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Assessing the predictability of MLR models for long-term

streamflow using lagged climate indices as predictors:

A case study of NSW (Australia)

Rijwana I. Esha and Monzur A. Imteaz
ABSTRACT
The current study aims to assess the potential of statistical multiple linear regression (MLR)

techniques to develop long-term streamflow forecast models for New South Wales (NSW). While

most of the past studies were concentrated on revealing the relationship between streamflow and

single concurrent or lagged climate indices, this study intends to explore the combined impact of

large-scale climate drivers. Considering their influences on the streamflow of NSW, several major

climate drivers – IPO (Inter Decadal Pacific Oscillation)/PDO (Pacific Decadal Oscillation), IOD (Indian

Ocean Dipole) and ENSO (El Niño-Southern Oscillation) are selected. Single correlation analysis is

exploited as the basis for selecting different combinations of input variables for developing MLR

models to examine the extent of the combined impacts of the selected climate drivers on forecasting

spring streamflow several months ahead. The developed models with all the possible combinations

show significantly good results for all selected 12 stations in terms of Pearson correlation (r), root

mean square error (RMSE), mean absolute error (MAE) and Willmott index of agreement (d). For each

region, the best model with lower errors provides statistically significant maximum correlation which

ranges from 0.51 to 0.65.
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INTRODUCTION
The geographic location and extensive topographic vari-

ations present high climatic variability in Australia

resulting in even higher inter-annual streamflow variability

across the country, which is almost twice that of the rivers

in any other part of the world (McMahon et al. ). As a

consequence, the irrigators, agricultural producers, water

managers, and planners have to undergo many problems

to allocate irrigation water and environmental flows,

manage and operate reservoirs, supply municipal water, esti-

mate future hydroelectricity supply, etc. One such severe

impact was the overall reduction of gross domestic pro-

duction (GDP) by 1.6% during the 2002 to 2003

Australian drought (Horridge et al. ). According to

Dutta et al. (), streamflow forecast is more significant
compared to rainfall forecast as it can be predicted with

longer lead times, therefore it enables the water users to

make decisions at an earlier stage of the year, which ulti-

mately increase the potential of financial benefits.

Two main sources of streamflow forecasting are initial

catchment condition (antecedent streamflow, antecedent

rainfall, soil moisture, etc.) and climate variables, i.e., rain-

fall, climate indices, etc. (Robertson & Wang ). While

comparing to initial catchment condition, remote climate

drivers have better predictability of streamflow as the cli-

mate indices fluctuate at very low frequencies which can

impact the streamflow easily. Moreover, developing stream-

flow forecasting models incorporating initial catchment

conditions is more complicated.
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Australia, being surrounded by the Pacific, Indian, and

Southern Ocean, is greatly influenced by the climatic

anomalies originating from the oceans. The impacts of cli-

mate indices including the sea level pressure (SLP) and

sea surface temperature (SST) anomalies have spatial and

seasonal variations. The climate of south-east Australia is

influenced by four major climate drivers originating in the

Pacific Ocean, the Indian Ocean, and the Southern

Ocean, which are ENSO (El Niño–Southern Oscillation),

IPO (Inter Decadal Pacific Oscillation)/PDO (Pacific Deca-

dal Oscillation), SAM (Southern Annular Mode), and IOD

(Indian Ocean Dipole) (Duc et al. ).

The ENSO phenomenon, which results from the large-

scale interactions between ocean and atmospheric circula-

tion processes in the equatorial Pacific Ocean, has direct

influences on the climate variability over many parts of the

world (Ropelewski & Halpert ; Kiladis & Diaz ;

Nicholls et al. ). El Niño and La Niña events are respon-

sible for the different climatic conditions around the Pacific

including eastern Australia (Stone & Auliciems ; Latif

et al. ; Nazemosadat & Cordery ; Hoerling et al.

; Chiew ; CPTEC ). Several studies have

revealed the influences of ENSO on streamflow throughout

Australia (Chiew et al. , ; Piechota et al. ;

Dettinger & Diaz ; Dutta et al. ; Sharma et al.

). Chiew et al. () and Piechota et al. () found

that ENSO-based (SOI and SST) streamflow predictions in

northeast Australia are better than the forecasts from clima-

tology. ENSO anomalies are found to be the strongest

predictors of seasonal (spring) streamflow and rainfall in

some studies (McBride & Nicholls ; Robertson &

Wang ). The study of Chiew & Leahy () explained

that spring rainfall and runoff had high correlation (0.3 to

0.5) against winter SOI throughout eastern Australia.

The El Niño–Southern Oscillation Modoki events have

significant influences on the climate of many parts of the

world including Japan, New Zealand, western coast of

United States (Ashok et al. ), Australia (Taschetto &

England ), and South China (Feng & Li ). Accord-

ing to Taschetto & England (), classical ENSO causes

reduction in precipitation in north-east and south-east

Australia, whereas EMI (El Niño–Southern Oscillation

Modoki Index) is responsible for reducing precipitation in

north-west and northern Australia regions.
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Although the dominant source of inter-annual variabil-

ity in Australian rainfall and streamflow is believed to be

the ENSO phenomenon, some recent evidence shows that

Eastern Australia is also influenced by IOD and interdeca-

dal modulation of ENSO as a result of the low frequency

variability in the Pacific Ocean, which is referred to as Paci-

fic Decadal Oscillation or PDO (Westra & Sharma ).

Cai et al. () and Risbey et al. () found that IOD

has an impact on austral winter (June to October) in the

southern part of Australia, whereas ENSO has a strong influ-

ence on austral spring rainfall as a result of the strong

covariation of ENSO and IOD.

Many researchers (e.g., Power et al. ; Kiem et al.

; Kiem & Franks ) have demonstrated the influence

of the IPO to be significant on rainfall and streamflow vari-

ation on a decadal to multidecadal timescale. King et al.

() suggested that IPO played a significant role in the fre-

quency of major floods during the 1950s,1970s, and 2010–

2011. Verdon et al. () explained the enhanced rainfall

and streamflow in eastern Australia as being the conse-

quences of the combined impact of ENSO (La Niña) and

IPO negative phase. IPO and PDO indices are suggested

to be highly correlated and useful in explaining various

warming and cooling phases in both northern and southern

hemispheres (Power et al. ; Franks b).

Whiting et al. () studied the rainfall in Sydney and

demonstrated the existence of a greater correlation of

annual rainfall in Sydney with the PDO index than with

SOI. A combination of correlation and wavelet-based

methods was applied to identify the principal sources of

variation in reservoir inflows of Sydney (Westra & Sharma

) which found ENSO, PDO, and IOD to be influential.

