potential as imaging biomarkers using our minimally-invasive, optimised 12F-MMP-2- 9 MRI biosensor. Thereby, facilitating the prompt provision of personalised adjuvant therapy.

MBRS-50. PEROXIREDOXIN1 IS A THERAPEUTIC TARGET IN GROUP-3 MEDULLOBLASTOMA

Babu Sayali1, Nigam S2, Rezaat Omar1, Holly Feduk1, Lin Li1, Sameen Ahsanah1, W Wang1, J Pu1, HD Sun1, Teruna Saha1, Tamra Werbowetski-Ogilvie1, Matthias Wolff1, Marc Remke1, Vijay Ramaswamy2, Michael Taylor1, Charles Eberhart1, Marc Symons1, Rosa Maria Ruggeri1, Donald Miller3, Magmarranaj and Issan Yanan1,2,3, Research Institute in Oncology and Hematology, Winnipeg, MB, Canada, 2Department of Pharmacology, University of Manitoba, Winnipeg, MB, Canada, 3Kunming Institute of Botany, Kunming, China, 4Department of Pharmaceutical chemistry, University of Kansas, Lawrence, Kansas, USA, 5Regenerative medicine program, University of Manitoba, Winnipeg, MB, Canada, 6Department of Pediatrics, University of Wuerzburg, Wuerzburg, Germany, 7Department of Pediatric Oncology, Hematology, and Clinical Immunology, Heinrich Heine University Dusseldorf, Dusseldorf, Germany, 8Sick Kids, University of Toronto, Toronto, ON, Canada, 9The Arthur and Sonia Labatt Brain Tumour Research Centre, University of Toronto, Toronto, ON, Canada, 10John Hopkins University School of Medicine, Baltimore, MD, USA, 11Feinstein Institute for Medical Research, New York, USA, 12Department of Biochemistry and Medical Genetics, Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada

Group-3 medulloblastoma (MBL) is highly resistant to irradiation (IR) and chemotherapy and has the worst prognosis. Hence, there is an urgent need to elucidate targets that sensitize these tumors to chemotherapy and IR. Employing standard assays for viability and sensitization to IR, we identified PRDX1 as a therapeutic target in Group-3 MBL. Specifically, targeting PRDX1 RNAi or inhibition of PRDX1 by Adenanthin led to IR and sensitization to IR of Group-3 MBL cells. We rescued sensitization of Daoy and UW228 cells by hyperoxic expression of PRDX1. PRDX1 knockdown caused oxidative DNA damage and induced apoptosis. We concluded that IR-DNA damage, and oxidative stress in tumour microarray. Whole genome sequencing identified pathways/genes that were dysregulated with PRDX1 inhibition or silencing. Our in vivo studies in mice employing flank/orthotopic tumors from patient derived xenografts (PDX) MBL cells confirmed our findings. Animals with tumors in which PRDX1 was targeted by RNAi or Adenanthin (using mini osmotic pumps) showed decreased tumor burden and increased survival when compared to controls. Since, Adenanthin does not cross the blood brain barrier (BBB) we used HAV6 peptide to transiently disrupt the BBB and deliver Adenanthin to the tumor. Immunohistochemistry confirmed that targeting PRDX1 resulted in increased oxidative DNA damage, apoptosis and decreased proliferation. In summary, we have validated PRDX1 as a therapeutic target in group-3 MBL, identified Adenanthin as a SMO inhibitor and a chemo-prodrug of PRDX1 and confirmed the role of HAV peptide (in the transient modulation of BBB permeability) in an orthotopic model of group-3 MBL.

MBRS-51. SINGLE CELL TRANSCRIPTOMIC ANALYSIS DEFINES DISCRETE SUBPOPULATIONS IN SHH-DRIVEN MEDULLOBLASTOMAS THAT ARE DIFFERENTIALLY AFFECTED BY VISMODEGIB

Jennifer Occasio1, Benjamin Babcock1, Alejandro Colaneri1, Michael Taylor1, Kirk Wilhelmsen1, and Timothy Gershon2; 1University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2The Hospital for Sick Children, Toronto, ON, Canada

The use of SMO inhibitors for SHH-subtype medulloblastoma has been both promising and problematic. The SMO inhibitor vismodegib met safety and efficacy criteria to be FDA-approved for the treatment of basal cell carcinoma. In medulloblastoma, however, vismodegib therapy has been complicated by the emergence of resistance during treatment. We hypothesized that resistance is driven by a subset of cells with medulloblastomas that relapse despite MATH1 promoter (using MATH1 promoter) together with the Luciferase gene (under the control of Cyclin-B2 promoter) in a background TP53+/-, thus generating Medulloblastoma. Chemotherapeutic drugs for high-risk MB together with AA7.1 were tested in combination on medullospheres showing an impair in vivo, in xenografted studies, we showed tumour inhibition at both the primary and metastatic sites together with immunomodulatory effects. Altogether these results are of importance for future targeted therapies of high risk metastatic MB.

