Regulation of Mineral and Trace Elements in Human Milk: Exogenous and Endogenous Factors

Bo Lönnerdal, Ph.D.

Lead Review Article

Breast-fed infants are dependent on an adequate supply of minerals and trace elements for normal growth and development. For most of these elements, the mammary gland appears to have developed mechanisms to regulate their concentrations, even when the maternal diet varies considerably or maternal conditions are affected by different challenges. For some elements, however, there appears to be little or no such regulation. Increased knowledge about these mechanisms, or their absence, and to what extent they may compensate for adverse maternal conditions, including poor nutrition, will help identify infants and women at risk for deficiencies of these nutrients.

Introduction

It is generally believed that breast-fed infants are protected against most nutrient deficiencies. Even poorly nourished women have been shown to produce milk of good nutritional quality, although milk volumes in some instances may be reduced. Even if the nutritional quality of breast milk usually is well maintained, however, the rapid growth of the infant puts high demands on the supply of nutrients, including minerals and trace elements. Most estimates of nutrient requirements of infants indicate that the intake of minerals and trace elements is low. Although high bioavailability of these nutrients in part compensates for this, it is evident that the concentrations of minerals and trace elements in breast milk need to be maintained at a certain level to meet infants' needs. This suggests that mechanisms are present in the mammary gland to assure an adequate supply to the infant. These mechanisms may be affected by various conditions in the mother, however, resulting in lower than normal concentrations of specific nutrients in her milk. Recently, there has been some concern that poor maternal nutritional status may impair normal mammary gland function, particularly the metabolic handling and/or secretion of other essential nutrients into milk.

Maternal conditions affecting breast milk mineral and trace element concentrations can be studied by several approaches. First, the mineral and trace element status of lactating women can be assessed, and the possible correlation with breast milk mineral and trace element concentrations can be analyzed. This approach is practically possible for nutrients whose status can be accurately assessed, e.g., iron (hemoglobin, ferritin) and selenium (serum/plasma selenium, glutathione peroxidase), whereas it is difficult for elements whose status is difficult to assess, e.g., calcium, magnesium, zinc, and manganese. Second, the effect of maternal mineral and trace element intake on milk concentrations can be analyzed. Although it is often difficult to accurately assess the nutrient intake of pregnant/lactating women, it is possible to follow women with habitually low mineral or trace element intake who are given supplements. This approach has been used for calcium, iron, zinc, and selenium. Third, because the mammary gland acquires nutrients from serum for further export into milk, it is possible to study clinical conditions in women whose serum mineral or trace element concentrations are elevated or decreased. One example of this is infection, where serum copper concentrations increase and iron and zinc concentrations decrease. For each of the above-mentioned elements, this review will examine results of these approaches and discuss possible mechanisms involved in the transfer of minerals and trace elements from the mother to her breast milk.

Effect of Maternal Conditions on Minerals and Trace Elements in Human Milk

Calcium

Serum calcium is normally tightly controlled by homeostatic mechanisms, and most women would be expected to have very similar serum and milk calcium concentrations. The concentration of calcium in human milk, however, does appear to be affected under some conditions. Whereas several studies have found no effect of maternal calcium intake on milk calcium concentrations, a study by Greer et al. did report a positive correlation between calcium intake and milk calcium. There was no correlation between serum calcium and milk calcium, however, suggesting that...
factors other than circulating calcium concentrations determines milk calcium concentrations.

Interestingly, a few studies have found surprisingly low calcium concentrations in breast milk. In a study in New Guinea, poorly nourished women were found to have milk calcium concentrations of 154 mg/L, which is substantially lower than the normal level of approximately 260–340 mg/L. The women in this study had very low calcium intakes, and infants were shown to have poor skeletal calcification. Poorly nourished Pakistani women, however, were found to have milk calcium concentrations within the normal range, with a mean of 284 mg/L.

For some time, it was considered likely that the study in New Guinea suffered from some methodologic problems, because milk magnesium concentrations were very low by comparison with most other studies (13.6 mg/L versus 30–40 mg/L in controls). Other studies in The Gambia and Zaïre, however, show that women indeed can have very low milk calcium concentrations. Laskey et al. showed that milk calcium in lactating rural Gambian women is considerably lower than in milk from women in the United Kingdom, 177 versus 254 mg/L at 7.5 months of lactation. Women from both The Gambia and Zaïre had an average of 15–20% lower breast milk calcium than British women. Interestingly, milk phosphorus concentration decreased in milk from women in the United Kingdom and Zaïre, whereas this was not the case in Gambian women. As a consequence, Gambian women had a very low calcium:phosphorus ratio in their milk (1.1 at 6 months), whereas that of women in Zaïre (1.6 at 6 months) was intermediate between Gambian and British women (2.0 at 6 months).