To date, most research has been focused on identifi-

cation of suitable predictor variable(s) for forecasting

rainfall and streamflow on daily or monthly scales

(Sharma ; Kiem& Franks ; Ruiz et al. ; Robertson

& Wang , ; Heller et al. ; Kirono et al. ),

while very few established the seasonal relationship in

different parts of Australia (Piechota et al. ; Owens

et al. ; Wang et al. ). The majority of the previous

studies investigated the concurrent relation of single cli-

matic variable with daily, monthly, or seasonal streamflow.

Even though some studies considered the lagged climate

modes, none explored the combined impact of different
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climate anomalies on seasonal streamflow of eastern Austra-

lia. Although a few of the previous studies considered lagged

and combined impact of different climate anomalies on sea-

sonal streamflow of eastern Australia, most of those were

probabilistic approaches.

Some recent attempts were made by Abbot & Marohasy

(), Mekanik et al. (), and Rasel et al. () to fore-

cast seasonal rainfalls for Queensland, Victoria, and South

Australia, respectively, exploiting linear (MLR) and non-

linear artificial neural network (ANN) techniques and con-

sidering the combined influence of different climate

modes. Kiem & Verdon-Kidd () explored the relation-

ships between large-scale climate drivers and Victorian

streamflow and found that ENSO alone is able to explain

a very small part of the variation in Victorian streamflow.

Therefore, it is important to investigate the combined influ-

ence of multiple climate drivers on seasonal streamflow.

Various studies have intended to provide a probabilistic

forecast (Piechota et al. ; Ruiz et al. ; Robertson &

Wang ; Wang & Robertson ; Duc et al. ),

whereas to solve the water management problems, a determi-

nistic streamflow forecast is more useful as knowing the

expected amount of future streamflow helps stakeholders to

make more accurate decisions knowing the expected

amount of future streamflow. It is to be noted that the Austra-

lian Bureau of Meteorology (http://www.bom.gov.au/water/

ssf/index.shtml) provides seasonal streamflow forecasting

using a Bayesian joint probability (BJP) method, which is

again a probabilistic approach. Therefore, the present study

aims to investigate the extent of interactions of large-scale

multiple climate mode with seasonal streamflow of New

South Wales (NSW) with a view to exploiting these relations

to forecast seasonal streamflow with a deterministic output.

NSW, located in the south-eastern part of Australia, is

affected by frequent droughts and floods, especially in the

western and north-eastern regions of the state. Researchers

(Erskine & Warner ; Franks a; Franks & Kuczera

) have quantified the variability of flood risk and attrib-

uted these to ENSO and IPO. Climate variability has serious

impacts on the yield of planted crops like wheat, rice, etc. in

this agriculturally important region. Although efforts have

been made to forecast streamflow and rainfall, none of the

current practices provide reliable seasonal streamflow fore-

cast, which can enable water stakeholders to make low-
s://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf
risk decisions at the early stage of the crop period (Khan

et al. ).

This research is intended to provide a successful deter-

ministic prediction of spring streamflow of NSW using the

potential large-scale climate drivers with the help of the stat-

istical MLR method. To accomplish this objective, NSW has

been divided into four geographically distinct regions and

for each region, at several streamflow measurement stations,

investigations were conducted to identify the best predictor(s)

for forecasting seasonal (spring) streamflow several months

ahead in these regions. At this stage, current analysis is con-

ducted for spring season only, considering the outcomes of

the previous research works (McBride & Nicholls ;

Robertson & Wang ). A preliminary study of this

research on the concurrent analysis of seasonal streamflow

and climate indices found spring streamflow provided the

most significant correlations compared to other seasons

(not shown in this paper). Thus, spring streamflow is

expected to have better interactions with climate indices in

the lagged correlation analysis.
STUDY AREA AND DATA

NSW situated on the east coast of Australia covers a land

area of 880,0642 km2 and is the most populous state of Aus-

tralia with a population of 7.5 million, two-thirds of which

live in the Greater Sydney Area. The state is bordered on

the north by Queensland, on the west by South Australia,

on the south by Victoria, and on the east by the Tasman

Sea. The two most important features of NSW are the

Great Dividing Range (GDR) and Murray Darling Basin

(MDB), which accounts for nearly 40% of the value of agri-

cultural production in Australia and 65% of the irrigated

land. NSW possesses almost 61% of the water resources

plan area of MDB (Department of Industry, NSW Govern-

ment) while all of Australia’s irrigated rice is produced by

Murrumbidgee and NSW Murray irrigation regions

Murray-Darling Basin Authority ().

Economically, NSW is the most important state of Aus-

tralia as it contributes most of Australia’s agricultural

production, which is spread throughout the eastern two-

thirds of the state. According to ABARE, 80.92% of the

state is agricultural land which contributed 23% of the

http://www.bom.gov.au/water/ssf/index.shtml
http://www.bom.gov.au/water/ssf/index.shtml
http://www.bom.gov.au/water/ssf/index.shtml
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total gross value of agricultural production in Australia in

the year 2015–16. Considering the geographical location,

regional climatic variation, and agricultural importance,

for the current study NSW was divided into four regions:

Northern New South Wales (NNSW), Southern New

South Wales (SNSW), Central West New South Wales

(CWNSW), and Western New South Wales (WNSW), as

shown in Figure 1. To explore the spatial variation of influ-

ences of different climatic variables for each region several

stations were selected based on their long data records

and fewer missing values (Table 1). A total of 12 stations

were chosen with data records considered to be of appropri-

ate length for the statistical analysis carried out in this study

and also considering the predominance factor of coastal

rivers in eastern Australia (Verdon et al. ) as well as

the consumptive water use of the locations, where stream-

flow predictions are important. It can be seen from

Figure 1 that the locations of the streamflow stations provide

a good spatial coverage of NSW.
Figure 1 | Locations of the discharge stations in the four study regions of NSW.
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For this study, historical streamflow data were collected

from the Australian Bureau of Meteorology (http://www.

bom.gov.au/waterdata/). Observed monthly streamflow (in

cumec) was collected for 102 years, ranging from 1914 to

2015 for nine stations while 99, 101, and 88 years of data

were collected for North Cuerindi, Wee Jasper, and Mittan-

gang Crossing stations, respectively. These stations have less

than 0.5% missing values, which are filled by the series

mean of the streamflow data. Using these data, seasonal

mean discharge data are derived for the spring (Septem-

ber–October–November) season.

Considering the aforementioned research works on rain-

fall and streamflow in this region and the outcomes of single

concurrent and lagged correlation analyses, four climate dri-

vers: ENSO-based SST anomalies NINO3.4, EMI, IPO/

PDO, and DMI (IOD) were selected for the MLR analysis.

