A ribonucleoside with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone as a nucleobase, which universally binds to natural nucleosides

Kenji Kuroda1,2, Hidehiko Kodama2, Masanori Kataoka3 and Yoshihiro Hayakawa1,2

1Graduate School of Information Science and 2CREST/JST, Nagoya University, Chikusa, Nagoya 464-8601, Japan, and 3Research Center for Computational Science, National Institutes for Natural Sciences, Okazaki 444-8787, Japan

ABSTRACT

A ribonucleoside with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) changes the structure through dynamic transformation as shown in Figure 1. Thus, when keto-enol tautomerization at the C-5 position, assisted by the carbonyl oxygen at the C-4 position, takes place in PPT, this compound is allowed to pair with all natural nucleobases, \textit{i.e.}, adenine, cytosine, guanine, and thymine, through hydrogen bonds. Within the duplex, the rotation of the backbone (R) around an N-1 bond axis results in a transformation between purine-type and pyrimidine-type rotamers. Accordingly, oligonucleotides including the nucleoside with PPT as a base (PPT-nucleoside) are of great interest. In creation of such oligonucleotides, it is essential to prepare a nucleoside with PPT as a building block and is important to know whether the resulting nucleoside has a high potentiality as a universal nucleoside. Thus, we prepared the PPT-ribonucleoside 7 and investigated its binding affinity to four kinds of natural 2’-deoxyribonucleosides.

RESULTS AND DISCUSSION

The PPT-nucleoside, 7, was prepared according to the procedure exhibited in Scheme 1. Reaction of the protected ribofuranose 1 (100 mM) and the silylated pyrimidine derivative 2 (200 mM) using trimethylsilyl triflate (TMSOTf) (120 mM) as a catalyst2 was carried out at 30 °C for 24 h in acetonitrile containing molecular sieves (MS) 4A as a moisture scavenger to give the N(1)-nucleoside product 3 in a 94% yield. In this reaction, a small amount of the N(3)-nucleoside product (<5%) was obtained. The N-dimethylformamidime (dmf) and tri-O-benzoyl protecting groups of 3 were removed by treatment with a 30% methanamine/ethanol solution and then the resulting product (100 mM) was converted to the tri-\textit{O}-\textit{tert}-butyldimethylsilyl derivative 4 by exposure to a mixture of \textit{tert}-butyldimethylsilyl chloride (TBDMS-Cl) (600 mM) and imidazole (900 mM) in DMF at 60 °C for 3 h. The overall yield of 4 from 3 was 93%. Subsequently, 4 (100 mM) was condensed with ethyl isocyanatoformate (150 mM)3 in dichloromethane (25 °C, 5 h) to afford 5 in 90% yield. This compound 5 (10 mM) was treated with sodium ethoxide (11 mM) in ethanol at 60 °C for 16 h to construct the PPT ring via intramolecular condensation, and, finally, all O-TBDMSC protectors of the resulting product were removed by treatment with tetrabutylammonium fluoride (TBAF) in THF at 25 °C for 12 h to get the target product 7 in a 53% overall yield in these two steps. Since the pKa of 7 is 2.4 (H2O), 7 was obtained as a tetrabutylammonium salt: \textit{1}H NMR (400 MHz, DMSO-\textit{d}_6) \textit{δ} 0.93 (t, \textit{J} = 7.3 Hz, 12H), 1.30 (m, \textit{J} = 7.2 Hz, 8H), 1.51–1.59 (m, 8H), 3.13–3.17 (m, 8H), 3.34–3.46 (m, 1H), 3.55–3.66 (m, 2H), 4.17–4.22 (m, 1H), 4.50–4.56 (m, 2H), 4.68

![Figure 1](https://example.com/image1.png) Expected base pairs of a PPT compound and natural nucleosides.
Scheme 1 Synthesis of PPT-ribonucleoside 7: (a) TMSOTf, MS 4A, acetonitrile, 30 °C, 24 h; (b) 30% methylamine/ethanol solution, 25 °C, overnight; (c) TBDMS-Cl, imidazole, DMF, 60 °C, 3 h; (d) ethyl isocyanatoformate, dichloromethane, 25 °C, 5 h; (e) sodium ethoxide, ethanol, 60 °C, 16 h; (f) TBAF, THF, 25 °C, 12 h.

(d, J = 7.0 Hz, 1H), 4.89 (d, J = 4.9 Hz, 1H), 6.49 (s, 1H), 9.42 (s, 1H), 10.2 (s, 1H) ppm; 13C NMR (100 MHz, DMSO-d6) δ 139.7, 19.7, 23.5, 58.0, 63.1, 70.5, 71.9, 84.7, 86.4, 88.7, 151.1, 157.7, 159.8, 162.4, 163.3 ppm; HRMS (ESI+) m/z 327.0724 (calcd for C_{11}H_{19}N_4O_8 [M − H]^+ m/z 327.0582).

The UV analysis of the interaction between the PPT-nucleoside and four natural deoxyribonucleosides, i.e., deoxyadenosine, deoxyctytidine, deoxyguanosine, and thymidine, was undertaken by the ratio gradient method with a 1:1 mixture of 6 and a 3',5'-bis(tert-butylidimethylsilyl) derivative of the deoxyribonucleoside, resulting in an obvious deviation (6-9%) compared to calculations based on the Lambert-Beer law. This result indicated that 7 interacts with each natural nucleoside, though it is not clear whether interaction takes place through hydrogen bonding or other modes.

CONCLUSION

We prepared a ribonucleoside with PPT as a base and revealed that this artificial base may serve as a universal nucleoside. Thus, it is highly attractive to investigate utility of oligonucleotides containing 7. The synthesis of these compounds is now in progress.

ACKNOWLEDGEMENT

This work was partly supported by 21st Century COE Program (Establishment of COE of Material Science: Elucidation and Creation of Molecular Functions) from the Ministry of Education, Culture, Science, Sports, and Technology, Japan.

REFERENCES

4. The pKa values of some PPT derivatives will be reported in another paper.