

Cutler, A., Cutler, D. R. & Stevens, J. R.  Random Forests. In:
Ensemble Machine Learning (C. Zhang & Y. Ma, eds),
Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-
9326-7_5

Gentle, P. & Maraseni, T. N.  Climate change, poverty and
livelihoods: adaptation practices by rural mountain
communities in Nepal. Environ. Sci. Policy 21, 24–34.
https://doi.org/10.1016/j.envsci.2012.03.007.

Genuer, R., Poggi, J.-M. & Tuleau, C.  Random forests: some
methodological insights. INRIA 6729, 32.

Gorsevski, P. V., Gessler, P. & Foltz, R. B.  Spatial prediction
of landslide hazard using discriminant analysis and GIS. In
GIS in the Rockies 2000 Conference and Workshop.

Harrell, F. E.  Multivariable Modeling Strategies. In:
Regression Modeling Strategies, Springer Series in Statistics.
Springer, New York, pp. 53–85. https://doi.org/10.1007/978-
1-4757-3462-1

Köppen, W.  Klassifikation der Klimate Nach Temperatur,
Niederschlag und Jahresablauf (Classification of Climates
According to Temperature, Precipitation and Seasonal Cycle).
Petermanns Geographische Mitteilungen 64, 193–203, 243–
248. Available from: http://koeppen-geiger.vu-wien.ac.at/
koeppen.htm

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World
map of the Köppen-Geiger climate classification updated.
Meteorol. Zeitschrift 15, 259–263. https://doi.org/10.1127/
0941-2948/2006/0130.

Liu, T., Yan, H. & Zhai, L.  Extract relevant features from DEM
for groundwater potential mapping. Int. Arch. Photogramm.

http://dx.doi.org/10.1007/BF00767884
http://dx.doi.org/10.1007/BF00767884
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.5194/nhess-5-853-2005
http://dx.doi.org/10.5194/nhess-5-853-2005
http://dx.doi.org/10.1086/622677
http://dx.doi.org/10.5194/nhess-13-2815-2013
http://dx.doi.org/10.5194/nhess-13-2815-2013
http://dx.doi.org/10.5194/nhess-13-2815-2013
http://dx.doi.org/10.1007/s11269-009-9479-1
http://dx.doi.org/10.1007/s11269-009-9479-1
http://dx.doi.org/10.1007/s11269-009-9479-1
http://dx.doi.org/10.1016/j.geomorph.2008.03.015
http://dx.doi.org/10.1016/j.geomorph.2008.03.015
http://dx.doi.org/10.1016/j.geomorph.2008.03.015
http://dx.doi.org/10.1016/j.geomorph.2008.03.015
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1007/978-1-4419-9326-7_5
http://dx.doi.org/10.1016/j.envsci.2012.03.007
http://dx.doi.org/10.1016/j.envsci.2012.03.007
http://dx.doi.org/10.1016/j.envsci.2012.03.007
https://doi.org/10.1007/978-1-4757-3462-1
https://doi.org/10.1007/978-1-4757-3462-1
https://doi.org/10.1007/978-1-4757-3462-1
http://koeppen-geiger.vu-wien.ac.at/koeppen.htm
http://koeppen-geiger.vu-wien.ac.at/koeppen.htm
http://dx.doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.1127/0941-2948/2006/0130
http://dx.doi.org/10.5194/isprsarchives-XL-7-W4-113-2015
http://dx.doi.org/10.5194/isprsarchives-XL-7-W4-113-2015


505 R. R. Niraula et al. | Spatial prediction of spring locations in data poor region of Central Himalayas Hydrology Research | 52.2 | 2021

Downloaded from http
by guest
on 19 June 2021
Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 40, 113–119. https://
doi.org/10.5194/isprsarchives-XL-7-W4-113-2015.

Meixner, T., Manning, A. H., Stonestrom, D. A., Allen, D. M.,
Ajami, H., Blasch, K. W., Brookfield, A. E., Castro, C. L.,
Clark, J. F., Gochis, D. J., Flint, A. L., Neff, K. L., Niraula, R.,
Rodell, M., Scanlon, B. R., Singha, K. & Walvoord, M. A.
 Implications of projected climate change for
groundwater recharge in the western United States. J. Hydrol.
534, 124–138. https://doi.org/10.1016/j.jhydrol.2015.12.027.

