
RESEARCH ARTICLE

Neural Components of Reading Revealed by
Distributed and Symbolic Computational Models

Ryan Staples and William W. Graves

Department of Psychology, Rutgers University, Newark, NJ

Keywords: language, reading, fMRI, computational modelling, cognitive neuroscience, orthography

ABSTRACT

Determining how the cognitive components of reading—orthographic, phonological, and
semantic representations—are instantiated in the brain has been a long-standing goal of
psychology and human cognitive neuroscience. The twomost prominent computationalmodels
of reading instantiate different cognitive processes, implying different neural processes. Artificial
neural network (ANN) models of reading posit nonsymbolic, distributed representations. The
dual-route cascaded (DRC) model instead suggests two routes of processing, one representing
symbolic rules of spelling–to–sound correspondence, the other representing orthographic and
phonological lexicons. These models are not adjudicated by behavioral data and have never
before been directly compared in terms of neural plausibility. We used representational
similarity analysis to compare the predictions of these models to neural data from participants
reading aloud. Both the ANN and DRC model representations corresponded to neural activity.
However, the ANN model representations correlated to more reading-relevant areas of cortex.
When contributions from the DRC model were statistically controlled, partial correlations
revealed that the ANNmodel accounted for significant variance in the neural data. The opposite
analysis, examining the variance explained by the DRCmodel with contributions from the ANN
model factored out, revealed no correspondence to neural activity. Our results suggest that
ANNs trained using distributed representations provide a better correspondence between
cognitive and neural coding. Additionally, this framework provides a principled approach
for comparing computational models of cognitive function to gain insight into neural
representations.

INTRODUCTION

To better understand how the brain carries out a cognitive process, we must have robust
approaches to both cognitive models and neural functions. Cognitive models provide a mecha-
nistic explanation of cognitive function, and computational implementations of these models pro-
vide explicit and testable predictions of how these processes interact (Forstmann et al., 2011).
However, these models alone cannot reveal the neural bases or implementation of the modelled
processes.Neuroimaging has separately contributed to localizingwhere in the brain certain aspects
of cognition are processed, but localization alone does not explain cognition. Furthermore, in the
absence of model-based constraints, the interpretation of fMRI data is radically underconstrained
(Haxby et al., 2014). The union of computational cognitivemodels andneuroimaging, implemented
by recent advances in methodology, allows for the quantitative comparison of specific, model-
generated predictions to test their biological plausibility. Here we used this approach to better
determine the neural and cognitive basis of reading.
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Reading is a particularly promising domain to investigate, given the existence of well-
established computational cognitive models and the rich availability of cognitive neuroscience
data. Rather than assume the primacy of a particular model, we took a model comparison
approach (Popov et al., 2018) to testing for correspondence between two different computational
cognitive models optimized to account for reading performance.

One approach to modelling reading uses artificial neural networks (ANNs). ANN models of
reading are distributed, nonsymbolic, and based on connectionist principles. They consist of
weighted connections, learned via the backpropagation algorithm, between layers of intercon-
nected, neurally inspired units (Plaut et al., 1996; Seidenberg & McClelland, 1989). ANNs map
inputs to outputs using some number of “hidden” layers, in which the statistical regularities of the
target outputs are related to those of the inputs (Hinton, 1989).

Another prominent model of reading is the symbolic dual-route cascaded (DRC) model
(Coltheart et al., 2001). The DRC model also uses weighted connections between nodes
for producing phonological output fromorthographic input.UnlikeANNmodels, theDRCmodel
consists of hand-tuned connections among symbolic representations of explicit rules and
lexicons.

Both ANN and DRC models have been designed and tested to replicate aspects of human
reading, but the results of these simulations and independent evidence for them have so far
not adjudicated between the models. Additionally, neither model matches human behavioral
data perfectly. For example, an ANN model accurately reproduces the frequency-regularity
interaction found in single word reading (Plaut et al., 1996; Seidenberg & McClelland, 1989),
as well as spelling–sound consistency effects and natural variation in nonword pronunciation
(Zevin & Seidenberg, 2006). Lesioning of semantic contributions in an ANN model also repli-
cates the symptoms of surface dyslexia, as seen in participants with semantic dementia
(Woollams et al., 2007). ANN models, however, have been shown to perform at a below-
human level on low-frequency, inconsistent words (Jared, 2002). In contrast, the DRC model
succeeds in accounting for the serial, left-to-right nature of reading English (Coltheart et al.,
2001). The DRC model is silent, however, on effects of semantic factors such as imageability,
the degree towhich aword is judged to elicit a sensory impression (Plaut & Shallice, 1993; Strain
&Herdman, 1999; Strain et al., 1995), although such effects are beyond the scope of the current
investigation.

Both ANN models (Ueno et al., 2011) and the DRC model (Perry et al., 2007, 2010) have
been expanded in their capacity to simulate reading behavior since they were originally intro-
duced. Here we elected to use relatively simple versions of the models that are maximally
comparable.

Some previous studies have used computational models of reading behavior to inform
computational models of neural processing. A series of studies has used ANNmodels of reading
to examine the N400 event-related potential component, thought to index attempted semantic
access. Broadly, these results suggest that ANNmodels with neurobiologically inspired architec-
ture can produce realistic N400 waveforms, account for waveform-modulating variables such as
frequency or semantic richness, and perform lexical decision tasks (Cheyette & Plaut, 2017;
Laszlo & Armstrong, 2014; Laszlo & Plaut, 2012; Rabovsky et al., 2018).

The present study differs from this earlier work in several ways. First, previous attempts to
directly connect models of reading with neuroimaging data have been limited to electrophysio-
logical data. We aimed to extend this literature to fMRI-based word representations. Second,
previouswork has comparedmodel outputs with neural data, rather thanmodel internal represen-
tations. Our approach focused on what the model is computing by examining the intermediate

Neurobiology of Language 382

Distributed and symbolic neural components of reading

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/1/4/381/1867785/nol_a_00018.pdf by guest on 26 Septem
ber 2021



stage (hidden layer) associatedwith orthography-to-phonology transforms, as opposed to dealing
solely with the output representations. Finally, and most importantly, previous studies have not
directly compared representations from both the DRC and ANN models in terms of their fit to
neural data. Instead, they have demonstrated that computational mechanisms incompatible with
the DRC model can produce a qualitative fit to neural data. We aimed to determine not only
whether it is possible to produce a qualitative fit to neural data, but also whether either model
produces a better quantitative fit.

