batteries may offer alternatives for screening patients who will benefit from comprehensive services.

Abstracts

QOL-51. FEASIBILITY AND EASE OF USE OF A REMOTE ONLINE COGNITIVE BATTERY AMONG PEDIATRIC BRAIN TUMOR SURVIVORS

Kristen M. Lee, Joan Yu, Heather Stancel, M. Fatih Okcu, Murali Chintagumpala, Lisa Kahalley, Kimberly P. Raghuber; Texas Children’s Hospital/Baylor College of Medicine, Houston, TX, USA

BACKGROUND: Pediatric brain tumor survivors are at risk for cognitive deficits, including inattention, poor memory, and slow processing speed. Due to technology advances, computerized neuropsychological batteries were developed that can be completed via internet in the home. The primary aim of this study was to evaluate the rate of successful completion and ease of use of the Penn Computerized Neuropsychological Battery (CNB) among pediatric brain tumor survivors. **METHODS:** Forty-eight pediatric brain tumor survivors completed the online remote administration version of the Penn CNB (10 subtests) assessing complex cognition, working memory, and IQ (all p-values >.05). Mean ratings suggest that survivors were “very interested” in the tasks and they were “some easy” to complete. Younger children were more likely to have trouble understanding task instructions (r=.56, p <.01) and ask for help answering specific questions (r=.46, p <.05). **CONCLUSIONS:** Remote administration of computerized batteries are feasible among pediatric brain tumor survivors and may assist with advancing both research and patient care. From a research standpoint, remote batteries may allow for participation of computerized batteries are feasible among pediatric brain tumor survivors.