Despite a low calcium intake of the Gambian women, long-term daily supplementation with generous amounts (mean of 714 mg/day) of calcium failed to affect milk calcium concentrations, even after 1.5 years of supplementation (Figure 1). By contrast with these studies, women in Nepal were found to have breast milk calcium concentrations similar to those of U.S. women, despite an appreciably lower dietary intake of calcium. Thus, factors other than dietary intake of calcium are likely to cause these low concentrations. Strong conservation of bone calcium and/or hormonal regulation have been hypothesized as possible causative factors, but little is known yet about the underlying mechanisms.

Magnesium

Similar to calcium, serum magnesium concentrations are regulated by homeostatic mechanisms and most studies do not show an effect of maternal magnesium intake on milk magnesium. An exception to this may be women who are treated for pre-eclampsia with pharmacologic doses of magnesium. Such women were reported to have significantly higher milk magnesium concentrations than were control women, even though these higher levels were still within the normal range. The effect appeared to be transitory; 24 hours after termination of the treatment with magnesium sulfate, milk magnesium concentrations were similar to those of control women. The study from New Guinea was discussed above with respect to calcium, but it should be mentioned that in contrast with calcium, dietary intake of magnesium was high. It is possible that the very low calcium intakes had an effect on whole-body and serum calcium:phosphorus ratios and that a secondary effect on magnesium in serum and milk was obtained. It is evident that more studies are needed on the interrelationship between calcium, magnesium, and phosphorus and its effect on milk levels of these nutrients.

Iron

Iron deficiency and iron deficiency anemia are very common worldwide, and the potential effect of low maternal iron status on breast milk iron concentration has been explored in lactating women. Maternal iron status assessed by hemoglobin, serum ferritin, and transferrin saturation was found not to be correlated with milk iron (Figures 2A and 2B) in a study of Swiss women. However, iron status of this group of women did not vary much, and none of them were anemic. Similar observations were made in a group of Nigerian women with considerably more variable iron status. The women were divided into three groups, “iron deficient” (Hb < 100 g/L), “normal,” and “iron overloaded” (Hb > 120 g/L), but no difference in milk iron was found between groups. Transferrin saturation varied widely between groups: 6%, 27%, and 64%, respectively. A study on Malaysian women indicated that ethnicity affected milk iron, but there was no correlation between maternal iron status, as assessed by hemoglobin, serum iron, or total iron-binding capacity, and milk iron.

In contrast with these studies, a study in India suggested a positive effect of maternal iron deficiency on milk iron. Severely anemic women (Hb < 80 g/L) had signifi-
cantly higher milk iron concentrations than nonanemic women (Hb > 110 g/L). Concentrations of lactoferrin, the major iron-binding protein in human milk, were also higher in the anemic women. The number of subjects was very low, however, and samples were taken very soon after delivery (< 2 weeks postpartum), a period when milk iron changes dramatically depending on the volume of milk produced. It is not known whether the anemic women were given iron supplements when diagnosed, which may have increased circulating levels of iron even if it was too early to affect hemoglobin concentration.

In a study of Peruvian women, anemic women (Hb < 110 g/L) were found to have similar concentrations of iron and lactoferrin in colostrum (day 2 of lactation) to those of nonanemic women. The anemic women were given iron (100 mg daily) from day 2 to day 30 postpartum, which significantly increased their hemoglobin concentrations (from 92 to 105 g/L), but no effect on milk iron or lactoferrin was found (Table 1). Similarly, iron supplementation during pregnancy (60 mg daily) did not affect colostrum iron concentrations. Several studies on maternal iron intake and milk iron concentration have found no correlation between these parameters.

Although studies have investigated the potential correlation between hemoglobin or iron stores (ferritin) and milk iron, it is more likely that iron taken up by the mammary gland is supplied by circulating iron, i.e., serum iron. We explored this possibility in women with acute infection during the early postpartum period or during established lactation (2–3 months postpartum). Although serum iron decreased during infection as an acute phase response, no effect on colostrum or mature milk iron concentrations was found (Table 2). Thus, it appears that milk iron is not affected by maternal iron intake or status or infection, suggesting the presence of a mechanism in the mammary gland that regulates milk iron concentrations.