Interest in using computational models of reading to interpret neural data on reading is long-
standing. Even early functional neuroimaging studies of reading interpreted their results in terms
of the ANN and DRCmodels (Binder et al., 2005; Fiez et al., 1999). Furthermore, in the decades
since these models were developed, a considerable amount has been learned about the neural
basis of reading. Successful reading involves the integration of visual, orthographic, phonolog-
ical, and semantic information. Both univariate and multivariate pattern analyses (MVPA) have
contributed to localizing and dissociating where in the brain these types of information are
processed (Binder et al., 2009; Fischer-Baum et al., 2017; Graves et al., 2010; Liuzzi et al.,
2017; Price, 2012; Taylor et al., 2013).

Perhaps the most consistent finding in imaging studies of reading concerns the involvement
of the left mid-fusiform gyrus (FG), also referred to as the occipitotemporal cortex (Price, 2012),
in orthographic processing. The FG is thought to be an initial part of the pathway from orthogra-
phy to phonology when reading (Graves et al., 2014; Jobard et al., 2003). Activity in the FG has
been shown to follow a spatial gradient, with greater activation to lower-level visual and smaller
orthographic features (e.g., single letters or bigrams) in the posterior aspect and tuning to progres-
sively larger orthographic structure (e.g., quadrigrams or whole word forms) in more anterior
aspects (Vinckier et al., 2007). The FG shows increased activation as a result of grapheme–
phoneme correspondence (GPC) training in children (Brem et al., 2010; Shaywitz et al., 2004)
and adults learning novel writing systems (Hashimoto & Sakai, 2004; Taylor et al., 2017).
Furthermore, this increased activation to letter strings and words fails to develop in children with
dyslexia (Shaywitz et al., 2007; van der Mark et al., 2009), and damage to the mid-FG results in
pure alexia (Binder & Mohr, 1992; Damasio & Damasio, 1983; Leff et al., 2001). The mid-FG is
sensitive to letter combination probabilities, even when the stimuli are nonpronounceable letter
strings, and engages in orthographic processing even when participants are attending to nonlin-
guistic visual features of the stimuli (Binder et al., 2006). Despite this, the exact computational
role of the FG in reading is unclear. The visual word form area hypothesis posits that the FG
is specialized for orthographic processing (Cohen et al., 2000; Dehaene & Cohen, 2011;
McCandliss et al., 2003). The Interactive Account, on the other hand, suggests that the role
of the FG is to integrate phonological and possibly semantic information with bottom-up
visual and combinatorial orthographic information (Mano et al., 2013; Price & Devlin, 2011;
Twomey et al., 2011). A model-based approach with separate representations for orthogra-
phy, phonology, and the mapping between them should help clarify the computational role
of the FG.

Semantic information is theorized to assist in producing phonology during reading aloud,
particularly when reading inconsistent or irregular words (Strain et al., 1995). We briefly summa-
rize relevant information on this critical component of reading. However, strong conclusions
regarding semantics are beyond the scope of this study due to the lack of specific semantic
representations in the models being tested. Investigations of activation related to semantics in
reading reveal a specific, yet widespread network, prominently including the angular gyrus
(AG), along with middle and anterior parts of the lateral and ventral temporal cortices (Binder
et al., 2009; Taylor et al., 2013). The AG has been frequently implicated in semantic processing
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(Binder et al., 2009; but see Humphreys et al., 2015). While its exact role is debated, the AG has
been associated with semantic integration (Humphries et al., 2007), processing of semantic fea-
tures (Binder & Desai, 2011; Wang et al., 2017), more general effects of task difficulty
(Humphreys et al., 2015), and overlapping effects of semantics and task difficulty (Mattheiss
et al., 2018). The lateral and ventral temporal cortex are involved in the storage and processing
of category-related semantic information (Lambon Ralph et al., 2017). Broad swathes of temporal
cortex show activation in categorization tasks (Chao et al., 1999; Kable et al., 2005), and lesions
result in category-specific processing impairment (Damasio et al., 2004; Hillis & Caramazza,
1991; Lambon Ralph et al., 2007). The left anterior temporal lobe (ATL), though it has been sug-
gested to be part of the default mode network (Buckner et al., 2008; Raichle et al., 2001), demon-
strates increased activation comparedwith rest across stimulus type andmodality in semantic tasks
(Humphreys et al., 2015). The left ATL has been theorized to map multimodal semantic represen-
tations onto phonology (Hoffman et al., 2015).

Phonological information is processed in a cortical network largely distinct from those for
orthography and semantics, involving the left posterior superior temporal gyrus (pSTG), the
supramarginal gyrus (SMG), and the pars opercularis of the inferior frontal gyrus (IFG). This
network is broadly activated when mapping orthography directly onto phonology (Graves
et al., 2010; Jobard et al., 2003; Sandak et al., 2004). Supporting this, the pSTG, SMG, and
IFG pars opercularis also show decreased activation during reading in subjects with dyslexia
(Richlan et al., 2009). Lesions of the SMG have also been shown to produce conduction
aphasia (Damasio & Damasio, 1980) and phonological agraphia (Alexander et al., 1992).
Deficits in phonological retrieval, as distinct from semantics or comprehension, have also
been associated with left-sided lesions focused on the pSTG and SMG (Pillay et al., 2014).
Furthermore, an fMRI meta-analysis examining encoding and recall of phonological stimuli
found an area of maximum overlap with lesions producing conduction aphasia in the planum
temporale, just inferior of the SMG (Buchsbaum et al., 2011). For reading in particular,
decreased bigram frequency, likely reflecting difficulty of mapping orthography to phonology,
has been related to increased activation in bilateral superior temporal sulcus and posterior
middle temporal gyrus (MTG) (Graves et al., 2010).