Merz, J., Nakarmi, G., Shrestha, S., Dahal, B. M., Dongol, B. S.,
Schaffner, M., Shakya, S., Sharma, S. &Weingartner, R. 
Public water sources in rural watersheds of Nepal’s Middle
Mountains: issues and constraints. Environ. Manage. 34,
26–37. https://doi.org/10.1007/s00267-004-0118-6.

Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie,
Z. S. & Pradhan, B.  Groundwater spring potential
mapping using bivariate statistical model and GIS in the
Taleghan Watershed. Iran. Arab. J. Geosci 1–17. https://doi.
org/10.1007/s12517-013-1161-5.

Oshiro, T. M., Perez, P. S. & Baranauskas, J. A.  How many
trees in a random forest? In: Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), pp.
154–168. https://doi.org/10.1007/978-3-642-31537-4_13

Ozdemir, A. a GIS-based groundwater spring potential
mapping in the Sultan Mountains (Konya, Turkey) using
frequency ratio, weights of evidence and logistic regression
methods and their comparison. J. Hydrol. 411, 290–308.
https://doi.org/10.1016/j.jhydrol.2011.10.010.

Ozdemir, A. b Using a binary logistic regression method and
GIS for evaluating and mapping the groundwater spring
potential in the Sultan Mountains (Aksehir, Turkey). J.
Hydrol. 405, 123–136. https://doi.org/10.1016/j.jhydrol.
2011.05.015.

Pariyar, M. P.  In: Water and Poverty Linkages: Case Studies
From Nepal, Pakistan adn Sri Lanka (I. Hussain & M.
Giordano, eds). International Water Management Institute,
Colombo, Sri Lanka.

Puissant, A., Rougier, S. & Stumpf, A.  Object-oriented
mapping of urban trees using Random Forest classifiers. Int.
J. Appl. Earth Obs. Geoinf. 26, 235–245. https://doi.org/10.
1016/j.jag.2013.07.002.
://iwaponline.com/hr/article-pdf/52/2/492/872900/nh0520492.pdf
Rasul, G.  Food, water, and energy security in South Asia: a
nexus perspective from the Hindu Kush Himalayan region.
Environ. Sci. Policy 39, 35–48. https://doi.org/10.1016/j.
envsci.2014.01.010.

Rawat, P. K. GIS development to monitor climate change and
its geohydrological consequences on non-monsoon crop
pattern in Himalaya. Comput. Geosci. 70, 80–95. https://doi.
org/10.1016/j.cageo.2014.04.010.

Shih, S.  Random Forests for Classification Trees and Categorical
Dependent Variables: an InformalQuick Start RGuide, pp. 1–8.
University of California, Berkeley, CA. https://usermanual.wiki/
Document/randomForest20guide20in20R.16931

Solomon, S. & Quiel, F.  Groundwater study using remote
sensing and geographic information systems (GIS) in the
central highlands of Eritrea. Hydrogeol. J. 14, 1029–1041.
https://doi.org/10.1007/s10040-005-0477-y.

Springer, A. E. & Stevens, L. E.  Spheres of discharge of
springs. Hydrogeol. J. 17, 83–93. https://doi.org/10.1007/
s10040-008-0341-y.

Stumpf, A. & Kerle, N.  Object-oriented mapping of landslides
using Random Forests. Remote Sens. Environ. 115,
2564–2577. https://doi.org/10.1016/j.rse.2011.05.013.

Tambe, S., Kharel, G., Arrawatia, M. L., Kulkarni, H., Mahamuni,
K. & Ganeriwala, A. K.  Reviving dying springs: climate
change adaptation experiments from the Sikkim Himalaya.
Mt. Res. Dev. 32, 62–72. https://doi.org/10.1659/MRD-
JOURNAL-D-11-00079.1.

Tiwari, K. R., Balla, M. K., Pokharel, R. K. & Rayamajhi, S. 
Climate Change Impact, Adaptation Practices and Policy in
Nepal Himalaya.

