
Eleftherios Mylonakis, MD, PhD1; Selin Somersaran-Karayaka, MD2; Sumathi Sivapalasingam, MD3; Shazia Ali, PharmD2; Yiping Sun, PhD2; Rafia Bhoore, PhD2; Jingning Mei, PhD2; Jutta Miller, BS, RN2; Lisa Cupelli, PhD2; Andrea T. Hooper, PhD2; Jennifer D. Hamilton, PhD2; Cynthia Pan, BPharm2; Viêt Pham, BS2; Yuming Zhao, MS2; Romana Hosain, MD, MPH2; Adnan Mahmood, MD2; John D. Davis, PhD2; Kenneth C. Turner, PhD2; Yuni Kim, PharmD2; Amanda Cook, BS, Dip Reg Aff2; Vidya Menon, MD2; Jason C. Wells, MD2; Bari Kowl, MS2; Yuhwen Soo, PhD2; A. Thomas DiCicco, PhD2; Gregory P. Geba, MD, DrPH2; Neil Stahl, PhD2; Leah Lipsick, PhD2; Ned Braunstein, MD2; Gary Herman, MD2; George V. Tziancopoulos, MD, PhD2; David M. Weinreich, MD2; Brown University, Providence, RI; Regeneron Pharmaceuticals Inc., Tarrytown, New York; Regeneron Pharmaceuticals Inc, Tarrytown, New York; Lincoln Medical Center, New York, New York; 1The Oregon Clinic, Portland, Oregon

Background. Casirivimab and imdevimab (CAS/IMDEV) is authorized for emergency use in the US for outpatients with COVID-19. We present results from patient cohorts receiving low flow or no supplemental oxygen at baseline from a phase 1/2/3, randomized, double-blinded, placebo (PBO)-controlled trial of CAS/IMDEV in hospitalized patients (pts) with COVID-19.

Methods. Hospitalized COVID-19 pts were randomized 1:1:1 to 2.4 g or 8.0 g of IV CAS/IMDEV (co-administered) or PBO. Primary endpoints were time-weighted average (TWA) change in viral load from baseline (Day 1) to Day 7, proportion of pts who died or went on mechanical ventilation (MV) through Day 29. Safety was evaluated through Day 57. The study was terminated early due to low enrollment (no safety concerns).

Results. Analysis was performed in pooled cohorts (low flow or no supplemental oxygen) as well as combined treatment doses (2.4 g and 8.0 g). The prespecified primary virologic analysis was in seronegative (seroneg) pts (combined dose group n=360; PBO n=160), where treatment with CAS/IMDEV led to a significant reduction in viral load from Day 1–7 (TWA change: LS mean (SE): -0.28 (0.12); 95% CI: -0.51 to -0.05; P=0.0172; Fig. 1). The primary clinical analysis had a strong positive trend, though it did not reach statistical significance (P=0.2048), and 4.5% clinical endpoints prespecified for hypothesis testing were nominally significant (Table 1). In seroneg pts, there was a 47.0% relative risk reduction (RRR) in the proportion of pts who died or went on MV from Day 1–29 (10.3% treated vs 19.4% PBO; nominal P=0.0061; Fig. 2). There was a 55.6% (6.7% treated vs 15.0% PBO; nominal P=0.0032) and 35.9% (7.3% treated vs 11.5% PBO; nominal P=0.0178) RRR in the prespecified secondary endpoint of mortality by Day 29 in seroneg pts and the overall population, respectively (Fig. 2). No harm was seen in seropositive patients, and no safety events of concern were identified.

Figure 1: TWA daily viral load decreased from baseline (Day 1) in seronegative patients receiving low flow or no supplemental oxygen

Table 1. Primary virologic and clinical endpoints

Table 2. Proportion of patients who died or were hospitalized with COVID-19

Conclusion. Co-administration of CAS/IMDEV led to a significant reduction in viral load in hospitalized, seroneg pts requiring low flow or no supplemental oxygen. In seroneg pts and the overall population, treatment also demonstrated clinically meaningful, nominally significant reductions in 28-day mortality and proportion of pts dying or requiring MV.