In addition to the largely localized perspectives on the neural basis of orthographic, semantic,
and phonological processing given above, MVPA studies have begun to unravel the structure
of neural representations related to these processes. Rothlein and Rapp (2014) demonstrated
the presence of separate neural substrates for modality-specific and abstract representation of
letters. Recent studies have also found category-specific tuning in the ATL (Malone et al., 2016),
semantic representations in the FG (Fischer-Baum et al., 2017; Wang et al., 2018), and ortho-
graphic representations in the AG (Fischer-Baum et al., 2017). However, despite these great
strides in mapping the neural basis of some of the major cognitive components of reading, there
is little consensus on the neural computations these representations may reflect.

The Current Study

The present study aimed to provide the first direct comparison of how well the ANN and DRC
models of reading fit fMRI data. Historically, the difficulty of bringingmodel-based representations
and neural representations into the same space prevented direct comparisons. Representational
similarity analysis (RSA) provides an elegant solution to this problem (Kriegeskorte & Kievit, 2013;
Kriegeskorte et al., 2008). RSA enables the comparison of representations from disparate modal-
ities by transforming those representations into a common space based on stimulus similarity.
Using RSA, we related neural data from human participants reading aloud to the internal
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representations generated by the ANN and DRC models performing the same orthography-to-
phonology task. We predicted that both models of reading would correspond to neural activity
in a left-lateralized reading network spanning frontal, temporal, and fusiform gyri. These cortical
regions have been repeatedly implicated in studies of reading (Binder et al., 2009; Cattinelli et al.,
2013; Fiez & Petersen, 1998; Murphy et al., 2019; Price, 2012; Taylor et al., 2013; Turkeltaub
et al., 2002). Furthermore, due to the neurally inspired nature of its architecture and function,
including its use of distributed as opposed to localist symbolic representations, we predicted that
the ANN model distributed representations would provide a better fit for investigating how the
brain computes orthography-to-phonology transforms. In comparing the neural instantiation of
the ANN and DRC models, we not only tested their feasibility as mechanistic explanations of
reading, but also demonstrated a principled methodology for comparing computational models
of cognition.

MATERIALS AND METHODS

Participants

The participants were 18 (13 female) healthy, right-handed adults who spoke English as a first
language. Themean age of the participants was 23.2 (SD: 3.4). Subjects providedwritten informed
consent following procedures approved by the Medical College of Wisconsin Institutional
Review Board, as described in Graves et al. (2010).

Stimuli

464monosyllabic English words were used as stimuli. These words were selected such that letter
length, word frequency, spelling–sound consistency, imageability, bigram frequency, and
biphone frequency were uncorrelated. Further details regarding the stimuli can be found in
Graves et al. (2010). One word, “hale,” was discarded from the original 465 word stimulus list
because it was not in theHarm and Seidenberg (2004) stimulus set. This was done to ensure com-
patibility with planned studies investigating the contribution of semantics to models of reading.

Task

The fMRI task used a fast event-related design with continuous acquisition. Participants viewed a
series of randomly presentedwords. Eachwordwas displayed for 1,000ms before being replaced
by a fixation cross. Participants were instructed to “read each word aloud as quickly and accu-
rately as possible” into an fMRI compatible microphone.

The MRI data were acquired using a 3T GE Excite system (GE Healthcare, Waukesha, WI)
using an 8-channel array head radio frequency receive coil. A 134 contiguous axial slice
(0.938 × 0.938 × 1.000 mm) T1-weighted anatomical image was acquired using a spoiled-
gradient-echo sequence. Functional scans were acquired using a gradient-echo echoplanar
imaging (EPI) sequence (echo time = 25 ms, repetition time = 2,000 ms, field of view = 192 mm,
matrix =64×64pixels, voxel dimensions=3×3×2.5mm, gap=0.5mm) in an interleaved fashion,
resulting in thirty-two axial slices per volume. 240 volumes were collected in each of five runs.

Orthographic and Phonological Representations

The orthographic representations, used as inputs to the ANNmodel, were the inputs used in Plaut
et al. (1996, Table 2). They consisted of 105-unit binary vectors. The presence or absence of a
grapheme was indicated with a 1 or 0, and the graphemes were grouped according to whether
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they could appear in the onset (first 30 units), vowel (next 27 units), and coda (final 48 units).
Multi-letter graphemes such as “ph” were coded such that “p,” “h,” and “ph” were all set to 1.
An orthographic representational dissimilarity matrix (RDM) was computed as the pairwise
correlation distance between all orthographic vectors for later use in RSA (see supplementary
Figure 1 in the online supporting information located at https://www.mitpressjournals.org/doi/
suppl/10.1162/nol_a_00018). The phonological representations, used as the target outputs for
training and testing the ANN models, were also binary vectors as used in Plaut et al. (1996,
Table 2). They consisted of 61 phoneme slots, also divided into onset, vowel, and coda, where
1 indicated the presence and 0 the absence of a phoneme. The phonemes /ps/, /ks/, and /ts/ were
also coded such that both their constituent parts and the combination unit were active. A phono-
logical dissimilarity matrix was computed as the pairwise correlation distance between all phono-
logical vectors. (See supplementary Figure 1 in the online supporting information.)

Computational Models

Two computational models, the feed-forward ANN from Plaut et al. (1996) and the rule-based,
symbolic DRC model (Coltheart et al., 2001), were used to simulate human reading. The ANN
model was identical to the one in Plaut et al. (1996). The models were trained with inputs,
described above, representing 2,998 monosyllabic words. The model had 105 input units.
These input units were fully connected to 100 hidden units, which in turn were fully connected
to 61 phonological output units (Figure 1). These phonological units were given additional,
external input that ramped up as training proceeded. This external input was calculated as a
function of the log-compressed frequency for a given word (Plaut et al., 1996, Equation 16),
and approximates the growing semantic contribution to phonology that occurs over the develop-
ment of reading. It further reflects the assumption that higher frequency concepts have stronger
semantic representations (Plaut et al., 1996;Woollams et al., 2007). Finally, using frequency as a
simplified approximation for semantics also ensures that the ANN model is maximally compa-
rable to the DRC model, which also does not try to account for detailed semantics.