The ENSO phenomenon has two components, SST and

atmospheric pressure, which are strongly correlated and can

be represented by two types of indicators, the SLP indicator

http://www.bom.gov.au/waterdata/
http://www.bom.gov.au/waterdata/
http://www.bom.gov.au/waterdata/


Table 1 | Overview of the selected discharge stations

Study region Station number Latitude Longitude River name Station name

Northern 210001 �32.56�S 151.17�E Hunter Singleton
210006 �32.34�S 150.10�E Goulburn Coggan
419005 �30.68�S 150.78�E Namoi North Cuerindi

Southern 410004 �35.07�S 148.11�E Murrumbidgee Gundagai
410024 �35.17�S 148.69�E Goodradigbee Wee Jasper (Kashmir)
410033 �36.16�S 149.09�E Murrumbidgee Mittagang Crossing
410700 �35.32�S 148.94�E Cotter KIOSK

Central 409002 �36.01�S 146.40�E Murray Corowa
410001 �35.10�S 147.37�E Murrumbidgee Wagga Wagga
412002 �33.83�S 148.68�E Lanchan Cowra

Western 409005 �35.63�S 144.12�E Murray Barham
422002 �29.95�S 146.86�E Barwon Brewarrina
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and the SST indicator (Duc et al. ). Various SST

anomalies are available which can be derived from different

areas of the equatorial Pacific Ocean (Kiem & Franks ).

Generally, the SST anomalies are monitored in three geo-

graphic regions (Figure 2) of the equatorial Pacific and

defined as NINO3 (5�S–5�N, 150�–90�W), NINO3.4 (5�S–

5�N, 170�–120�W), and NINO4 (5�S–5�N, 160�–150�W)

(Risbey et al. ) along with NINO1þ 2 (0–10�S, 90�–

80�W). Hanley et al. () compared the response of
Figure 2 | Map showing ENSO regions (Source: https://wattsupwiththat.com/2014/11/19/axel-

warming/).

s://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf
pressure-based and SST-based anomalies to ENSO extreme

events and found that NINO3.4 and NINO4 indices are

equally sensitive to El Niño events, whereas SOI is less sen-

sitive to La Niña events than others.

El Niño Modoki is an ocean–atmosphere coupled pro-

cess, which results in unique tripolar SLP pattern during

the evolution, similar to the Southern Oscillation phenom-

enon of El Niño (Ashok et al. ). Therefore, this

phenomenon is named as El Niño–Southern Oscillation
timmermann-and-kevin-trenberth-highlight- the-importance-of-natural-variability-in-global-
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(ENSO) Modoki and expressed by the following equation

(Ashok et al. )

EMI ¼ SSTX� 0:5�SSTYð Þ � 0:5�SSTZð Þ

where,

X ¼ 165�E� 140�W, 10�S� 10�N,

Y ¼ 110�W� 70�W, 15�S� 5�N,

Z ¼ 125�E� 145�E, 10�S� 20�N

IOD represents the coupled oceanic–atmospheric varia-

bility in the tropical Indian Ocean which is classified by SST

anomalies of reverse sign in the east and west (Saji et al.

; Webster et al. ). The Dipole Mode Index (DMI),

which is a measure of the IOD, is defined as the difference

in SST anomaly between the tropical western Indian

Ocean (10�S–10�N, 50�–70�E) and the tropical south-east-

ern Indian Ocean (10�S–equator, 90�–110�E).

The IPO is described as the Pacific ENSO-like pattern of

SST which is found in the analysis of near-global inter-deca-

dal SST (Folland et al. ). IPO has a cycle of 15–30 years

and is characterized with two phases, namely, positive and

negative (Salinger et al. ; Henley et al. ). While

IPO is used for the whole Pacific Basin, PDO is used for

the North Pacific, poleward of 20�N.

The five oceanic and atmospheric climate indices data

were obtained from Climate Explorer website (http://cli-

mexp.knmi.nl), while the EMI data were collected from

the website of JAMSTEC (http://www.jamstec.go.jp/frcgc/
Table 2 | Overview of climate indices and data source

Predictors Predictor definition Origin

PDO SSTA anomaly in North Pacific Ocean,
(north of 20�N latitude)

Pacifi

IPO SST anomaly in North and South Pacific Ocean
(includes south of 20�N latitude)

Pacifi

NINO3.4 Average SST anomaly over central Pacific Ocean
(5�S–5�N, 120�–170�W)

Pacifi

IOD West Pole Index (10�S–10�N, 50�–70�E) -East Pole
Index (10�S–0�, 90�–110�E)

Indian

EMI Coupled ocean-atmosphere phenomenon in the
tropical Pacific

Pacifi
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research/dl/iod/modoki) for a duration of 102 years

(1914–2015). An overview of the used climatic variables

for the current analysis is presented in Table 2.
METHODOLOGY

In the current study, linear relationships between the

selected climatic variables and spring streamflow of NSW

were explored using a multiple linear regression technique.

At first, single concurrent and lagged correlation analysis

was performed to explore dominating indices on spring

streamflow. Subsequently, MLR analysis was performed by

developing MLR models incorporating combined influences

of two indices.

Multiple linear regression

There are several techniques for exploring relationships

between two or more parameters. Regression analysis is

one of the popular statistical approaches and is highly rec-

ommended for this kind of analysis (Ruiz et al. ;

Mekanik et al. ; Pumo et al. ). The most commonly

used form of linear regression is multiple linear regression

analysis. MLR models establish a statistical relationship

between two or more explanatory variables and a response

variable and provide a linear equation as output which rep-

resents the significant correlation among the variables. In

every equation, the value of every independent variable

(NINO3.4, EMI, IOD, or IPO/PDO for the current study)
Data period Data source

c Ocean 1914–2015 ERSST (http://climexp.knmi.nl/)

c Ocean 1914–2015 HadISST1 (http://climexp.knmi.nl/)

c Ocean 1914–2015 HadISST1 (http://climexp.knmi.nl/)

Ocean 1914–2015 HadISST (http://climexp.knmi.nl/)

c Ocean 1914–2015 HadISST (http://www.jamstec.go.jp/frcgc/
research/d1/iod/modoki)

http://climexp.knmi.nl
http://climexp.knmi.nl
http://climexp.knmi.nl
http://www.jamstec.go.jp/frcgc/research/dl/iod/modoki
http://www.jamstec.go.jp/frcgc/research/dl/iod/modoki
http://www.jamstec.go.jp/frcgc/research/dl/iod/modoki
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://climexp.knmi.nl/
http://www.jamstec.go.jp/frcgc/research/d1/iod/modoki
http://www.jamstec.go.jp/frcgc/research/d1/iod/modoki
http://www.jamstec.go.jp/frcgc/research/d1/iod/modoki
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is associated with the value of dependent (spring streamflow

for current study) variable. In many studies, climate forecast-

ing has been undertaken using the MLR model, due to the

fact that this model comprises many regressors to deal

with the time series data base.

