Methods. Discharge antimicrobial prescriptions sent to our hospital-operated outpatient pharmacy, reviewed by an infectious disease (ID) pharmacist, and recorded into the REDCap® data collection tool from September 1, 2020 to February 28, 2021 were evaluated retrospectively. Both adult and pediatric patients were included. The primary outcome was to identify the frequency a DRP was identified by an ID pharmacist while reviewing discharge antimicrobial prescriptions. Secondary outcomes included DRP characterization, percentage of prescriptions with interventions, intervention acceptance rate, and the reduction in antimicrobial days dispensed at discharge when interventions to limit treatment duration were accepted.

Results. Of the 803 discharge antimicrobial prescriptions reviewed, at least one DRP was identified in 43% (346/803). The most frequently identified DRPs pertained to treatment duration, drug selection, and dose selection. The most common intervention categories included different antimicrobial duration, antimicrobial discontinuation, and different dose or frequency. At least one intervention was recommended in 42.8% (344/803) of prescriptions. In total, 438 interventions were made and the acceptance rate was 75.6% (331/438). When interventions to reduce the treatment duration were accepted, the median (interquartile range) number of antimicrobial days decreased from 8 (5–10) to 4 (0–5.5) days (P < 0.001).

Conclusion. ID pharmacist review of discharge antimicrobial prescriptions sent to our hospital-operated outpatient pharmacy resulted in identification of DRPs and subsequent interventions in a substantial number of prescriptions.

Disclosures. All Authors: No reported disclosures

42. INSPIRE-ASP UTI Trial: A 59 Hospital Cluster Randomized Evaluation of INtelligent Stewardship Prompts to Improve Real-time Empiric Antimicrobial Selection versus Routine Antimicrobial Selection Practices for Patients with Urinary Tract Infection (UTI)

Shruti K. Gohil, MD, MPH1; Edward Septimus, MD;2 Ken Kleinman, PhD;3 Neha Varma, MPH; Lauren Heim, MPH;4 Syma Rashid, MD5; Risa Raham, PhD;6 William S. Cooper, PharmD;7 Laura E. McLean, MEd;8 Naosse G. Nickolay;9 Robert A. Weinstein, MD10; Taijler R. Averch, BA11; Jeffly Selsel, MPH1; Justin Vinegar, BA1;12 Kenneth Sands, MD, MPH1;12 Mandelkin Cooper, PharmD, PhD1; H. L. Burgess, PharmD, MBA1;12 Julia Moody, MS3; MiaCela H. Coady, MS1; Gilbert F. Rebecca, BA1;12 Kimberly N. Smith, MBA1; Brandon Carver, BA1;12 Caren Spencer-Smith, MS1; Russell Poland, PhD;4 Jason Hickok, MBA1; S. G. Sturdevant, PhD1; Anastasia Weiland, MD1; Abinav Gouda, BS1; Robert Wolf, BS2; Mary K. Hayden, MD, FIDSA, FSHEA, Susan Redd, MD, MSc2; Melinda M. Neuhauer, PharmD, MPH4;11 Arjun Sririvasan, MD1;11 David W. Kubiak, PharmD10; John A. Jernigan, MD, MS12; John A. Jernigan, MD, MS12; Jonathan B. Perlin, MD, PhD, Richard Platt, MD, MSc5; Susan S. Huang, MD, MPH1;11 UC Irvine School of Medicine, Irvine, California;2 Harvard Medical School, Houston, Texas;3 University of Massachusetts, Amherst, Massachusetts;7 HCA Healthcare, Nashville, Tennessee;8 Rush University Medical Center, Chicago, IL;9 Harvard Pilgrim Healthcare Institute, Boston, Massachusetts; Ondine, Nashville, Tennessee;10 NIH, Baltimore, Maryland;11 UC Irvine, Irvine, California;2 University of California, Irvine, Irvine, CA;3 University of Massachusetts, Amherst, Massachusetts;11 University of California, Irvine, Irvine, CA;3 Brigham and Women's Hospital, Boston, Massachusetts;4 University of Virginia, Charlottesville, Virginia;3 University of Massachusetts, Amherst, Massachusetts;13 Centers for Disease Control and Prevention, Atlanta, GA;14 Brigham and Women's Hospital, Boston, Massachusetts;4 University of California, Irvine, Irvine, CA;3 Safety and Healthcare Epidemiology Prevention Research Development (SHEPRD)