The model was trained for 400 epochs (i.e., 400 presentations of the entire 2,998-word
stimulus set) using standard backpropagation of error and tested for generalization on a separate
set of nonwords. Thenumber of epochswas chosen using Plaut et al. (1996) as a starting point and
then fine-tuned to identify the point at which accuracy on a nonword test set began to decrease.
The test set contained 166monosyllabic nonwords, compiled fromGlushko (1979) andMcCann
and Besner (1987). Accuracy on the training set was assessed by testing the model using the
464 words that the human participants read in the scanner. These words were a subset of the
full 2,998-word training corpus. Outputs from the network were rounded to the nearest whole

Figure 1. Schematic structure of the artificial neural network model. Word representations for the
model were derived from the hidden layer, circled in orange.
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number (either 0 or 1) and compared with the appropriate target vector. As real words have
well-defined pronunciations, any network output vector that deviated from the appropriate
target vector was marked incorrect.

Nonwords, however, do not have a single correct pronunciation. To account for this, a list of
plausible alternative pronunciations was generated. For scoring the test set, outputs from the
network were rounded to the nearest whole number (either 0 or 1) and compared with the full
list of target vectors using the Jaccard similarity index (Levandowsky&Winter, 1971). If the output
vector produced by the network was closer to the appropriate target vector than to any other
vector in the nonword set, the output was marked correct. If the output vector was closer to
the vector of any nonword other than the target, the output was marked incorrect. This reflects
the intuition that nonwords do not have well-defined pronunciations. However, it allows for the
model to have a reasonably random output, so long as that output is close enough to one of the
acceptable pronunciations. Thus, we also tested a stricter scoring method. Rounded model
outputs for a given nonword were compared with the list of acceptable pronunciations for that
nonword. If the output exactly matched one of these vectors, it was marked correct. The model
was run 20 times, with weights re-initialized each time to random uniform values between −0.1
and+0.1.We chose 20 instantiations of themodel to roughlymatch the number of participants in
the fMRI data set. This number was expected to be ample, as it is twice that used in similar
previous modelling experiments (Welbourne & Lambon Ralph, 2005; Woollams et al., 2007).
The stimulus-stimulus correlation matrices generated from the hidden unit layers of these model
instantiations were averaged to create a mean ANN RDM.

The second model was the symbolic, rule-based DRC model (Coltheart et al., 2001). Inputs to
the DRC model activated visual feature units, which then fed forward to activate letter units. The
activation from this letter unit layer then activated two routes in parallel: a lexical-nonsemantic
route and a GPC route (Figure 2). The lexical-nonsemantic route contained an orthographic
lexicon, in which a local word representation was activated by the parallel activation of earlier
letter features. This orthographic lexicon activation then activated the corresponding phonological
lexicon representationof the inputword. Eachof these lexicons had2,998units, one for eachword
in the current corpus. The output of the lexical-nonsemantic route consisted of the model activa-
tion value in the unit corresponding to the input word and a 0 in every other position, for each
lexicon. The GPC route processed each input word in a serial, left-to-right fashion. When the first
letter of an input is processed, the 2,033 preset rules are searched until an appropriate letter-
phoneme conversion is located. The next letter then becomes available to the GPC route, and
the two-letter string undergoes the same search through rule space. At each stage, rules are
searched from largest to smallestmatching grapheme. This process is repeated until the inputword
is named or until the last letter is processed. The output of the GPC route consisted of the model
activation for each rule activated by the input word, with a 0 in every other position. Word

Figure 2. Schematic structure of the dual-route cascaded model. Word representations for the model were derived from the graphene-
phoneme correspondence (GPC) rules, circled in orange.
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representations for the DRC model were taken as the vector of activation for the GPC rules.
Deriving word representations from these internal components of the model was considered
analogous, for purposes of comparison, to representations derived from the hidden unit layer
of the ANN. This internal DRC representation consisted of a 2,033-unit sparse vector. Further
details of the DRC model can be found in Coltheart et al. (2001).

An important feature of theDRCmodel is thatmostwords are read by both the lexical andGPC
routes, with the GPC route being primary only for unknown words, nonwords, or low frequency
regular words (Coltheart et al., 2001). The lexical route has no direct analogue in theANNmodel.
However, it is possible that representational similarities between the brain and the model might
be driven by the lexical route. As such,we also considered8,029 unit DRC representations (2,033
GPC + 2,998 orthographic lexicon + 2,998 phonological lexicon units), wherein the lexicon
representations consisted of a one-hot, localist vector for each word. As the results with this
expanded representation (see Supplementary Figure 3 and Supplementary Table 1 in the online
supporting information) were nearly identical to the results that did not include the lexical route,
we chose the parsimonious approach of focusing on the GPC route, as it is most analogous to the
processes in the ANN model. Therefore, we do not consider the lexical route representations
further.

fMRI Data Analysis

MRI data were preprocessed using AFNI (http://afni.nimh.nih.gov/afni; Cox, 1996). Data were
skull-stripped, slice-timing and motion corrected, and the first six images were discarded to
allow for initial saturation. Data were then spatially coregistered.

Voxelwise single-trial effects were estimated using least-squares-sum multiple regression
(Mumford et al., 2012), as implemented in the AFNI program 3dLSS. A noise signal calculated
from the signal in the lateral ventricles was included along with six motion parameters as covar-
iates of no interest. Resulting coefficient maps were not smoothed during first-level analysis, so as
to preserve spatial patterns for RSA analysis. Individual subject data were then transformed into
Talairach space (Lancaster et al., 2000).