In the present study, to evaluate the goodness-of-fit of

the models, F-test was used to verify the statistical signifi-

cance of the overall fit. While developing MLR models,

statistical significance of individual parameters of the com-

bined model needs to be evaluated. Among the predictors,

verification of multicollinearity is the key stage of MLR

modeling. It occurs when predictors themselves are

highly correlated, a small change in the data or the

model results in remarkable change in parameter esti-

mation. The variance inflation factor (VIF) is used to

ascertain the multicollinearity among the predictors. In

order to verify multicollinearity among the predictors’ tol-

erance (T) and VIF are used,

tolerance ¼ 1� R2, VIF ¼ 1
tolerance

where, R2 is the coefficient of multiple determinations:

R2 ¼ SSR
SST

¼ 1� SSE
SST

where, SST is the total sum of squares, SSR is the

regression sum of squares, and SSE is the error sum of

squares. According to Quan et al. (), a tolerance of

less than 0.20–0.10 or a VIF greater than 5–10 indicates

a multicollinearity problem.

In order to ensure independence of the residuals error of

the model, the Durbin–Watson (DW) test was performed,

which assesses the serial correlation between errors. DW

parameter has a range of 0 to 4; a value of less than 1 or

greater than 3 is certainly a matter of concern (Field ).

The performance of the developed MLR models has

been assessed by several statistical performance measures

which are widely used for the evaluation of regression

models. Statistical measures, namely, root mean square

error (RMSE), mean absolute error (MAE), Pearson corre-

lation coefficient (r), and Willmott index of agreement (d)

are exclusively chosen for this study.
s://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf
‘d’ is defined as follows:

d ¼ 1�
P

ŷi�j xij2
h i

P
ŷi � �x1j j þ xi � �x1j j)2

�h i

where, ŷi refers to the predicted value corresponding to ith

observation and xi refers to ith value of observation. The

closer the ‘d’ value to 1, the better the model fits the obser-

vations. The development of MLR models and all the

relevant statistical calculations were performed using the

‘R Studio 3.3.1’ software.
RESULTS

Pearson correlation analysis

A detailed study of past research works revealed that differ-

ent climate anomalies have impacts on the seasonal

streamflow of NSW which varies seasonally as well as

spatially. Pearson correlation analysis was done for identify-

ing the strength of relation between the seasonal climate

anomalies. To analyze the extent of the influences of differ-

ent climatic variables on seasonal streamflow of NSW,

Pearson correlation analysis was applied in two different

segments. The first segment took into account the concur-

rent relationship of climate indices and seasonal

streamflow, while the second segment was conducted in

order to investigate the lagged relationships of the climate

indices and seasonal streamflow. Later on, the outcomes

of the second phase served as the basis for selecting the suit-

able lagged climate indices to use as inputs while developing

MLR models.

Concurrent relationships

The linear relationships between spring, summer, autumn,

and winter streamflow and climate anomalies of the same

seasons were explored by doing the Pearson correlation

analysis for each station of the four selected regions of NSW.

In Table 3, concurrent correlations between seasonal

streamflow and climate indices are presented, where it is

observed that spring (Table 3(d)) shows stronger



Table 3 | Concurrent correlation analyses between seasonal streamflow and climate indices (a) summer, (b) autumn, (c) winter, (d) spring

Region Station NINO3 NINO4 SOI IPO PDO EMI IOD NINO3.4

(a)

NNSW Singleton �0.31** �0.35** 0.31** �0.27** �0.26** �0.18 0.18 �0.30**
North Cuerindi �0.33** �0.38** 0.28** �0.28** �0.22* �0.27** 0.1 �0.34**
Coggan �0.06 �0.03 �0.06 �0.03 0.14 �0.20* 0.25** �0.1

SNSW Mittagang Crossing �0.19 �0.25* 0.12 �0.05 �0.14 �0.13 �0.12 �0.19
Kiosk �0.32** �0.37** 0.34** �0.05 �0.22* �0.27** 0.12 �0.34**
Gundagai �0.12 �0.14 0.06 0.02 0.16 �0.31** 0.28** �0.18
Wee Jasper �0.36** �0.43** 0.33** �0.12 �0.20* �0.36** 0.1 �0.39**

CWNSW Corowa �0.06 �0.03 �0.06 �0.03 0.14 �0.20* 0.25** �0.1
Wagga Wagga �0.14 �0.16 0.08 0 0.16 �0.32** 0.28** �0.20*

WNSW Cowra �0.15 �0.11 0.11 �0.12 0.02 �0.12 0.27** �0.15
Barham �0.38** �0.42** 0.38** �0.20* �0.25** �0.28** 0.16 �0.39**
Brewarrina �0.39** �0.51** 0.48** �0.35** �0.33** �0.44** 0.21* �0.45**

(b)

NNSW Singleton �0.18 �0.26** 0.23* �0.3** �0.2* �0.13 �0.07 �0.22*
North Cuerindi �0.09 �0.19* 0.21* �0.26** �0.24* �0.14 �0.11 �0.14
Coggan �0.14 �0.24* 0.36** �0.2* �0.18 �0.19 �0.07 �0.20*

SNSW Mittagang Crossing �0.18 �0.26** 0.31** �0.22* �0.33** �0.13 �0.24* �0.25*
Kiosk �0.18 �0.31** 0.33** �0.25** �0.31** �0.23* �0.19* �0.26**
Gundagai �0.19 �0.3** 0.27** �0.24* �0.28** �0.23* �0.15 �0.27**
Wee Jasper �0.16 �0.29** 0.31** �0.25** �0.28** �0.23* �0.20* �0.24**

CWNSW Corowa 0.02 0 �0.04 �0.1 0.04 �0.11 0.05 �0.01
Wagga Wagga �0.18 �0.3** 0.28** �0.25** �0.27** �0.23* �0.16 �0.27**

WNSW Cowra �0.13 �0.19 0.28** �0.14 �0.16 �0.16 �0.24* �0.18
Barham �0.04 �0.12 0.12 �0.27** �0.11 �0.06 �0.06 �0.06
Brewarrina �0.23* �0.31** 0.32** �0.38** �0.31** �0.17 �0.01 �0.28**

(c)

NNSW Singleton �0.19* �0.27** 0.3** �0.12 �0.32** �0.12 �0.15 �0.24*
North Cuerindi �0.2* �0.27** 0.34** �0.15 �0.24** �0.21* �0.18 �0.26**
Coggan �0.13 �0.27** 0.37** �0.06 �0.04 �0.14 �0.32** �0.18

SNSW Mittagang Crossing �0.18 �0.26** 0.31** �0.22* �0.33** �0.13 �0.32** �0.23*
Kiosk �0.2* �0.34** 0.41** �0.16 �0.17 �0.12 �0.32** �0.25**
Gundagai �0.16 �0.32** 0.35** �0.19* �0.19 �0.13 �0.25** �0.23*
Wee Jasper �0.22* �0.3** 0.39** �0.15 �0.08 �0.18 �0.32** �0.28**