MBRS-52. TARGETING PRUNE-1 IN A GEMM OF METASTATIC MEDULLOBLASTOMA: A POTENTIAL ROUTE OF INHIBITION FOR NEW FUTURE THERAPIES

Veronica Ferrucci1, Pasquale Calabro1,2, Francesco Paolo Femmin1,2, Fatemeh Asadzadeh1, Roberto Siciliano1, Antonella Virgilio3, Aldo Galcione3, Luca De Martino3, Luca Quaglia4, Maria Elena Errico5, Vittoria Donofrio5, Daniel Picard5, Marc Remke1, Louis Chesler6, Fredrik Swartling6, William Weiss7,8, Michael Taylor9,10, Giuseppe Cinali7, and Massimo Zollo1,2,6,7; 1Department of Medicine Molecular Cell Biology and Biotechnology, Universita degli Studi di Napoli Federico II, Naples, Italy, 2CEINGE Biotechonologie Avanzate, Naples, Italy, 3Naples, Italy, 4European School of Molecular Medicine (SEMM), Milan, Italy, 5Department of Pharmacology, University of Napoli Federico II, Naples, Italy, 6Surgical Pathology, Ospedale Santobono-Pausilipon, Naples, Italy, 7Paediatric Neurosurgery, Ospedale Santobono-Pausilipon, Naples, Italy, 8German Cancer Consortium (DKTK), Department of Paediatric Oncology, Haematology, and Clinical Immunology, University Hospital Dusseldorf, Ospedale Santobono-Pausilipon, Naples, Italy, 9Department of Cancer Research, London, UK, 10Science for Life Laboratory, Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden, 11Department of Neurology, University of California, San Francisco, San Francisco, CA, USA, 12Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, 13Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada

Genetic modifications during development of paediatric Group 3 Medulloblastoma (MB, Group) are responsible for its highly metastatic properties and poor patient survival outcomes. We found PRUNE-1 to be highly expressed in metastatic MB, which is characterised by TGF-β signalling activation and OX2 expression. The molecular mechanism was identified underlying the metastatic dissemination of those PRUNE-1-driven MB, Group-1, 2, Group-3 MBL, cells confirm that PRUNE-1 acts as a metastatic sponger, activating PRUNE-1 targets that have specific anti-metastatic effects. Altogether these results are of importance for future targeted therapies of high risk metastatic MB.
NOW ENROLLING
Phase 2b study of IGV-001 in patients with newly diagnosed glioblastoma (NCT04485949)

OBJECTIVES
- PRIMARY OBJECTIVE: Progression-free survival
- SECONDARY OBJECTIVE: Overall survival
- SAFETY OBJECTIVE: Safety and tolerability

CRITERIA
Key Inclusion Criteria
- Patients who take part in the trial must:
 - Have newly diagnosed glioblastoma
 - Be 18 to 70 years of age
 - Have a KPS score ≥70 (unable to work but able to care for themselves overall)

Key Exclusion Criteria
- Patients are not allowed to participate in the trial if they have:
 - A tumor that is on both sides of the brain
 - Had previous surgery or anticancer treatment for glioblastoma
 - Glioblastoma that came back
 - Another cancer while having glioblastoma or within the last 3 years that is not cured
 - A weakened immune system (example: HIV, HBV, HCV) or an autoimmune disorder (example: Crohn's disease)
 - Heart disease or history of heart issues

LEARN MORE
imvax.com/patients-families
clinicaltrials.gov/ct2/show/NCT04485949

*Additional criteria apply. Please refer to protocol 14379-201 for full inclusion and exclusion criteria. †Patients can participate if they had some skin cancers, superficial bladder cancer (cancer that was only on the surface of the lining of the bladder), or carcinoma in situ (cancer that had not spread) of the cervix or breast that had been cured.

HIV, human immunodeficiency virus; HBV, hepatitis B virus; HCV, hepatitis C virus; IGF-1R, insulin-like growth factor 1 receptor; KPS, Karnofsky Performance Scale; RT, radiotherapy; SOC, standard of care; TMZ, temozolomide.

© Copyright 2023 Imvax, Inc. All rights reserved.