RSA (Sensitivity Analysis)

To test for correspondence between model-based and brain-based similarity patterns among the
stimuli, RSA was performed. This was implemented using PyMVPA software (Hanke et al., 2009).
For each model, stimulus features were z-scored. An RDM was then generated based on the
pairwise correlation distance (1 − Pearson’s r) between all stimuli. To test for correspondence
between this RDM and neural patterns, a searchlight analysis was performed. Each voxel in a
cortical gray matter mask iteratively served as the center of a 3-voxel radius sphere (sphere volume:
123 voxels of 3 × 3 × 3 mm each, including the center voxel). A neural RDMwas constructed by
calculating the pairwise correlation between the beta weights evoked from each stimulus in this
sphere. This neural RDM was then compared with the model RDM using Spearman correlation.
Use of a rank-based second-order correlation avoids potential differences in correlation means
across different types of representations, as recommended by Kriegeskorte et al. (2008). The
resulting correlation coefficient was assigned to the center voxel of each sphere. This process
was repeated until every voxel in the gray matter mask served as a center voxel once. The
individual subject’s resulting correlation coefficient maps were spatially smoothed using a
6 mm full-width-half-max (FWHM) kernel before being entered into a one-sample t test against
a null hypothesis of no correlation without further resampling. The resulting group maps were
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Fischer transformed and submitted to cluster correction (voxelwise p < 0.001, clusterwise p =
0.05, cluster extent = 234.9 mm3).

Partial Correlations

Separate partial correlations were calculated using the CoSMoMVPA package for MATLAB
(Oosterhof et al., 2016). The correlation coefficient maps were then smoothed with a 6 mm
FWHM kernel, and z-scored. A t test was run on the z-score maps, and the group t-value
map was subjected to cluster correction (voxelwise p < 0.001, clusterwise p = 0.05, cluster
extent = 234.9 mm3).

RESULTS

Human Performance

The mean reaction time was 588 ms (SD: 123). Errors in reading aloud were very rare, only 2.6%
overall. Further details can be found in Graves et al. (2010).

Model Performance

To determine whether the 20 instantiations of the ANN model achieved an accuracy compa-
rable to human performance, they were tested, as described in Materials and Methods, for the
464 words that humans read in the scanner. Those were a subset of the 2,998 words on which
the model was trained. The model obtained 97.2% accuracy on this subset. To test the ability
of the models to generalize beyond the training set, they were presented with novel but pro-
nounceable letter strings (hereafter, nonwords). Using Jaccard similarity as a scoring metric,
the ANN model attained 76.9% accuracy on the Glushko (1979) nonwords and 91.9% accu-
racy on the McCann and Besner (1987) nonwords, reaching 84.9% mean accuracy for non-
words overall. Using the stricter exact-match criterion, the ANN was 75.5% accurate on the
Glushko (1979) nonwords and 79.5% accurate on the McCann and Besner (1987) nonwords,
achieving 77.4% mean overall accuracy. The DRC model made no errors on either nonword
set. The dissimilarity matrices derived from the intermediate representations of the ANN and
DRC models were significantly correlated (r = 0.52, p < 0.0001; Table 1). (See Supplementary
Figure 2 in the online supporting information for plots of example and full ANN and DRC
dissimilarity matrices.)

Imaging Results

Here we focus on comparing model-based word representations with neural representations
derived from functional neuroimaging. Univariate analyses of neural activation for these words
are reported in Graves et al. (2010) and will not be discussed further.

Table 1. Correlation matrix of the dissimilarity matrices used for representational similarity analysis.

ANN DRC Orthography Phonology
ANN 1

DRC 0.52 1

Orthography 0.9 0.55 1

Phonology 0.68 0.6 0.63 1

Note. ANN = artificial neural network, DRC = dual-route cascaded model.
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Orthography

To test for neural correspondence with the orthographic representations used as inputs to the
ANNmodel, a searchlight RSAwas performed. The orthographic input RDMwas correlatedwith
neural representations in a left-lateralized network. Specifically, orthographic features correlated
with neural activity in the left ATL (lateral and ventral aspects), the orbital IFG, the middle frontal
gyrus, the precentral sulcus, the collateral sulcus, the calcarine fissure, and the cuneus. The
orthographic RDM was also correlated with neural activity to a lesser extent in the cerebellar
tonsil (Figure 3 and Supplementary Table 2 in the online supporting information).

Phonology

Neural correspondence with the phonological ANN output feature representations was also
tested using searchlight RSA. Phonological feature representations were correlated with neural
representations in the left middle temporal and anterior superior temporal gyri, the middle occip-
ital gyrus, the insula, and the pre- and postcentral gyri. Phonological representations were also
related to bilateral neural activity in the anterior inferior temporal and parahippocampal gyri
(Figure 4 and Supplementary Table 3 in the online supporting information). Importantly, the
phonological searchlight did not reveal any significant clusters in the primary visual cortex.
This points to the external validity of the current approach, where correspondence between
model and neural representations is able to clearly distinguish between orthographic inputs
and phonological outputs in expected brain areas.

Intermediate Representations from Models

The hidden layer of the ANN was used to model information related to the transformation of
orthography to phonology. The RDM constructed from model activations in this hidden layer
correlated with left hemisphere neural representations in the anterior temporal pole, the orbital
and triangular IFG, the precentral sulcus, the FG, the intraparietal sulcus, the cuneus, and the
MTG (Figure 5 and Supplementary Table 4 in the online supporting information). Additionally,

Figure 3. Correspondence between the orthographic input similarity structure and the neural similarity structure.
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the hidden layer RDM correlated with right hemisphere representations in the parahippocampal
gyrus. This pattern of results largely agrees with a standard neuropsychological view, in which
reading aloud is supported by a combination of visual-related areas in the occipito-temporal cortex,
language production areas in the left IFG, and intermediate areas along the left MTG (Binder et al.,
2009; Fiez & Petersen, 1998; Price, 2012; Taylor et al., 2013; Turkeltaub et al., 2002). At the same
time, our approach lends a new level of specificity to the functions being carried out in these areas
during reading.

As our aim was to model the mapping between orthography and phonology, we elected to
use representations generated from the DRC model layer that specifically implemented this
process: the GPC rule route (Figure 2). This route also provides the best match to the function
of the hidden layer of the ANN model (Figure 1). The RDM based on GPC representations from
the DRC model was correlated with a more restricted set of largely left hemisphere representa-
tions in the superior temporal gyrus and sulcus, the postcentral gyrus, the straight gyrus, and the

Figure 5. Correspondence between the artificial neural network hidden layer similarity structure
and the neural similarity structure.