CNSW Corowa �0.12 �0.22* 0.34** �0.17 �0.09 �0.07 �0.28** �0.16
Wagga Wagga �0.15 �0.3** 0.34** �0.18 �0.16 �0.15 �0.26** �0.21*
Cowra �0.08 �0.23* 0.34** �0.11 �0.18 �0.14 �0.14 �0.26**

WNSW Barham �0.04 �0.12 0.12 �0.27** �0.11 �0.06 �0.21* �0.24*
Brewarrina �0.15 �0.26** 0.33** �0.06 �0.2* �0.21* �0.20* �0.41**

(d)

NNSW Singleton �0.35** �0.42** 0.38** �0.34** �0.25** �0.19* �0.38**
North Cuerindi �0.43** �0.54** 0.52** �0.44** �0.44** �0.33** �0.47**
Coggan �0.27** �0.36** 0.33** �0.28** �0.3** �0.32**

SNSW Wee Jasper �0.39** �0.49** 0.46** �0.23* �0.26** �0.36** �0.50** �0.43**
Kiosk �0.33** �0.43** 0.42** �0.37** �0.22* �0.46** �0.34**
Mittagang Crossing �0.28** �0.37** �0.26** �0.46** �0.29**
Gundagai �0.26** �0.36** 0.32** �0.25** �0.26** �0.19* �0.34** �0.28**

(continued)
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Table 3 | continued

Region Station NINO3 NINO4 SOI IPO PDO EMI IOD NINO3.4

CWNSW Corowa �0.28** �0.36** 0.31** �0.21* �0.3** �0.08 �0.43** �0.29**
Wagga Wagga �0.27** �0.37** 0.33** �0.24* �0.26** �0.21* �0.36** �0.28**
Cowra �0.19* �0.32** 0.26** �0.23* �0.19 �0.21* �0.24* �0.22*

WNSW Barham �0.31** �0.39** 0.34** �0.28** �0.51** �0.33**
Brewarrina �0.36** �0.47** 0.38** �0.35** �0.42** �0.35** �0.42**

*Correlation is significant at 5% level. **Correlation is significant at 1% level.
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correlations with most of the indices compared to other sea-

sons (Tables 3(a)–3(c)). It is evident from Table 3(d) that all

the climate indices (except IPO) have significant corre-

lations with spring streamflow for all the selected regions.

IPO shows significant correlations only for CWNSW and

for two stations of SNSW regions which are geographically

close to each other. Therefore, it can be anticipated that only

in the central-west and southern parts of NSW IPO has

strong influence on spring streamflow.
Table 4 | Pearson correlations (r) of lagged climate indices and spring streamflow NNSW and

Region Stations Indices

Lagged months

Decn-1 Jann Febn

NNSW Singleton NINO3.4
PDO �0.26** �0.33
IOD

North Cuerindi NINO3.4
PDO �0.19* �0.22
IOD

Coggan NINO3.4
PDO � 0.21* �0.27** �0.26

SNSW Wee Jasper NINO3.4
PDO � 0.21* �0.23*
IOD
IPO � 0.23* �0.23* �0.23
EMI

Kiosk NINO3.4
PDO � 0.29** �0.31** �0.30
IOD

Mittagang Crossing NINO3.4
PDO � 0.23* �0.26** �0.31
IOD � 0.33**

Gundagai NINO3.4 �0.24
PDO � 0.26** �0.26** �0.28
IPO �0.25** �0.25
IOD
EMI

*Correlation is significant at 5% level. **Correlation is significant at 1% level.

s://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf
Single lagged relationships

For each selected station of the four study regions of NSW,

single lag correlation analysis was performed between

spring streamflow at year ‘n’ and monthly (Decembern-1 to

Augustn) values of each climate variable. The outcomes

are presented in Tables 4 and 5.

It was observed from the single lagged analysis that

different regions are influenced by different climatic
SNSW

Marn Aprn Mayn Junen Julyn Augn

�0.35** �0.43** �0.39** �0.31**
** �0.29** �0.30** �0.35** �0.30** �0.37** �0.34**

�0.22*
�0.28** �0.31** �0.35** �0.26**

* �0.21* �0.24** �0.30** �0.23* �0.32** �0.31**
�0.21*

�0.34** �0.45** �0.46** �0.39**
** �0.22* �0.29** �0.33** �0.31** �0.41** �0.36**

�0.27** �0.40** �0.42** �0.40**
�0.19* �0.21* �0.19* �0.21*

�0.21* �0.29** �0.32**
* �0.23* �0.23* �0.23* �0.23* �0.23* �0.23*

�0.26** �0.32**
�0.19* �0.25** �0.35** �0.33**

** �0.32** �0.26** �0.24*
�0.21* �0.22* �0.34** �0.31**
�0.24* �0.31** �0.28** �0.26**

** �0.37** �0.28** �0.24*
�0.21* �0.33** �0.32** �0.33** �0.38** �0.36**

* �0.24** �0.24** �0.26** �0.31** �0.34** �0.29**
** �0.31** �0.27** �0.22* �0.24** �0.22* �0.21*
** �0.25** �0.25** �0.25** �0.25** �0.25** �0.25**

�0.19* �0.23* �0.25** �0.25**
�0.20*



Table 5 | Pearson correlations (r) of lagged climate indices and spring streamflow CWNSW and WNSW

Region Stations Indices

Lagged months

Decn-1 Jann Febn Marn Aprn Mayn Junen Julyn Augn

CNSW Corowa NINO3.4 �0.22* �0.25** �0.33* �0.29*
PDO � 0.24** �0.24* �0.27* �0.31* �0.25*
IOD �0.22* �0.35** �0.40**
IPO �0.21* �0.21* �0.21* �0.21* �0.21* �0.21* �0.21* �0.21*

Wagga Wagga NINO3.4 �0.23* �0.23* �0.22* �0.25** �0.30** �0.35** �0.29**
PDO � 0.25** �0.25** �0.27** �0.29** �0.25** �0.20* �0.22* �0.20* �0.19*
IOD �0.21* �0.25** �0.25**
IPO �0.24* �0.24* �0.24* �0.24* �0.24* �0.24* �0.24* �0.24*
EMI �0.20* v0.21*

Cowra NINO3.4 � 0.22* �0.20* �0.22* �0.21* �0.22* �0.24** �0.31** �0.27**
PDO �0.20* �0.21* �0.22* �0.21* �0.20*
IOD �0.20*
IPO �0.23* �0.23* �0.23* �0.23* �0.23* �0.23* �0.23* �0.23*
EMI �0.19* �0.22*

WNSW Barham NINO3.4 �0.20* �0.26** �0.35** �0.33**
PDO � 0.24** �0.25** �0.26** �0.28** �0.20*
IOD �0.30** �0.44** �0.46**

Brewarrina NINO3.4 �0.21* �0.37** �0.43** �0.39**
PDO �0.20* �0.26** �0.26** �0.32** �0.28**
IOD � 0.25** �0.19* �0.23*
EMI �0.24* �0.31** �0.41**

*Correlation is significant at 5% level. **Correlation is significant at 1% level.
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variables. Lagged NINO3.4 and PDO have significant

impacts on the spring streamflow of all four selected regions.