Table 1. Effect of Maternal Iron Status in Peruvian Women on Milk Iron and Lactoferrin

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Anemic Women*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk iron (mg/L), day 2 of lactation</td>
<td>0.8±0.1</td>
<td>0.9±0.2</td>
</tr>
<tr>
<td>Lactoferrin (mg/mL), day 2 of lactation</td>
<td>5.3±1.1</td>
<td>6.7±3.4</td>
</tr>
<tr>
<td>Milk iron (mg/L), day 30 of lactation</td>
<td>0.4±0.1</td>
<td>0.4±0.1</td>
</tr>
<tr>
<td>Lactoferrin (mg/mL), day 30 of lactation</td>
<td>4.4±1.1</td>
<td>3.7±0.9</td>
</tr>
</tbody>
</table>

*Given 100 mg of iron daily during the study period.
Note: NS = not significant.
Source: adapted from reference 19.
Table 2. Effect of Maternal Infection on Serum and Milk Iron Concentration

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Ill Women</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum iron (µM), day 1 of lactation</td>
<td>14.0±0.6</td>
<td>10.4±0.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Milk iron (µM), day 1 of lactation</td>
<td>5.6±0.3</td>
<td>7.5±0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Serum iron (µM), day 7 of lactation</td>
<td>14.7±0.6</td>
<td>14.0±0.5</td>
<td>NS</td>
</tr>
<tr>
<td>Milk iron (µM), day 7 of lactation</td>
<td>5.6±0.4</td>
<td>6.5±0.4</td>
<td>NS</td>
</tr>
</tbody>
</table>

Note: NS = not significant.
Source: adapted from reference 23.

observed, it is likely that their zinc status was low. This suggests that marginal maternal zinc status does not affect milk zinc concentrations.

The mammary gland is likely to acquire zinc from the plasma pool, and low plasma zinc may therefore affect milk zinc. In our study of Peruvian women with acute infection during early or established lactation, maternal serum zinc concentrations decreased significantly as an acute phase response, but no effect on milk zinc concentration was found. Thus, similar to milk iron concentrations, there appears to be a mechanism that regulates breast milk zinc concentrations.

Copper, Manganese, and Chromium

There are very few studies on the effect of maternal copper, manganese, or chromium intake or status on milk concentrations of these elements. No effect of dietary intake of copper on milk copper has been observed. In one study, maternal dietary manganese intake was found to be correlated with breast milk manganese. It should be noted, however, that human milk manganese concentrations are very low (4–8 µg/L) and difficult to analyze accurately and that the database for the manganese content of various food items is limited. Further studies are needed on this potential correlation. There have been no studies on the effect of maternal copper or manganese supplementation on breast milk copper or manganese. The concentration of chromium in breast milk does not appear to be affected by maternal chromium intake. In our study of Peruvian women with acute infection during lactation, serum copper increased significantly, but there was no effect on milk copper. Thus, it appears that circulating copper concentrations do not affect milk copper and that a regulatory mechanism exists.

Selenium

Maternal selenium status has been shown to be closely correlated with milk selenium. Studies in areas with low selenium intake (e.g., Finland, New Zealand, and China) have shown that women in these regions have lower than normal concentrations of serum and milk selenium. Dietary habits have also been shown to influence milk selenium concentrations. Studies in The Gambia showed that maternal nutrition affects breast milk selenium concentrations and that parity has an effect. It is known that soil selenium affects selenium concentrations in plants and animals raised on this soil and that selenium status of subjects will be strongly affected by dietary selenium. Selenium supplementation by women in low-selenium areas has been shown to increase milk concentrations considerably. Both inorganic (selenite) and organic (yeast) forms of selenium were effective, with the latter possibly being better utilized (Figures 4A and 4B). Because milk selenium concentrations are closely correlated with circu-
lating levels of selenium, it is unlikely that there is a mecha-
nism regulating mammary gland selenium uptake and its
export into milk.

Mechanisms Regulating Minerals and Trace
Elements in Milk

It is evident that mechanisms exist in the mammary gland
that can regulate concentrations of iron and zinc in milk.
This regulation may occur at two different sites: either at
the uptake of trace elements from serum by the mammary
epithelial cell or at the synthesis and secretion of milk
from the gland. Control at the uptake phase appears more
plausible because the cell otherwise may increase/deplete
its trace element content.

Iron

Because most cell types use transferrin receptors (TfRs)
to regulate cellular iron concentrations, we explored the
involvement of mammary gland TfRs in milk iron regula-
tion in an animal model. We found a correlation between
the declining trend in milk iron concentration during lacta-
tion and mammary gland TfR concentrations, suggesting
an involvement of TfRs in normal physiologic changes
during lactation. We also studied the effect of maternal
iron intake and status on milk iron and TfRs. The results
from this study are more complicated to interpret. Iron-
deficient rats had lower milk iron concentrations compared
with controls. This was accompanied by higher mammary
TfR concentrations, suggesting up-regulation to compen-
sate for the low iron content. Rats fed high-iron diets had
even higher mammary TfR concentrations compared with
controls, however, although milk iron concentrations were
similar.