Figure 4. Correspondence between the phonological output similarity structure and the neural
similarity structure.
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IFG pars orbitalis (Figure 6 and Supplementary Table 5 in the online supporting information). In
the right hemisphere, the DRC RDM correlated with the neural representation in the inferior
occipital gyrus. These neural correspondences with the intermediate GPC level of the DRC are
spatially restricted relative to those found for the ANN, and they appear in areas less typically
related to language and reading. This suggests that the ANN model might provide a better fit to
the neural data than the DRC model.

Partial Correlations between Models

To formally test the ability of each model to account for the neural data after accounting for the
other, we used partial correlations. This approach also accommodates the moderate correlation
between the ANNandDRC intermediate layer representations. A searchlight analysis correlating
the intermediate layers of the DRC model to the neural data with the variance due to the ANN
hidden layer RDM partialled out revealed no results. However, when the reversed analysis was

Figure 6. Correspondence between the dual-route cascaded intermediate graphene-phoneme
correspondence route similarity structure and the neural similarity structure.

Figure 7. Correspondence between the artificial neural network hidden layer similarity structure and
the neural similarity structure with variance due to the dual-route cascaded model partialled out.
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conducted—the ANN hidden layer RDM correlated to the neural data with the variance due to
theDRCmodel partialled out—a primarily left-lateralized set of areas emerged. These include the
middle frontal gyrus, the orbital IFG, and the anterior inferior temporal gyrus. The ANN represen-
tations with variance due to theDRCmodel removed also correlated to neural activity in the right
parahippocampal gyrus (Figure 7 and Supplementary Table 6 in the online supporting informa-
tion). These results are consistent with the hypothesis that the distributed, nonsymbolic nature of
the representations generated by the ANN model of reading reflects neural information process-
ing to a greater degree than the symbolic representations of the DRC model.

DISCUSSION

While there is broad agreement as to where in the brain written language is processed, what is
being coded or represented in these regions has remained largely unclear. Existing computational
cognitivemodels that account for reading behavior use theories containing very different kinds of
representations. ANNmodels use distributed nonsymbolic representations,while theDRCmodel
uses local symbolic representations. We used RSA to relate neural data obtained during reading
to the representations of orthography-to-phonology transforms generated by these two distinct
computational models. The results suggest that both the DRC and the ANN models correspond
to neural activity related to transformations from orthographic to phonological representations.
Consistent with our predictions, we also show that the distributed ANNmodel of reading reflects
the neural activity involved in reading aloud to a greater degree than the symbolic DRC model.

Importantly, the orthographic and phonological representations used as inputs to and outputs
from the computationalmodels correlatewith neural activity in relevant cortex. The orthographic
representations correspond to a network of cortical regions commonly associated with reading
(Price, 2012; Turkeltaub et al., 2002). This network spans frontal, temporal, and occipital cortex.
Unexpectedly, orthographic inputs did not correlate with neural representations in the posterior
occipito-temporal sulcus typically associated with orthographic processing.We used grapheme-
level orthographic representations, consistent with previous ANN models (Plaut et al., 1996;
Woollams et al., 2007). However, graphemes contain clusters of letters such as “th,” meant to
more closely correspond to phonology than would purely orthographic inputs. Hence, graphe-
mic similarity structure across words may reflect higher-order associations beyond orthography.

Phonological representations also correlate with brain structures that have been shown to be
sensitive to phonological structure, including the left hemisphere middle and superior temporal
gyri, and the ATL (Hoffman et al., 2015; Richlan et al., 2009). The phonological similarity struc-
ture was also related to neural activity in the pre- and postcentral gyri, most likely reflecting word
production (Guenther et al., 2006; Indefrey & Levelt, 2004).

Both models account for how orthographic inputs are transformed to phonological outputs.
This transform is reflected in the hidden layer of the ANN model and the GPC route of the DRC
model. These intermediate representations corresponded to neural representation in areas of the
brain involved in reading. In particular, the neural correspondences with the hidden layer of the
ANNmodel overlap heavily with those for the orthographic representations, showing clusters in
IFG, MTG, and ATL. Many of these regions have been previously implicated in orthography-to-
phonology transformation (Jobard et al., 2003). The ANN representations also correspondedwith
neural representation in the FG. While the exact role of the FG has been debated (Dehaene &
Cohen, 2011; Price & Devlin, 2011), it has been consistently implicated in the reading of words.
A recent study suggests that the middle (mFG) and anterior fusiform gyrus (aFG), but not the
posterior FG, contain neural representations of both orthographic and phonological information
(Zhao et al., 2017). Consistent with this finding,we also found partially overlapping representation
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of orthographic and phonological features in both the mFG and aFG. We also found correspon-
dencebetween theANNand the neural similarity structures in themFGand aFG, further supporting
the validity of the ANN hidden layer representations as an intermediate step between orthography
and phonology. Abstractness of orthographic information, as indexed by invariance to case, font,
and letter position (Dehaene et al., 2004), and representation of larger orthographic as opposed to
low-level visual features, have been shown to increase along a posterior-to-anterior axis (Vinckier
et al., 2007).Whereas the orthographic RSA identified clusters of correlation along the length of the
FG, the hidden layer RSA reveals clusters in only the mFG and aFG, suggesting that the distributed
representations generated from themodelmay indeed reflect larger andmore abstract orthographic
units. The ANN representations were also correlated with neural representations in the motor
cortex, potentially reflecting a final transformation from the orthographic input to the motor code
associated with a phonological output (Guenther et al., 2006).

