highly heterogeneous, profoundly debilitating, and insufficiently explored. MATERIAL AND METHODS: We reviewed the clinical and electrodiagnostic features of a retrospective cohort of patients hospitalized in our center for IC related myopathy. ICI therapy was identified through a search of the electronic medical records and we researched the outcome according to the treatment received. RESULTS: We included 16 patients: 4 men and 12 women, median age 61 years (31-72) treated by anti-PD1 monotherapy (10) or antiCTLA4 administration (6). Median delay from ICIs initiation to neuropathy symptoms was 85.8 days (4 months), it seemed lower in combination group (median 33.5 days vs 81.5 days in monotherapy patients p=0.02). Half of patients presented with concurrent non-neurological rAE. CSF was investigated in 57% of cases, pleocytosis was seen in 7 cases, in these, Cerebral nerve involvement was rare (3/16) the most frequent phenotype was demyelinating polyneuropathy fulfilling EFNS 2021 EMG criteria in 10 cases. The other 6 presented with non-length dependent sensory neuropathy, 3 dysautonomic neuropathy (1) or sensory motor neuropathy with incomplete EFNS 2021 EMG criteria (2). ICI treatment was stopped, and steroids were the first line of treatment for all patients. However, 12/16 patients received additional IV immunoglobulin. Supplementary immunomodulation (cyclophosphamide, tocilizumab) was required in 2 cases. 75% of patients improved within a median of 4.5 months, median decrease in mRS was 2 points. Noteworthy, the challenge by anti-PD1 monotherapy was proposed in 4 patients with a single neuropathy relapse. CONCLUSION: Our series expand the knowledge on the clinical and electrophysiological phenotype of IC related neuropathies improving their recognition in clinical practice. Moreover, our findings argue for the benefit of adding IV immunoglobulin to steroids as a first line treatment for different phenotypes of IC related neuropathies.

P11.67.B. TUMOR CENTRALITY IS ASSOCIATED WITH A DECLINING OVERALL SURVIVAL IN IRRADIATED DIFFUSE GLIOMA

BACKGROUND: For diffuse glioma, tumor location is an important factor that influences symptomatology, treatment strategy and, ultimately, survival. Our previous research showed an association between overall survival (OS) and local involvement in eloquent gray and white matter areas in the left hemisphere. In this study, we tested the hypothesis that a poor outcome is related to decreased survival in eloquent gray and white matter areas in the left hemisphere. Also, involvement of central anatomical structures, such as midline corpus callosum, seem to relate to poorer survival rates, when predefined categories of survival groups (>6 months, 6-24 months, 24-< months) are established. In this study, we investigated OS in relation to centrality of the tumor and its microstructural environment defined as the Clinical Target Volume (CTV) or diffuse glioma treated with radiotherapy in a data-driven fashion. MATERIAL AND METHODS: We retrospectively included 273 adult patients with histologically proven diffuse glioma who received first radiotherapy between November 2014 and July 2020 at University Medical Center Utrecht. CTV was spatially normalized to stereotactic MNI152 space and its center of gravity (CoG) was subsequently calculated. Then, the distance between CoG of CTV to the center of the MNI brain was measured in millimeters (mm) for every tumor. A multivariate Cox-regression model included the distance between CoG of CTV and center of MNI brain, age, sex, total intracranial volume (TIV), Karnofsky Performance Status (KPS), WHO grade and extent of resection. RESULTS: During follow-up, 183 patients (67%) deceased and median OS of the patient population was 23 months. Median OS of patients with CTV located in eloquent gray and white matter areas was lower compared to CTV located in non-eloquent areas (p=0.004). Centrality of the tumor was strongly associated with OS (p=0.004), the strongest predictor for OS, a higher tumor centroid to center of gravity distance led to poorer OS. CONCLUSION: Our findings underscore the importance of tumor location in diffuse gliomas and its impact on overall survival. CTV location should be considered as a biomarker for patient prognosis.

P11.68.A. HEMANGIOPERICYTOMA, CASE SERIES AND CLINIC-PATHOLOGICAL ANALYSIS
V. Redaelli, C. Calatassito, G. Marucco, V. Pinz, P. Gaviani, A. Botturi, G. Simonetti, L. Mattei, B. Pollo, A. Silvani; IRCCS Carlo Besta of Milan, Milan, Italy.

BACKGROUND: Hemangiopericytoma (HPC) is an extremely rare aggressive tumor of mesenchymal origin, which constitutes less than 1% of primary tumors of the central nervous system. Typically it occurs in young adults (mean age at diagnosis 30-50 years). Initially described as gennangiomatosum, it was first called hemangiopericytoma in 1942 but it was considered as a distinct entity from 1956 when the first electrodagnosis was performed on two cases. The same entity was also considered as a pure neurilemmal neoplasm. In 1995, when it was finally recognized as a distinct clinical-pathological entity by the World Health Organization (WHO). In 2016, there was the unification of both HPC and Solitary Fibrous Tumor (SFT) in a single spectrum of rare and thick mesenchymal tumors. The purpose of this study was to determine whether treating with cranial resection and radiotherapy (MRT) for early screening of brain metastases can improve survival. MA