Session: P-04. Antimicrobial Stewardship: Outcomes Assessment (clinical and economic)

Background. Implementation of antimicrobial stewardship programs (ASPs) within a post-acute medical system is challenging due to limited resources and missing patient data from transferring facilities. In October 2018, an ASP was established within a 43-hospital system consisting of LTACs and rehabilitation hospitals. Despite the presence of a restricted antimicrobial policy, increased utilization was observed for five restricted antimicrobials. The system ASP committee implemented a multipronged approach to optimize utilization of these five agents. Investigators sought to assess the impact of an antimicrobial intake process on antimicrobial consumption.

Methods. This was a retrospective analysis within a 43-hospital system of LTACs and rehabilitation hospitals, comparing use of five restricted antibiotics before (Jul19-Jun20) and after (Jul20-Apr21) implementation of a data-collection and system review process. An antibiotic intake form and process for review for five restricted antibiotics (ceftriaxone, cefazidime/avibactam, ceflozolane/tazobactam, fidaxomycin, meropenem/vaborbactam) was approved at the system ASP committee. The intake form consisted of a restricted antibiotic form, cultures and susceptibilities, physician notes, and other pertinent data. Any orders for the five antibiotics required completion of an intake form and submission to system ASP members for review and recommendations. Antibiotic consumption was measured in cost per acute patient day (cost/ Pd) using a 2-sided t-test.

Results. Post-implementation, the five restricted antibiotics comprised 29.1% of the total antibiotic expenditure for the healthcare system compared to 35.6% pre-implementation. Ten months after program implementation, the total antibiotic cost/Pd decreased 29.45% ([$120.2 ± 2.29] vs. [$84.18 ± 1.15]; p = 0.0003). The cost/Pd of the five restricted antibiotics decreased 42.52% ([$4.28 ± 1.09] vs. [$2.46 ± 0.99]; p = 0.0005).

Conclusion. Implementation of an antimicrobial intake process within a post-acute medical system resulted in a significant reduction in antibiotic consumption for five targeted antibiotics as well as overall antibiotic expenditure.

Disclosures. All Authors: No reported disclosures

41. Impact of Discharge Antimicrobial Stewardship at an Academic Medical Center

Katie A. Parsels, PharmD1; Wesley D. Kufel, PharmD2; Jeni Burgess, PharmD3; Robert Seabury, Pharm.D.4; Rahul Mahapatra, DO5; Christopher Miller, Pharm.D.,6 Jeffrey M. Steele, PharmD7; Upstate University Hospital, Syracuse, New York;8 Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, New York;9 Upstate Golisano Children’s Hospital, Syracuse, New York; SUNY Upstate University Hospital, Syracuse, NY; State University of New York Upstate, Syracuse, New York

Session: P-04. Antimicrobial Stewardship: Outcomes Assessment (clinical and economic)

Background. The Centers for Disease Control and Prevention estimates approximately 30% of antimicrobials prescribed in the outpatient setting are unnecessary and up to 50% are inappropriate. Despite this, antimicrobial stewardship (AS) efforts mostly focus on the inpatient setting and limited data describe AS interventions at hospital discharge. Potential for discharge AS, we used our existing resources to review discharge antimicrobial prescriptions sent to our hospital-operated outpatient pharmacy to potentially optimize antimicrobial therapy.

Conclusion. A targeted, multifaceted ASP intervention utilizing modified preauthorization, prospective audit feedback, and education significantly reduced antibiotic use in a community hospital.