The DRC model intermediate representations showed neural correspondences that spatially
overlapped with the phonological representations used as target outputs in the ANN model in
anterior temporal and Rolandic cortices. The DRC model intermediate representations also
showed some overlap with the standard reading network (Binder et al., 2009; Cattinelli et al.,
2013; Fiez & Petersen, 1998; Murphy et al., 2019; Price, 2012; Taylor et al., 2013; Turkeltaub
et al., 2002) in the inferior frontal, the superior temporal, and the anterior temporal cortex. The
ATL and the IFG pars orbitalis have been implicated in semantic processing (Binder et al., 2009;
Hoffman et al., 2015) and the superior temporal gyrus in phonological processing (Fiez &
Petersen, 1998; Price, 2012; Turkeltaub et al., 2002). This correspondence with reading-related
areas was, however, more spatially limited than was found for the ANN model. Counter to our
expectations, the DRC model did not correlate with activity in the FG, a putative locus of ortho-
graphic processing. The DRC model’s lack of correlation with cortex generally associated with
orthographic processing may be due to the different, more localist form of the input, or it may
point to the distributed nature of the neural representations reflected in the intermediate repre-
sentations of the ANN but not the DRC model.

Despite the significant correlation between the representations generated by the models, par-
tial correlation analysis revealed that the distributed representations generated by theANNmodel
reflect neural representations to a greater degree. The network of neural activity resulting from this
analysis is spatially limited, but partially corresponds to the standard brain reading network. In
particular, both the IFG pars orbitalis and the inferior ATL are implicated in semantic processing
during reading (Binder et al., 2009; Hoffman et al., 2015). Additionally, lesions of these same
cortical regions produce regularization errors, in which a regular spelling-to-sound correspon-
dence is improperly applied to an irregular word, as in pronouncing “sew” to rhyme with “do”
(Binder et al., 2016). Overall, partial correlation results suggest that the ANN model better
captures the neural representations involved in transforming orthography to phonology.

A possible explanation for the ANN-to-neural correspondence being greater than theDRC-to-
neural correspondence is the sparser, binary nature of the DRC representations. ANN represen-
tations are dense and take rational number values, and thus are natively more like fMRI data.
However, in order to assess ANNs as a model of neural representation, it must first be established
that (1) ANNs actually do learn structured representations analogous to those in the brain and (2)
the fit of a representation derived from an ANN model does in fact correspond to neural data
above and beyond a representation derived from a symbolic model. Our results suggest that
the ANN model does learn representations similar to neural representations, and that those
representations do fit neural data better than representations derived from the symbolic DRC
model. In short, brain activity does not tend to resemble local, symbolic rules, but instead
computations over distributed elements.
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The similarity structure of neural activity in the left ATL was related to every representational
similarity structure we tested. The exact role of the left ATL in reading is unclear, although it has
been linked to both semantic and phonological processing. There is fMRI evidence in healthy
participants that it maps between semantic and phonological representations, particularly when
reading exception words (Hoffman et al., 2015). Evidence from lesion deficit studies, however,
suggests amore direct role in producing phonology. Rudrauf et al. (2008) found that lesions to the
left ATL produced deficits in naming, but not recognition, of pictures across a range of categories.
The co-presence of sensitivity to orthographic and phonological information in the left ATL was
unexpected. This result may suggest that the role of the ATL involves integration across multiple
levels and types of reading-related representation. Further investigation is warranted to identify
the exact role of the ATL in reading.

An interesting possibility arises from the DRC model’s conceptualization of spelling–sound
knowledge asGPC rules. The similarity structures generated by theDRCwill be sensitive toword
regularity, or howwell they correspond to theGPC rules (Coltheart et al., 2001). TheANNmodel
instead exploits consistency, the statistical regularities between letter combinations and pho-
nology, relative to the frequency of that spelling–to–sound correspondence in the entire corpus
of words on which it is trained (Plaut et al., 1996). Evidence from reaction times suggest that
consistency has a larger effect on reading performance (Cortese & Simpson, 2000; Jared et al.,
1990), but independent effects of regularity have also been demonstrated (Glushko, 1979). It is
possible that the correlation between the DRC model’s representations and neural activity
reflects cortical sensitivity to regularity, whereas the correlation between the ANN model and
neural activity reflects sensitivity to consistency. Future research should seek to disambiguate
the neural correlates of consistency and regularity.

The internal representations generated by the two models were moderately and significantly
correlated (r = 0.52, p < 0.0001). The strength of correlation was surprising, as the theoretical
bases for the models are highly divergent. ANN models learn representations over the repeated
presentation of stimuli, and they assume that many units are able to contribute to the represen-
tation of a given word and, furthermore, that these units reflect generalized lexical consistency.
No single unit codes for a particular spelling-to-sound correspondence. Instead, the pronuncia-
tion common to a letter string shared across words is coded by multiple units (Seidenberg &
McClelland, 1989). The DRC model, in contrast, assumes that once the model finishes cycling,
only the units corresponding to the relevant symbolic rules and the corresponding lexical entry
for a given input word will be activated (Coltheart et al., 2001). Thus, the correlation between
the intermediate representations in these models may reflect that both types are successful at
accounting for reading aloud, in that they ultimately represent valid phonological outputs for
the input words. By analogy to Marr’s framework for levels of analysis in cognitive systems
(Marr, 1982), these models differ at the level of their representations and algorithms, but their
correlation may arise from solving the same specific computational problem of reading aloud.
For example, the lexicons and grapheme–phoneme rules in the DRC model may represent a
high-level interpretation of the more basic, neurally inspired mechanism instantiated in the
ANN model. The presumably more basic mechanisms of the ANN model, on the other hand,
may reflect areas of feature convergence, where intermediate blends of orthographic features
are remapped to accommodate the statistical regularities of phonological output.