It should be mentioned that rats may not be an ideal
model to study the effects of maternal iron status on milk
iron because iron status in this species does affect milk
iron concentration, which is not the case in humans. This
is likely owing to the strong "drain" imposed on the dam
by around-the-clock nursing of 12–16 pups ingesting milk
high in iron. However, there is no reason to believe that
the mechanisms underlying the acquisition of iron from
serum and the secretion of iron into milk are fundamen-
tally different between these species. Thus, it is likely that
studies on the regulation of milk iron concentrations
performed in rats are valid.

Zinc

The mechanism by which cells acquire zinc has not yet
been established. Zinc in serum is transported by α2-mac-
roglobulin (α2M) and serum albumin, although some (1–
2%) zinc is loosely attached to amino acids. Serum albu-
min binds zinc nonspecifically, and to date there has been
no evidence of this protein delivering zinc to the cell. Since
α2M binds four atoms of zinc with high affinity, we hy-
pothesized that this protein is involved in the delivery of
zinc to the cell. We found that the binding of α2M to hu-
man mammary epithelial cells in culture is specific and
saturable, which is indicative of a receptor-mediated mecha-
nism. We also found that the mRNA for the α2M receptor
is expressed in the mammary cells, suggesting that this is
a mechanism to deliver zinc to this cell type. The quantita-
tive significance of this pathway for mammary cell acqui-
sition of zinc is not yet known, nor do we yet have conclu-
sive data on the effect of media or cellular zinc concentra-
tion on α2M receptor expression, which is important for
an understanding of regulatory mechanisms. We have re-
cently explored the regulation of milk zinc in a rat model.
Rats were fed a low-zinc diet through lactation only or
through pregnancy and lactation, or were fed a control
diet throughout. Although liver zinc concentration was
significantly lower in dams fed the low-zinc diet, mammary
gland zinc and milk zinc were not affected, suggesting
that under conditions of maternal zinc deficiency/marginal
zinc intake, milk zinc concentrations are maintained. It is

Figure 4. Effect of selenium supplementation of lactating Finnish women on (A) serum selenium concentration and (B) milk selenium
concentration. Note: * p < 0.016; ** p < 0.003; and *** p < 0.0003. Source: adapted from reference 29.
possible that maternal α₂M receptors are involved in this regulation.

Factors That May Adversely Affect Milk Mineral and Trace Element Concentrations

Very little is known about cases in which concentrations of trace elements in milk are abnormally low. We have, however, studied several cases of women who had significantly lower concentrations of breast milk zinc compared with women with normal concentrations at the same stage of lactation (Figure 5). Most of these cases were women delivering infants prematurely; however, cases have also been found in women delivering at term. We analyzed the concentrations of protein, lipid, and carbohydrate, as well as other trace elements such as iron and copper, and found them all to be within the normal range. Further, concentrations of ligands binding zinc in milk were found to be normal. It is not yet known why milk zinc was specifically low in these women, but it is possible that a zinc transporter responsible for the secretion of zinc into milk may be defective. It is possible that similar defects may exist for other trace elements, but in the case of zinc, the infants suffering the consequences of zinc deficiency are easier to find and diagnose than those suffering from iron or copper deficiency, whose signs are less specific and take longer to manifest.

Effect of Maternal Mineral or Trace Element Deficiency or Excess on Normal Mammary Gland Function

Although most of the concern about lactating women having suboptimal trace element status has been related to the concentration of the particular element in milk, the possibility of an effect on mammary gland function in general needs to be considered. Latulippe et al. have shown that iron-deficient women produce milk that is low in folate. The mechanism behind this lesion is not yet known, but it is possible that one of the steps in mammary folate uptake and/or secretion is dependent on normal iron status. Brätter et al. have shown that women with high selenium intake secrete milk that is low in zinc, suggesting that selenium intake above a certain level may impair normal zinc uptake or secretion by the mammary gland.

Conclusions

It is evident that mechanisms exist that regulate milk concentrations of trace elements such as iron and zinc, although the transfer of elements like selenium appears unregulated and may be explained by passive diffusion. Little is known about the mechanisms involved in the uptake of calcium and magnesium into milk and factors affecting these mechanisms. Increased knowledge of these mechanisms may help us not only to understand the transfer of minerals and trace elements into milk under normal conditions but also to investigate the lesions behind abnormal transfer of minerals and trace elements, as well as defects in mammary gland function induced by suboptimal nutrition.

11. Laskey MA, Dibba B, Prentice A. Low ratios of calcium to phosphorus in the breast milk of rural

34. Sigman-M, Lönnrdal B. Relationship of milk iron and the changing concentration of mammary tissue transferrin receptors during the course of lactation. J Nutr Biochem 1990;1:572–6