Spring streamflows of CWNSW stations and two stations of

SNSW (Gundagai andWee Jasper stations, which are closely

located to CWNSW stations) were also influenced by lagged

IPO (Tables 4 and 5). Almost all the stations had significant

correlations with lagged IOD indices, whereas lagged EMI

had impacts on a very limited number of stations.

NINO3.4 shows statistically significant correlations up

to a lagged period of four months (April to August) with

the correlations ranging from �0.19 to �0.46 (Tables 4

and 5). These findings align with the study of Kirono et al.

(), who found significant correlations for another two

ENSO indices – NINO3 and SOI as 0.35 and 0.36, respect-

ively, in the same study regions. SOI was found to have a

correlation of 0.51 with spring streamflow in the study of

Chiew & Leahy (). Wang et al. (), also explored

the strong impact of NINO3.4 on spring rainfall up to a

lag of two months. Duc et al. () explained that ENSO

indices have a strong impact on rainfall during austral

spring. The lagged periods of IOD that had significant
om https://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf

er 2018
correlations were not consistent for all the stations, while

most of the stations have significant correlations up to

three months’ lag. It is observed that EMI has significant

correlation only up to two months’ lag (Tables 4 and 5) for

five stations (Wee Jasper, Gundagai, Wagga Wagga,

Cowra, and Brewarrina) with a maximum significant corre-

lation of �0.41 (Brewarrina station). The lagged relationship

of PDO was quite different as for some stations it presents

more significant correlations with longer lead times. The

maximum lead times (up to eight months) with significant

correlations for spring streamflow were also obtained for

this climate variable of the Pacific Ocean (Tables 4 and 5).

This is similar to the assessment of Whiting et al. (),

who stated that PDO has greater correlation with annual

rainfall of Sydney than that of SOI. Latif et al. () also

showed a strong relationship between PDO and Australian

summer monsoon. Westra et al. () evaluated correlation

coefficients between seasonal inflows of a reservoir in

Sydney and climate indices, where correlations of spring

inflow with NINO3.4 and PDO were found to be �0.17

and �0.19, respectively.
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Multiple linear regression analysis

Various models with different combinations of lagged

months’ indices were analyzed for all 12 stations in order

to find out the best forecasting model for each of the

four study regions. Eighty-five years (from 1914 to 1998)

of streamflow data were selected for the calibration of

the models, while the remaining 17 years’ (from 1998 to

2015) data were selected for validation in order to assess

the future streamflow predictability of the developed

MLR models. For all the stations, the best models with

lower errors while satisfying the statistical limits were

selected. A similar approach for validating the results was

applied by Hossain et al. (), Rasel et al. (, ),

and Mekanik et al. () while predicting rainfall using cli-

mate indices. The Pearson correlation (r) values for both

calibration and validation periods were satisfactory, while

the correlation values in the validation period were found

to be higher than that of the calibration period. F-test

was performed to evaluate the best model that fit the

population of the sample data, while the t-test was con-

ducted to identify the significance of the individual

parameters. The best model for each station with their

regression coefficients, VIF, and DW statistics are pre-

sented in Table 6.
Table 6 | Performance test of the best MLR models for calibration and validation period

Region Station name Model

Calibration period

Durbin-
Watson

NNSW Singleton PDOMar NINO3.4Jun 2.13
North Cuerindi PDOJul NINO3.4Jul 1.47
Coggan PDOJul NINO3.4Jul 1.99

SNSW Wee Jasper IODJul NINO3.4Jul 1.76
Kiosk PDOAug NINO3.4Ju 1.73
Mittagang
Crossing

PDOAug NINO3.4Jul 1.16

Gundagai IPOJul NINO3.4Jul 1.83

CWNSW Corowa IPOJun IODJun 1.71
Wagga Wagga IPOJul NINO3.4JuL 1.91
Cowra PDOMar NINO3.4Feb 1.62

WNSW Barham IODJun NINO3.4Jun 1.80
Brewarrina IODJul NINO3.4Jul 1.74

All correlations are significant at 5% level.

s://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf
It can be seen from Table 6 that VIF values for the

selected models are close to 1, which means that there is

no multi-collinearity problem between the predictors.

According to Field (), values less than 1 or greater

than 3 for DW test will indicate the presence of serial corre-

lations between the model errors. Thus, it can be concluded

from the results of Table 6 that the DW test of each selected

model satisfies the statistical limits, which also establishes

the goodness-of-fit of the models.
DISCUSSION

The results of the MLR analysis depict a clear view of

regional variation in influence of combined multiple

models throughout the study area. A good number of

models combining PDO and NINO3.4 show statistically sig-

nificant correlations with spring streamflow for the NNSW

region which implies the strong impact of these two indices

in the northern part of the state. Therefore, for this region the

best model for forecasting spring streamflow was obtained

with the combination of two months lagged NINO3.4 and

five months lagged PDO (at Singleton station) showing a

significant correlation of 0.41. PDO-NINO3.4 combined

models were predominant in the southern part of the state
Validation period

VIF r RMSE MAE d r RMSE MAE d

1.12 0.41 19.23 13.81 0.51 0.65 12.09 10.98 0.70
1.16 0.46 8.92 5.98 0.55 0.62 6.92 6.12 0.70
1.17 0.33 2.15 1.26 0.38 0.61 1.25 1.16 0.67

1.17 0.42 7.51 6.04 0.53 0.57 5.47 4.39 0.63
1.30 0.45 3.98 3.04 0.57 0.41 4.24 3.74 0.52
1.30 0.35 8.91 7.41 0.44 0.49 9.73 9.30 0.38

1.05 0.43 71.40 58.0 0.55 0.51 72.37 66.03 0.40

1 0.30 139.33 114.87 0.40 0.48 131.01 126.17 0.30
1.05 0.43 85.84 69.26 0.55 0.55 80.53 71.44 0.44
1.44 0.27 35.01 28.91 0.37 0.44 28.04 24.75 0.44

1.10 0.31 106.05 90.67 0.43 0.44 95.51 82.49 0.37
1.17 0.40 44.47 34.59 0.49 0.56 38.55 36.04 0.57
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also, where two stations, Kiosk and Mittagang Crossing in

SNSW, showed the highest significant correlations (0.41

and 0.49, respectively) for the same combination. On the

other hand, the other two stations (Wee Jasper and Mitta-

gang Crossing) of SNSW had maximum significant

correlations (0.57 and 0.51, respectively) with IOD_-

NINO3.4 and IPO_NINO3.4 combinations, respectively.