One potential reason that the ANN andDRCmodels showed fairly similar correspondence to
neural representations is the steps taken to equate the model representations. The DRC model
representations were derived from the GPC route, with the lexical route allowed to contribute to
the final outputs but not considered in our main analysis (but see Supplementary Figure 3 and
Supplementary Table 1 in the online supporting information for near identical results including
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the lexical route in DRC representations). To ensure fair treatment of both models, we limited
the representations derived from the ANN model to a single hidden layer representing the
orthography-to-phonology pathway, allowing external frequency-based sematic input to
contribute to the model’s output but not directly affecting the hidden layer. There are clear
extensions that can be made to the ANN model that are likely to improve correspondence to
neural representations. Using deeper networks (networks with more hidden layers), potentially
with neurobiologically inspired patterns of intra- versus interlayer connectivity (see Laszlo &
Armstrong, 2014; Laszlo & Plaut, 2012), and adding recurrence are natural ways to improve
the ANN model’s fidelity with neural processing. It is less clear how one would extend the
DRC model to emulate the complexity of the brain. Furthermore, a plethora of work in the con-
nectionist tradition has examined potential semantic route implementations for ANN models of
reading (Harm & Seidenberg, 2004; Monaghan et al., 2017; Ueno et al., 2011); we are unaware
of any work that develops the dual-route model’s semantic pathway. In this sense, enforcing fair
comparison between the models has actually limited the fair treatment of the ANN model with
respect to its correspondence with neural representation.

These results support ANNs with distributed representations as a preferred model for the
neural processing of reading. While the symbolic representations from the DRC model do
correlate with neural activity, the effect is spatially restricted compared with the RSA map from
the ANN representations. More stringently, removing the variance due the ANN model reveals
that the DRC model corresponds to neural representations in no additional brain areas. This
suggests that word representations in the brain are coded as distributed patterns of activation
and are more sensitive to spelling–sound consistency than to rule-based regularity. The fact that
the DRCmodel explains no neural variance above and beyond that of the ANNmodel also may
suggest that the lower-level features of the ANN account for the GPC rules of the DRC model to
some degree.

More generally, our results demonstrate the promise of directly comparing and adjudicating
between computational models using neural data. While behavioral evidence alone has been
insufficient for arbitration, RSA allowed us to compare the neural plausibility of predictions made
by the ANN andDRCmodels. The correlation of the ANNmodel with a large number of relevant
brain areas, and its ability to explain neural variance beyond that of the DRCmodel, demonstrate
that the ANNmodel holds particular promise for connecting cognitive and neural approaches to
reading in a computationally principled way. This method is simple to extend to any computa-
tional model that produces explicit, quantitative predictions.

One limitation to this study is the approximation of semantics used in the ANNmodel. While
using frequency as a proxy for semantics reflects the intuitive idea that more common words are
more likely to be understood, frequency is not a true semantic variable. Most notably, it ignores
any effects that might vary based on the actual semantic content of words. For example, image-
ability has been shown to affect word reading speed and accuracy (Strain et al., 1995) and has
distinct neural correlates compared to consistency and frequency (Graves et al., 2010). However,
this frequency manipulation has been successfully used as an approximation for semantic input
in multiple previous studies using the same model architecture used in this study (Plaut et al.,
1996; Woollams et al., 2007). We plan to expand the ANNmodel to include a fuller implemen-
tation of semantics in future studies.

Exactlywhat the nature of these semantic representations should be remains to be determined.
Optimization of hardware and advances in machine learning techniques have permitted model-
ling language at a larger scale than ever before. The recent success of transformermodels suggests
that computations over word co-occurrence and position are sufficient to generate relatively
comprehensible and syntactically correct sentences (Vaswani et al., 2017). Indeed, co-occurrence
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based models are capable of predicting human behavior across a wide range of semantic tasks
(Hofmann et al., 2018; Mandera et al., 2017; Pereira et al., 2016). However, a growing body of
evidence from the embodied or grounded cognition literature suggests that neural representations
of body states, emotions, and somatosensory experience play a role in how the brain computes
word meaning (Barsalou, 2008). Both the co-occurrence and embodied feature approaches
appear to be relevant to how the brain represents semantics. This was shown in a study using a
word familiarity task in fMRI, which demonstrated distinct neural correlates of co-occurrence
basedand abstract semantic feature based (including embodied feature) representations of abstract
words (Wang et al., 2017). Furthermore, context is known to have an effect on the processing of
semantics, such as when disambiguating the meaning of homonyms (Rodd, 2020). As such, an
online semantic subnetwork accounting for embodied features, co-occurrence, and context is a
likely candidate for producing the most cognitively relevant semantic representations.

A second limitation is the nature of the phonological representations. Phonology is coded here
as binary units, representing the presence or absence of a phoneme. Spatially, the phonological
vector representation is subdivided into three sections corresponding to the onset, vowel, or coda
of a word. This coding scheme has been used productively in previous modelling work (Plaut
et al., 1996; Woollams et al., 2007), but is by no means a perfect all-purpose representation. It
captures phoneme-level similarity (e.g., “cat” and “hat” are more similar than “cat” and “dog”)
but cannot capture the more fine-grained differences that phonetic features might (e.g., “/p/” and
“/b/” are exactly as similar as “/p/” and “/a/”).While our results agreewith neurobiologicalmodels
of phonology output, showing correspondence between the phonological representations and
neural activity in the pre- and postcentral gyri (Indefrey & Levelt, 2004), future research could
examine different phonetic or articulatory feature representations to determine which best fits
the observed neural activity. In particular, it seems likely that more detailed phonological repre-
sentationswould improve correspondencewith themiddle and superior temporal gyri, which are
sensitive to familiar phoneme patterns (Indefrey & Levelt, 2004; Price, 2012).

A final limitation is the performance of the ANN model on pronounceable nonwords. While
themodel did quitewell, achieving a human-level accuracy of 97.2%on the tested realwords, its
84.9% accuracy (77.4% by exact-match criterion) on the nonword test list remains somewhat
below human-level performance. This issue may be partially addressed by extending the ANN
model to more than one hidden layer. A single hidden layer allows for blends and partial
combinations of features to be mapped to outputs, but multiple layers allow for combinations
of those feature blends to be processed (LeCun et al., 2015). Deeper neural networks may not
only improve performance on the nonword test set but may also better model the neural pro-
cesses involved in reading.

Here we have directly compared two major computational cognitive models of reading in
terms of their correspondence with neural data acquired during reading. The distributed ANN
model accounted for unique variance beyond that of the DRC, revealing correspondence with
neural representations in areas previously shown to be related to orthography or orthography–
phonology mapping. Critically, correspondence of model representations with neural repre-
sentations allows for the direct interpretation of neural patterns in terms of the computational
function being implemented.
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