ents completed the questionnaires. Average age at diagnosis was 9 years (range: 2 months-20 years). Average number of years off therapy was 8.5 years (range: 2 months-20 years). Average number of years off therapy was 8.5 years (range: 2 months-20 years). Average number of years off therapy was 8.5 years (range: 2 months-20 years).

BACKGROUND: Bevacizumab, a monoclonal antibody that targets vascular endothelial growth factor, has been shown in a small series of children with vision loss associated with optic pathway gliomas (OPG) to produce marked vision recovery. METHODS: A single-institution retrospective record review of pediatric patients who had poor visual acuity and received bevacizumab from 2014-2017 was performed at Children’s Hospital Colorado. Data collected included demographics, pathology information, visual acuity exams (Snellen), visual field exams, optical coherence tomography (OCT), and bevacizumab dosing and toxicity. RESULTS: Eighteen patients (10.8, male/female) received bevacizumab for poor visual acuity. The median age of patients at the start of bevacizumab treatment was 5.2 years (range, 1.5-21.5 years). Thirteen patients had OPGs, three patients had craniohypophysis, and two had other brain tumors with vision loss due to bevacizumab. Median time from tumor diagnosis to start of bevacizumab was 0.6 years (range, 0.1-12.9 years). Most (11/18) patients (8 OPG, 2 craniohypophysis, 1 glioneural tumor) experienced improvement (i.e., LogMAR decrease >0.1) in visual acuity in at least one eye. Bevacizumab (median of 13 doses and range of 4-20 doses administered per patient) was tolerated well overall. Seven patients experienced transient toxicities (including proteinuria, hypertension, and headaches). OCT analysis is ongoing. CONCLUSIONS: Bevacizumab appears to improve visual acuity in some children with vision loss associated with the optic apparatus from tumor or hydrocephalus. A clinical trial to investigate the use of bevacizumab for vision recovery in pediatric brain tumor patients is warranted.

QOL-59. THE DEVELOPMENT OF A SCHOOL ‘BRAIN AID KIT’ BOX Jade Ryles, Faye Fraser, Simon Bailey, and Galil Haliday; Newcastle upon Tyne, Newcastle, UK

The purpose of developing the school ‘Brain Aid Kit’ box (school BAK box) was to empower neuro-oncology patients and their families in survivorship. Within the North East of England, a multi-disciplinary school meeting takes place at diagnosis, relapse and transition in education only. A questionnaire was sent to twenty schools and parents who had received previous school meeting input. The results identified there was a need for education staff to have support and up to date health information at the start of each school year. It is unachievable for professionals to complete a school meeting each school year for every patient. Therefore work took place where the information included in the school ‘BAK’ box was created. Both written and visual information on diagnosis, treatment and side effects, which can be individualised for each patient was added. The information is given in a plain box for patients to decorate, promoting ownership. The school ‘BAK’ box is being trialled in forty schools within the North East of England, with questionnaire feedback from both schools and parents. All questionnaires will be collated by May 2018, with the aim to offer a school ‘BAK’ box to every neuro-oncology patient. Preliminary feedback has indicated families have been able to information share appropriate and key information with their schools confidently and competently. There is currently no other known tool across England that addresses on-going issues of education in survivorship within the neuro-oncology services. The hope is the school ‘BAK’ box will fill this void.

QOL-60. PANACEA: A NOVEL BLACKBERRY 10 BASED, SUPPORT MOBILE APP FOR BRAIN TUMOR AFFECTED PATIENTS. Abhishek Puri1, Amit Garg1, and P Mohandas2; Fortis Cancer Institute, Mohali, Punjab, India, 1Hugssoft Inc., Mohali, Punjab, India

Panacea addresses a yawning gap in clinician-led development for novel use of mobile applications in healthcare delivery for patients. METHODS: Brain tumor affected patients have difficulty in accessing relevant literature to their clinical condition and reminders for medications. A novel BlackBerry 10 mobile app, Panacea, (final version 1.1.9.1) was co-developed with emphasis on the visual component), interface with hospital-based services and the readability of web content and sharing of news through various social media. Panacea is securely linked to installed BlackBerry Messenger (BBM), for instant messaging which also allows voice and video interaction with the clinical team. Patient updates include enhanced hearing (UI design is given in a plain box for patients to decorate, promoting ownership. The school ‘BAK’ box is being trialled in forty schools within the North East of England, with questionnaire feedback from both schools and parents. All questionnaires will be collated by May 2018, with the aim to offer a school ‘BAK’ box to every neuro-oncology patient. Preliminary feedback has indicated families have been able to information share appropriate and key information with their schools confidently and competently. There is currently no other known tool across England that addresses on-going issues of education in survivorship within the neuro-oncology services. The hope is the school ‘BAK’ box will fill this void.

