Photoinduced repair of a thymine dimer in DNA via carbazole nucleoside

Yoshinaga Yoshimura1,2 and Kenzo Fujimoto1,2

1School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan and 2PRESTO, Japan Science and Technology Agency

ABSTRACT

We report the photoinduced repair of a thymine dimer incorporated in a DNA duplex via oligodeoxynucleotide (ODN) containing carbazole nucleoside (K). The occurrence of an electron transfer between K and thymine dimer is evidenced by fluorescence quenching measurements. K acts as a good electron donor for the photoinduced repair of a thymine dimer.

INTRODUCTION

Considerable environmental damage to DNA is caused by the formation of UV-induced photoslesions. UV irradiation of cells induces a [2 + 2] cycloaddition of pyrimidines located above each other in the DNA double strand.1 DNA photolyase selectively recognizes the thymine dimer in DNA single and double strands and repairs it by photoinduced electron transfer, using reduced flavine coenzyme as the electron donor.2 By using a DNA assay consisting of an artificial DNA base with a flavin structure as the electron donor, Carell et al. could show that the thymine dimer in DNA repairs through reductive photoinduced electron transfer.3 Barton et al. have observed the repair of a thymine dimer as its radical cations with a rhodium intercalator, which both produce a light-induced electron from the DNA strand.4 Carbazole derivatives have strongly hydrophobic surfaces and have been used as electron donors.5 Deoxyribosides of carbazole were used as probes to detect nucleic acid hybridization.6 These properties of carbazole derivatives are expected to be exploited as electron donors to study the repair of a thymine dimer in DNA. We have been studying artificial DNA bases as a tool for photochemical DNA manipulations.7 We now report on the photoinduced repair of a thymine dimer incorporated in a DNA duplex via K.

RESULTS AND DISCUSSION

The nucleoside phosphoramidite of K was prepared according to a method reported in the literature.8 The assignment of β-stereochemistry at C1’ for K was based on COSY and NOESY spectra, which showed a cross-peak between H1’ and H4’. The modified ODN containing K, ODN 1, ODN 2, and ODN 3, were prepared, according to the standard phosphoramidite chemistry, on a DNA synthesizer using phosphoramidite of K (Fig. 1a). ODNs containing K were characterized by the nucleoside composition and MALDI–TOF–MS. The synthesized ODNs are summarized in Table 1. Thymine dimer formation in synthetic ODNs was performed photochemically according to a method reported in literature.9

![Fig. 1 (a) Structure of carbazole nucleoside, K. (b) Schematic illustration of the photoinduced repair of a thymine dimer.](https://example.com/fig1.jpg)

<table>
<thead>
<tr>
<th>ODNs used in this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequences</td>
</tr>
<tr>
<td>ODN 1</td>
</tr>
<tr>
<td>ODN 2</td>
</tr>
<tr>
<td>ODN 3</td>
</tr>
<tr>
<td>ODN 4</td>
</tr>
<tr>
<td>ODN 5</td>
</tr>
<tr>
<td>ODN 6</td>
</tr>
<tr>
<td>ODN 7</td>
</tr>
</tbody>
</table>

We determined the feasibility of the photochemical repair of a thymine dimer in DNA via ODN containing K. When ODN 1 was irradiated at 365 nm for 30 min in the presence of ODN 4 (Fig. 1b), we observed the appearance of a peak of ODN 5 in 92% yield as determined by HPLC with the disappearance of ODN 4 (Fig. 2). MALDI–TOF–MS indicated that isolated ODN 5 obtained from HPLC purification was a repaired product of ODN 4 (calcd.
Enzymatic digestion of isolated ODN 5 showed the formation of dC, dG, dT, and dA in a ratio of 2:6:6:4 (Fig. 3). The quantum yield for the photochemical repair by using ODN 1 was estimated (Φ = 0.014) at 365 nm, based on the disappearance of ODN 4 by employing valerophenone as an actinometer.\(^\text{10}\) When ODN 2 or ODN 3 was used in the repair of a thymine dimer, we observed the appearance of a peak of ODN 5 in 94, 93% yields, respectively. The thermal stability of the duplex between ODN containing K and ODN 4 was investigated by monitoring the melting temperature (T\(_m\)). The T\(_m\) value (53.0°C) of ODN 1 and ODN 4 was lower than that of ODN 2 and ODN 5 (56.9°C), whereas the T\(_m\) value (53.5°C) of ODN 2 and ODN 4 was higher than that of ODN 2 and ODN 5 (51.7°C). The T\(_m\) value (53.6°C) of ODN 3 and ODN 4 was equal to that of ODN 3 and ODN 5.

To elucidate the electron transfer phenomena from ODN 1 to ODN 4, fluorescence quenching of ODN 1 with ODN 4 was performed in a 50 mM sodium cacodylate buffer (pH 7.0) and 100 mM sodium chloride at a strand concentration of 200 μM. The fluorescence of ODN 1 was quenched efficiently by ODN 4. On the other hand, when ODN composed of mismatch bases, ODN 6, was used as a quencher, the fluorescence of ODN 1 was scarcely quenched. Furthermore, when ODN 6 was used in repair, the repaired product of ODN 6 was scarcely observed. When ODN 4 was irradiated at 365 nm in the presence of complementary ODN, ODN 7, the repaired product of ODN 4 was scarcely observed. From these results, ODN 1 can promote the repair of thymine dimer incorporated in a DNA duplex by electron transfer from carbazole.

CONCLUSION

We demonstrated the photoinduced repair of a thymine dimer in DNA via ODN containing K. When ODN containing K was photoirradiated in the presence of ODN containing thymine dimer, the thymine dimer in DNA repairs through reductive photoinduced electron transfer. ODN containing K can be used for the photoinduced repair of a thymine dimer and has the potential to allow spectroscopic investigation of electron transfer in DNA.

REFERENCES