Disclosures. Elieltherios Mylonakis, MD, PhD, BARDA (Other Financial or Material Support, HHSO100201700020C); Chemic labs/KODA therapeutics (Grant/Research Support); Cidara (Grant/Research Support); Leidos Biomedical Research Inc/NCI (Grant/Research Support); NIH/NAID (Grant/Research Support); NIH/NIGMS (Grant/Research Support); Regeneron Pharmaceuticals Inc (Grant/Research Support); NIGMS (Grant/Research Support); Scictone Pharmaceuticals (Grant/Research Support); Selin Somersaran-Karayaka, MD, BARDA (Other Financial or Material Support, HHSO100201700020C); Regeneron Pharmaceuticals, Inc (Employee, Shareholder); Sumathi Sivapalasingam, MD, BARDA (Other Financial or Material Support, HHSO100201700020C); Excision BioTherapeutics (Employee); Regeneron Pharmaceuticals, Inc (Shareholder, Other Financial or Material Support, Royalties, patents planned, issued or pending, former employee); Shazia Ali, PharmD, BARDA (Other Financial or Material Support, HHSO100201700020C); Regeneron Pharmaceuticals, Inc (Employee, Shareholder); Jingning Mei, PhD, BARDA (Other Financial or Material Support, HHSO100201700020C); Regeneron Pharmaceuticals, Inc (Employee, Shareholder); Jutta Miller, BS, RN, BARDA (Other Financial or Material Support, HHSO100201700020C); Regeneron Pharmaceuticals, Inc (Employee, Shareholder); Andrea T. Hooper, PhD, BARDA (Other Financial or Material Support, HHSO100201700020C); Pfizer, Inc (Shareholder, Other Financial or Material Support, HHSO100201700020C); Regeneron Pharmaceuticals, Inc (Employee, Shareholder, Royalties, patents planned, issued or pending); Jennifer D. Hamilton, PhD, BARDA (Other Financial or Material Support, HHSO100201700020C); Pfizer, Inc (Shareholder, Other Financial or Material Support, HHSO100201700020C); AbbVie (Consultant, Speaker’s Bureau); Eli Lilly and Company (Employee, Shareholder, Consultant, Speaker’s Bureau); Novartis (Consultant, Speaker’s Bureau); Pfizer (Consultant, Speaker’s Bureau); Sohi (Consultant, Speaker’s Bureau); UCB (Consultant, Speaker’s Bureau); Cynthia E. Kortman, RN, RN, Eli Lilly and Company (Employee, Shareholder); Stephanie de Bono, MD, Eli Lilly and Company (Employee, Shareholder); Run Liao, PhD, Eli Lilly and Company (Employee, Shareholder); Maria Lilia R Piruzelli, MD, Eli Lilly and Company (Employee, Shareholder); Sujatro Chakladar, PhD, Eli Lilly and Company (Employee, Shareholder); Vincent Marconi, MD, Bayer (Consultant, Scientific Research Study Investigator); Eli Lilly (Consultant, Scientific Research Study Investigator); Gilead Sciences, Inc (Consultant, Scientific Research Study Investigator); ViIV (Consultant, Scientific Research Study Investigator).
Table. Primary efficacy endpoint results: first SARS-CoV-2 RT-PCR-positive symptomatic illness - censored at unblinding and/or receipt of any COVID-19 preventive product (full pre-exposure analysis set)

<table>
<thead>
<tr>
<th></th>
<th>AZD7442 (N=2441)</th>
<th>Placebo (N=1731)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>8 (0.2)</td>
<td>17 (1.0)</td>
</tr>
<tr>
<td>RRR (95% CI)</td>
<td>77% (46.0, 90.0)</td>
<td></td>
</tr>
<tr>
<td>P-value</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; RRR, relative risk reduction; RT-PCR, real-time polymerase chain reaction.

The full pre-exposure analysis set included all study participants in the full analysis set (all randomized participants who received at least one dose of AZD7442 or placebo) without prior confirmed SARS-CoV-2 RT-PCR-positive infection.

Conclusion. The primary study endpoints were met: a one-time dose of AZD7442 demonstrated statistically significant protection against symptomatic COVID-19 and was well tolerated. AZD7442 is the first long-acting monoclonal antibody combination that represents a potential new option to augment COVID-19 prevention.

PROVENT funding statement image