A novel BlackBerry 10 mobile app, Panacea, (final version 1.1.9.1) was co-developed with emphasis on the visual component), interface with hospital-based services and the readability of web content and sharing of news through various social media. Panacea is securely linked to installed BlackBerry Messenger (BBM), for instant messaging which also allows voice and video interaction with the clinical team. Patient updates include enhanced hearing (UI design is given in a plain box for patients to decorate, promoting ownership. The school ‘BAK’ box is being trialled in forty schools within the North East of England, with questionnaire feedback from both schools and parents. All questionnaires will be collated by May 2018, with the aim to offer a school ‘BAK’ box to every neuro-oncology patient. Preliminary feedback has indicated families have been able to information share appropriate and key information with their schools confidently and competently. There is currently no other known tool across England that addresses on-going issues of education in survivorship within the neuro-oncology services. The hope is the school ‘BAK’ box will fill this void.

RADIOLOGY

RAD-01. DIAGNOSTIC ACCURACY AND ADDED VALUE OF QUALITATIVE RADIOLOGICAL REVIEW OF ‘H-MRS IN EVALUATION OF CHILDHOOD BRAIN TUMORS RANGE: 0.1-21.5 years. Most (11/18) patients (8 OPG, 2 craniohypophysis, 1 glioneural tumor) experienced improvement (i.e., LogMAR decrease >0.1) in visual acuity in at least one eye. Bevacizumab (median of 13 doses and range of 4-20 doses administered per patient) was tolerated well overall. Seven patients experienced transient toxicities (including proteinuria, hypertension, and headaches). OCT analysis is ongoing. CONCLUSIONS: Bevacizumab appears to improve visual acuity in some children with vision loss associated with the optic apparatus from tumor or hydrocephalus. A clinical trial to investigate the use of bevacizumab for vision recovery in pediatric brain tumor patients is warranted.

QOL-57. AT HOME NEUROCOGNITIVE TESTING IS POSSIBLE IN PEDIATRIC BRAIN TUMOR PATIENTS Amy Rosenfeld1, Michael Ettl2, Annie Gieseking3, Amanda Goodman3, Dianne Peterson3, Thomas Daniels4, Adrian Schmebri3, and Brian Hale4; Phoenix Children’s Hospital, Phoenix, AZ, USA, 1Mayo Clinic, Scottsdale, AZ, USA, 2Cottage, Melbourne, Australia, 3Takeda, Cambridge, MA, USA

BACKGROUND: Neurocognitive decline is a major cause of morbidity in pediatric brain tumor patients. Traditionally, testing to monitor this decline has been completed in a clinic setting. It is often difficult to obtain neurocognitive evaluations in clinic, and testing only in clinics limits the frequency and reliability of assessment. Cogstate is a brief computerized neurocognitive battery capable of being administered in unsupervised settings. We administered the Cogstate battery to off therapy brain tumor patients at home in the clinic to evaluate its utility in monitoring cognition at home. MATERIALS/ METHODS: Demographic data and QOL questionnaires were collected during the in clinic baseline visit, and the Cogstate battery was also completed. A week later, parents completed testing at home. DATA: Twenty-five patients enrolled on study and 19 completed both in clinic and at home assessments. Mean age at diagnosis was 9.8 years, and at study enrollment was 13.0 years. Diagnoses included High Risk Medulloblastoma (n=7), Standard Risk Medulloblastoma (n=1), Ependymoma (n=4), Choroid Plexus Carcinoma (n=1), Ganglioglioma (n=3), Germinoma (n=1), Nongerminomatous Germ Cell Tumor (n=2), Anaplastic Astrocytoma (n=1), Juvenile Pilocytic Astrocytoma (n=3), Dysembryoplastic Neuroepithelial Tumor (n=1), and Protoplasmic Astrocytoma (n=1). Thirteen patients received chemotherapy and 17 received radiation. All patients successfully completed testing and appeared able to understand the task requirements. No differences were found between testing done in clinic and at home. CONCLUSION: It appears possible to monitor cognition over time on a frequent basis in pediatric brain tumor patients. This has significant implications for clinical trials and clinical medicine.