This is similar to the findings obtained in the western part

of the state because except for Cowra (in CNSW), all the

other four stations (Corowa, Wagga Wagga, Barham, and

Brewarrina) are evidently influenced by either IPO or IOD

interaction with NINO3.4. Both the two stations, Barham

and Brewarrina in WNSW, are influenced by the same com-

bination which is IOD_NINO3.4 having maximum

significant correlations of 0.44 and 0.56, respectively. IPO

is found to be dominant in CWNSW for two stations, as

Corowa and Wagga Wagga are influenced by IPO_IOD

and IPO_NINO3.4 combined models, respectively. Com-

pared to the other two stations of CWNSW (Corowa and

Wagga Wagga), Cowra is located further north, where the

PDO_NINO3.4 models were found to be dominant and

satisfying this fact, Cowra also had maximum significant cor-

relation (0.44) for the same combination. It is evident from

the results that the IOD and IPO containing MLR models

showed good performance with significant correlation for

the southern and western parts (inland) of the state. How-

ever, in the coastal eastern part of the state IOD–NINO3.4

combinations were observed to be less effective, which

align with the findings of Pepler et al. (), who stated

that eastern seaboard rainfall is less influenced by tropical

SST variability such as ENSO and IOD than inland because

the effect of the IOD opposes ENSO during the cool season.

In the western part of the country IOD–NINO3.4 and

PDO–NINO3.4 combined models can be confidently used

to forecast spring streamflow. Thus, interactions of

NINO3.4, IOD, and IPO can be influential in the inland of

NSW, whereas PDO and NINO3.4 interactions can be effec-

tive in the north-eastern and south-eastern coastal regions of

the state.

In order to determine the accuracy of the developed

MLR models, validation tests were performed. Table 6

shows the performance statistics of RMSE, MAE, and

index of agreement (d) of the best developed models for

the calibration and validation periods. It is evident from
om https://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf

er 2018
Figure 3 and Table 6 that there is significant increment

(except for Kiosk station) of the correlation values

from calibration to validation stage such as, for example,

at Singleton station, where correlation value increased

from 0.41 in the calibration stage to 0.65 in the validation

stage for PDOMarch–NINO3.4June combination. Again, the

highest correlation (r¼ 0.71) from the current analysis

was also obtained for the Singleton station with PDOJan–

NINO3.4May combination in the validation period (not

shown in Table 6). However, to get the best predictor

model, a few unusual events which were outliers in a

box-plot analysis were removed from the calibration and

validation periods. Thereby, the ratio of the duration of

calibration or validation period to the number of outliers

may have affected the corresponding correlation (r) values.

The best predictor models for each of the 12 stations’

regions are given below:

QSingleton¼18:81�1:81�PDOMar�13:64�NINO3:4Jun
QNorthCuerindi¼9:58�1:67�PDOJul�5:77�NINO3:4Jul
QCoggan¼1:72�0:15�PDOJul�1:11�NINO3:4Jul
QWeeJasper¼14:70�3:15�IODJul�4:80�NINO3:4Jul
QKiosk¼5:91�0:54�PDOAug�2:68�NINO3:4Jul
QMittagangCrossing¼13:16�1:90�PDOAug�2:54�NINO3:4Jul
QGundagai¼158:12�18:76�IPOJul�42:94�NINO3:4Jul
QCorowa¼262:05�37:29�IPOJun�85:21�IODJun

QWaggaWagga¼176:47�20:15�IPOJul�54:26�NINO3:4Jul
QCowra¼39:32�1:42�PDOMar�11:11�NINO3:4Feb
QBarham¼215:13�67:47�IODJun�39:48�NINO3:4Jun
QBrewarrina¼50:27�2:74�IODJul�32:84�NINO3:4Jul

The predictability of the best MLR models for each of

the four regions has been explained through the time

series plots of observed and simulated flows in Figure 4.

In Figure 4 some overestimations of the models can be

observed during the validation stage which may result from

the ‘millennium drought’ (Bond et al. ) periods that

occurred from 1994 to 2010 over the continent. It was explored

by Verdon-Kidd & Kiem () that a combination of climate

drivers in the Pacific Ocean (ENSO, PDO), IOD and SAM

were responsible for the past three droughts in south-east Aus-

tralia; the ‘Federation’ drought (1895–1902), the ‘WorldWar II’

drought (1937–1945), and the ‘Big Dry’ (1994–2010). Again,



Figure 3 | Influence of best MLR models in terms of Pearson correlation values on the study region.
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some streamflow events (e.g., 1950–1960, 1970–1980) are

underestimated by the developed models. This may happen

due to the failure of capturing the unusual extreme flood

events, for instance, the floods of 1954 and 1974. One analysis

by Lismore City Council (https://www.lismore.nsw.gov.au/

cp_themes/default/page.asp?p¼DOC-SVI-55-40-21) revealed

that the flood of 1974 is considered to be a once-in-70-year

event which resulted from the simultaneous occurrence of

La Niña condition and negative IOD phase. Apparently, a

simple MLR model consisting of only two climate indices

(e.g.,NINO3.4 and PDO) is not likely to replicate an unusual

phenomenon like ‘millennium drought’ or an extreme flood

event like that of 1974. Another reason is that some other cli-

mate indices might have been more influential at that time

rather than the selected indices for this study.

The capability of the developed models of forecasting

spring streamflow with higher accuracy has been ensured

as the values of RMSE, MAE, and d in the validation

period showed good agreement with the calibration

period. The index of agreement (d) for both the calibration
s://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf
and validation periods was close to 0.5, which ensured

good forecasting ability of the models. Significant increase

in the Pearson correlation values has proved that the com-

bined models have greater skills for predicting streamflow

than the single lagged indices. For instance, at Singleton

station, during single correlation analysis, NINO3.4June and

PDOMarch showed correlations of �0.43 and �0.29,

respectively (Table 4), whereas during MLR analysis,

NINO3.4June–PDOMarch combination (Table 6) showed a

higher correlation of 0.65 (in validation period). Moreover,

while comparing the outcomes of the present research

with the previous research studies on forecasting stream-

flow, it is evident that MLR models of this study showed

higher correlations than any of the analyses that used

single lagged index. Even for single lagged correlation analy-

sis, in general, the present study showed higher correlations

than the previous research (Table 7).