Trigila, A., Iadanza, C. & Spizzichino, D.  Quality assessment
of the Italian Landslide Inventory using GIS processing.
Landslides 7, 455–470. https://doi.org/10.1007/s10346-010-
0213-0.

Trigila, A., Iadanza, C., Esposito, C. & Scarascia-Mugnozza, G. 
Comparison of logistic regression and random
forests techniques for shallow landslide susceptibility
assessment in Giampilieri (NE Sicily, Italy). Geomorphology
249, 119–136. https://doi.org/10.1016/j.geomorph.2015.06.001.

Tubman, S. C.  Spring Discharge Monitoring in Low-Resource
Settings: A Case Study of Concepcion Chiquirichapa,
Guatemala. Cambridge University Press, Cambridge.
First received 13 August 2020; accepted in revised form 3 December 2020. Available online 29 December 2020

http://dx.doi.org/10.1016/j.jhydrol.2015.12.027
http://dx.doi.org/10.1016/j.jhydrol.2015.12.027
http://dx.doi.org/10.1007/s00267-004-0118-6
http://dx.doi.org/10.1007/s00267-004-0118-6
http://dx.doi.org/10.1007/s12517-013-1161-5
http://dx.doi.org/10.1007/s12517-013-1161-5
http://dx.doi.org/10.1007/s12517-013-1161-5
http://dx.doi.org/10.1007/978-3-642-31537-4_13
http://dx.doi.org/10.1007/978-3-642-31537-4_13
http://dx.doi.org/10.1016/j.jhydrol.2011.10.010
http://dx.doi.org/10.1016/j.jhydrol.2011.10.010
http://dx.doi.org/10.1016/j.jhydrol.2011.10.010
http://dx.doi.org/10.1016/j.jhydrol.2011.10.010
http://dx.doi.org/10.1016/j.jhydrol.2011.05.015
http://dx.doi.org/10.1016/j.jhydrol.2011.05.015
http://dx.doi.org/10.1016/j.jhydrol.2011.05.015
http://dx.doi.org/10.1016/j.jag.2013.07.002
http://dx.doi.org/10.1016/j.jag.2013.07.002
http://dx.doi.org/10.1016/j.envsci.2014.01.010
http://dx.doi.org/10.1016/j.envsci.2014.01.010
http://dx.doi.org/10.1016/j.cageo.2014.04.010
http://dx.doi.org/10.1016/j.cageo.2014.04.010
http://dx.doi.org/10.1016/j.cageo.2014.04.010
https://usermanual.wiki/Document/randomForest20guide20in20R.16931
https://usermanual.wiki/Document/randomForest20guide20in20R.16931
http://dx.doi.org/10.1007/s10040-006-0096-2
http://dx.doi.org/10.1007/s10040-006-0096-2
http://dx.doi.org/10.1007/s10040-006-0096-2
http://dx.doi.org/10.1007/s10040-008-0341-y
http://dx.doi.org/10.1007/s10040-008-0341-y
http://dx.doi.org/10.1016/j.rse.2011.05.013
http://dx.doi.org/10.1016/j.rse.2011.05.013
http://dx.doi.org/10.1659/MRD-JOURNAL-D-11-00079.1
http://dx.doi.org/10.1659/MRD-JOURNAL-D-11-00079.1
http://dx.doi.org/10.1007/s10346-010-0213-0
http://dx.doi.org/10.1007/s10346-010-0213-0
http://dx.doi.org/10.1016/j.geomorph.2015.06.001
http://dx.doi.org/10.1016/j.geomorph.2015.06.001
http://dx.doi.org/10.1016/j.geomorph.2015.06.001

	Spatial prediction of spring locations in data poor region of Central Himalayas
	INTRODUCTION
	STUDY AREA AND DATA
	Data collection
	GIS datasets

	METHODS
	Statistical model
	Training and validation datasets
	Model evaluation
	Parameter tuning
	Goodness of Fit

	RESULTS AND DISCUSSION
	Comparison of prediction models
	Sub-watershed comparison
	Discharge prediction model
	Spring occurrence prediction model
	Model testing

	CONCLUSIONS
	FUNDING
	DATA AVAILABILITY STATEMENT
	REFERENCES


