Abstracts

MDB-36. 22-HDOHE, A PREDICTIVE MARKER IN CSF OF PATIENTS WITH RECURRENT MEDULLOBLASTOMA TREATED WITH MEMMAT

Andreas Peyrl1,2, Gerhard Hagn1, Natalia Stepien1,2, Daniel Senfter1,2, Silhyle Madlener1,2, Jaroslav Sterba1, Alvaro Lassaletta1, Pierre Leblond1,2, Karsten Nysom1, Christine Haberler1, Andrea Bileck1,2, Amedeo A Azziz1,2

Abstract ID: NOAE064.485

MDB-37. IN GROUP 3 MEDULLOBLASTOMA MB-33. SIOPE-MB6 – THE RATIONALE FOR THE NEXT

June 2024
Abstracts

John R., Seung H. TO BROMODOMAIN INHIBITORS IN MEDULLOBLASTOMA. AN INTEGRATED MODEL FOR RESISTANCE

Rac1, Shh signaling, epigenetics, and cellular migration in medulloblastoma.

provide a dual mechanism of inhibiting Shh signaling and cellular migration inhibits actin polymerization suggesting that utilizing this compound may

GYS32661 treatment of medulloblastoma cells inhibits the GLI1-UHRF1 interaction of Hedgehog signaling via the GLI1 and GLI2 transcription factors. We

as a possible therapeutic target in SHH-medulloblastoma due to its regula

devolopmental signaling. The small GTPase Rac1 has recently been reported

and intellectual deficits. Therefore, there is a dire need to identify novel

addition, patients who respond to traditional therapy suffer from cognitive

MEDULLOBLASTOMA

MDB-37. RAC1 INHIBITION FOR THE TREATMENT OF

regimen. Our findings advocate for the prospective assessment of CSF-

as a predictive biomarker signature for response in patients with recurrent

markably, the docosahexaenoic acid (DHA)-derived 22-HDoHE was specif

in medulloblastoma patients, again with higher levels in non-responders. Re

identification of 98 lipid mediators. Several molecules were downregulated

enriched

We analyzed CSF samples from 23 patients with relapsed MBL before initi

ation of MEMMAT treatment and from 12 controls. Lipid mediators were

enriched via solid phase extraction and analyzed using liquid chromatog

raphy coupled to a high resolution orbitrap Explorers 480 mass spectrometer.

RESULTS: Mass spectrometry-based untargeted oxylipin analysis led to the

identification of 98 lipid mediators. Several molecules were downregulated in medulloblastoma samples versus control, such as lipoxin A4 and

14(15)-DehydroEET. Non-responders had lower levels of these molecules than

responders. Glycodelinonic acid and deoxylinonic acid were up-regulated in medulloblastoma patients, again with higher levels in non-responders. Re

markably, the docosahexaenoic acid (DHA)-derived 22-HDoHE was specif

ically identified in the CSF samples of medulloblastoma patients but not in

control samples. CONCLUSION: An oxylipin pattern in CSF might serve

as a predictive biomarker signature for response in patients with recurrent

medulloblastoma treated with the antiangiogenic metronomic MEMMAT

regimen. Our findings advocate for the prospective assessment of CSF-

derived lipid markers in future trials for recurrent medulloblastoma.