The variations of influences of different climate indices

on different study regions of NSW is comparable with the

recent study outcomes of Duc et al. (). They have

https://www.lismore.nsw.gov.au/cp_themes/default/page.asp?p=DOC-SVI-55-40-21
https://www.lismore.nsw.gov.au/cp_themes/default/page.asp?p=DOC-SVI-55-40-21
https://www.lismore.nsw.gov.au/cp_themes/default/page.asp?p=DOC-SVI-55-40-21
https://www.lismore.nsw.gov.au/cp_themes/default/page.asp?p=DOC-SVI-55-40-21


Figure 4 | Comparison between the observed and simulated streamflow during the (a) calibration (1914–1998) and (b) validation (1999–2015) periods for (i) Singleton (NNSW), (ii) Wee

Jasper (SNSW), (iii) Wagga Wagga (CWNSW), (iv) Brewarrina (WNSW) stations. (continued).
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Figure 4 | continued.
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Figure 4 | continued.

Table 7 | Comparison with the previous studies based on the highest correlations

between indices and spring streamflow for South-East Australia

Indices
Kirono
et al. (2010)

Chiew &
Leahy (2003)

Current study

Single lagged
correlation

MLR
correlation

NINO3.4 – – �0.43a 0.65b

PDO – – �0.41c

NINO3 0.35d – 0.36e

SOI 0.36f 0.51g 0.51h

a3 months lagged NINO3.4.
bPDOMAR and NINO3.4JUN.
c2 months lagged PDO.
d8 months lagged NINO3.
e3 months lagged NINO3.4.
f12 months lagged SOI.
gWinter SOI.
h2 months lagged SOI.
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reported association of climate indices with NSW rainfall

using Bayesian model averaging. Among their studied

sites, outcomes of the sites which are within 160 km of

our selected streamflow stations are similar to our findings.

They have reported that single IPO cannot impact NSW

rainfall significantly, however its association with ENSO is

significantly influential on rainfall of almost the whole of

NSW. The current study also found strong influence of

PDO–NINO3.4 on spring streamflow across almost the

whole state (it is to be noted that IPO and PDO are similar

as IPO acts on the whole Pacific basin and PDO is active in

the North Pacific, poleward of 20�N). This finding is strongly

supported by the findings of many past studies that

suggested IPO or PDO phases modulate the frequency and

magnitude of ENSO events (Power et al. ; Folland
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et al. ; Franks ; Verdon et al. ) which is influen-

tial on the streamflow volumes of many parts of the world

(Kahya & Dracup ; Moss et al. ; Piechota &

Dracup ; Chiew et al. ; Piechota et al. ;

Dettinger & Diaz ; Kiem & Franks ; Wooldridge

et al. ).

In Wagga Wagga, evidence of strong IOD influence has

been found in the study of Duc et al. (), which is consist-

ent with our study, as IOD combined models performed

significantly near this area. Similar outcomes have been

obtained for Mittagang Crossing station, where Duc et al.

() found ENSO–IOD combined impact on spring rainfall

to be very strong (posterior probability¼ 1) and the current

study has found (not shown here) significant correlation

(r¼ 0.42) with the same combination of indices, i.e.,

NINO3.4 and IOD.
CONCLUSION

In the current research, the multiple linear regression

method was applied with a view to exploring the potential

skills of combined multiple climate indicators to forecast

the spring streamflow of NSW regions with a longer lead

time than the usual practice. Before performing multiple

regression analysis, first single correlation analyses were per-

formed to identify potential climate predictors for the

region. Through single correlation analysis, several indices

(NINO3.4, IOD, EMI, PDO, and IPO) were found to have

strong effects on spring streamflow of NSW with a lagged

time of maximum three months. Some indices were found

to give significant correlations with a lagged time of more

than two months, however, in general, the correlation

values decrease with the increase of lagged months. This

study, through findings of five effective climate indices for

the region, opened an opportunity to study with more than

two indices which no one has ever done for this region.

For the current study, to achieve better correlations (predic-

tion capability) different combinations of two (out of the five

significant) indices were tested in the multiple regression

analysis. It was found that the same combination of indices

did not turn out to be best for all the stations/regions, which

is reasonable as we are dealing with a large region and the

further the distance from a particular station the greater
s://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2018.171/363722/nh2018171.pdf
the likelihood of being influenced by other indexes. Also,

the combined best models’ lagged indices are not necessarily

from the same month. In general, among the best combined

dual indices, NINO3.4 is found to be significant for all the

stations except one (Corowa), PDO is more significant

towards the north-eastern and south-eastern coastal region,

IPO is more significant towards the central-south, whereas

IOD is more significant towards the west of NSW. The

best correlation is obtained for Singleton station in NNSW

for the PDO–NINO3.4 combined model with a correlation

of 0.65 (in the validation period) for the prediction of

spring streamflow with two months’ lagged period. It is note-

worthy that every time the combined model outperformed

the models considering a single climate variable in terms

of Pearson correlation (r), it was evidence of better predic-

tive skills of the MLR models.

For this study, selections of the best models were based

on the significant correlation values in both calibration and

validation stages. However, while looking at the time series

comparisons between the observed and simulated stream-

flow values, it is found that the developed models are

unable to capture some unusual events like severe droughts

or high floods. A simple multiple linear regression model

consisting of only two climate indices is not expected to cap-

ture the complex relationships between streamflow and

climate drivers very well, and thus is not anticipated to pro-

vide a very good match with observed values. Moreover, in

fact, rainfall and streamflow are also influenced by some

other local and/or regional factors (i.e., temperature, humid-

ity, wind speed, soil moisture, etc.), which are not possible to

consider in such regression models. Thus, the extension of

this research work will include other non-linear techniques

(i.e., ANN or Fuzzy logic) as some researchers (Mekanik

et al. ; Abbot &Marohasy ; Rasel et al. ) success-

fully explained the non-linear relationship between rainfall

and climate drivers using this technique, although they

could not provide any output model which could be useful

to stakeholders. Since the relationship between streamflow

and remote climate drivers is likely to be non-linear

(Piechota et al. ), a non-linear model is expected to

give better results than a linear model. Also, an extension

of the current research can be to explore the effectiveness

of incorporating more than two indices in a multiple

regression model. Nevertheless, the developed MLR
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models have the potential to provide indications on the

possibility of getting increased or decreased amounts of

streamflow and expected magnitude in the future season.

Currently, water users in Australia get the seasonal predic-

tions of streamflow just at the beginning of the season,

which do not give them enough time for prudent decision

making. Moreover, those predictions are stochastic, i.e.,

the users do not get any estimation of expected magnitude.

The developed MLR models for the study area are expected

to provide water users and planners with some insight

which will enable them to take tactical cropping decisions

three months in advance. This sort of study is mainly

based on regional climate index/indices applicable for a

region. However, a similar concept can be applied to other

regions if any such index/indices are found to be effective

for other regions.
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