The Hepatitis C Care Cascade During the Direct-Acting Antiviral Era in a United States Commercially-Insured Population

Nicole D. Ferrante1,2, Craig W. Newcomb2, Kimberly A. Forde3, Charles E. Leonard2,4, Jessie Torgersen2,5, Benjamin P. Linas6, Sarah E. Rowan7, David L. Wyles7, Jay Kostman8, Stacey B. Trooskin5,8, Vincent Lo Re III2,5

1Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
2Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real-World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
3Section of Hepatology, Department of Medicine, Temple University, Philadelphia, PA, USA.
4Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
5Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
6Division of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
7Division of Infectious Diseases, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO, USA.
Philadelphia FIGHT Community Health Centers, Philadelphia, PA, USA.

Keywords

Hepatitis C elimination; hepatitis C monitoring; cascade of care; health claims database; HIV/HCV coinfection

Running Title

Hepatitis C Care Cascade in the DAA era

Corresponding Author

Nicole D. Ferrante, MD
Division of Gastroenterology
Hospital of the University of Pennsylvania
3400 Civic Center Boulevard
PCAM South Pavilion, 7th Floor
Philadelphia, PA 19104 USA
Email: Nicole.ferrante@pennmedicine.upenn.edu
Tel: 469-371-6796

Alternate Author

Vincent Lo Re III, MD, MSCE
Div. of Infectious Diseases
University of Pennsylvania
836 Blockley Hall
423 Guardian Drive
Philadelphia, PA 19104 USA
E-mail: vincentl@upenn.edu
Tel: 267-760-6126
ABSTRACT

Background: Periodic surveillance of the hepatitis C virus (HCV) care cascade is important for tracking progress towards HCV elimination goals, identifying gaps in care, and prioritizing resource allocation. In the pre-direct acting antiviral (DAA) era, it was estimated that 50% of HCV-infected individuals were diagnosed and 16% prescribed interferon-based therapy. Since then, few studies utilizing nationally representative data from the DAA era have been conducted in the United States.

Methods: We performed a cross-sectional study to describe the HCV care cascade in the US using the Optum de-identified Clininformatics® Data Mart Database to identify a nationally representative sample of commercially insured beneficiaries between January 1, 2014 and December 31, 2019. We estimated the number of HCV-viremic individuals in Optum based on national HCV prevalence estimates and determined the proportion who had: 1) recorded diagnosis of HCV infection, 2) recorded HCV diagnosis and HCV RNA testing, 3) DAA treatment dispensed, and 4) assessment for cure.

Results: Among 120,311 individuals estimated to have HCV viremia in Optum during the study period, 109,233 (90.8%; 95%CI, 90.6-91.0%) had a recorded diagnosis of HCV infection, 75,549 (62.8%; 95%CI, 62.5-63.1%) had a recorded diagnosis of HCV infection and underwent HCV RNA testing, 41,102 (34.2%; 95%CI, 33.9-34.4%) were dispensed DAA treatment, and 25,760 (21.4%; 95%CI, 21.2-21.6%) were assessed for cure.
Conclusions: Gaps remain between the delivery of HCV-related care and national treatment goals among commercially-insured adults. Efforts are needed to increase HCV treatment among people diagnosed with chronic HCV infection to achieve national elimination goals.
INTRODUCTION

Over 2 million people in the United States (US) are chronically infected with hepatitis C virus (HCV) (1,2). If left untreated, chronic HCV infection can result in cirrhosis, hepatic decompensation, and hepatocellular carcinoma (3). The availability of 8- to 12-week, all-oral, direct-acting antiviral (DAA) regimens in 2014 changed the paradigm of HCV treatment. DAAs are well-tolerated and highly curative therapies that can reduce HCV transmission, decrease the risk of HCV-associated morbidity and mortality, and eliminate HCV infection (4,5). Recognizing the unique opportunity to cure HCV, the World Health Assembly formulated a global action plan to eliminate HCV as a public health threat by 2030 with the goal of diagnosing 90% of persons with HCV and treating 80% by 2030 (6). In response to this global initiative, the US created its own national action plans (7–9), and in January 2021, developed the Viral Hepatitis National Strategic Plan to provide a framework for HCV elimination in the US by 2030 (10).

The HCV care cascade is a tool used to monitor the delivery of HCV-related care in various settings and is important for monitoring progress toward HCV elimination goals (11,12). Existing US national care cascade data are primarily from the pre-DAA era, during which it was estimated that of the 3.5 million people with chronic HCV infection in the US, 50% were diagnosed and 16% were prescribed interferon (IFN)-based therapy (11,12). Since the introduction of DAA therapy, the US Preventive Services Task Force (USPSTF) has updated their guidelines to recommend universal one-time HCV screening (13), access to the US Medicaid program has expanded (14), and availability of HCV treatment has increased nationally (15,16). Although HCV care cascades have
been reported for various local and state-wide health systems in the US and HCV-related care metrics have been evaluated using administrative claims databases (15,17–22), nationally representative data during the DAA era have been limited. Moreover, data describing the HCV care cascade among people with HIV (PWH) in the US have been limited to single centers (23–25) and interval HIV cohort studies (26,27). Consequently, there is an immense need to describe the current HCV care cascade in the US to identify existing gaps in HCV-related care, promote multi-stakeholder involvement and collaboration, and target the allocation of health resources.

In this study, we utilized the Optum de-identified Clinformatics® Data Mart Database to describe the HCV care cascade within a nationally representative sample of commercially-insured US adults during the DAA era from 2014-2019. During this period, we also describe the HCV care cascade among PWH.

METHODS

Study Design and Data Source
We conducted a cross-sectional study using healthcare claims of adult beneficiaries within the Optum de-identified Clinformatics® Data Mart Database (OptumInsight, Eden Prairie, MN) between January 1, 2014 and May 31, 2020. Optum is a national administrative healthcare database that contains claims data for commercially-insured beneficiaries from a large US insurer that enrolls more than 15 million individuals annually. Optum contains claims data for individuals with both medical and prescription coverage and is ideal for evaluating the HCV care cascade because it: 1) serves as a
comprehensive source of healthcare information for a large group of commercially-insured individuals in the US, 2) includes a population that is geographically diverse, and 3) includes claims for medical diagnoses (recorded using International Classification of Diseases, Ninth or Tenth Revision [ICD-9/-10] codes), procedures (recorded using Current Procedural Terminology [CPT] and Healthcare Common Procedure Coding System [HCPCS] codes), and dispensed drugs (identified by National Drug Codes [NDC]). This study was approved by the University of Pennsylvania institutional review board.

Study Patients

Optum health plan members were eligible for study inclusion if they were at least 18 years of age and had at least 12 months of continuous enrollment between January 1, 2014 and December 31, 2019. Individuals with multiple periods of continuous enrollment were included after meeting the qualifying continuous 12-month minimum.

Main Study Outcomes

The primary outcomes were the proportion of individuals estimated to have HCV viremia in Optum who had: 1) recorded diagnosis of HCV infection (defined as the presence of one hospital or ≥2 outpatient ICD-9/-10 diagnoses of acute, chronic, or unspecified HCV during the study period, which has been shown to have a >88% positive predictive value [PPV] for identifying HCV infection (28,29)); 2) recorded diagnosis of HCV infection and underwent HCV RNA testing (to identify patients potentially linked into HCV care) based on at least one HCV RNA CPT or HCPCS code (which has been shown to have PPVs
ranging between 82-86% for confirmed chronic HCV infection within claims data (30));
3) at least one dispensing for DAA treatment (determined by NDC codes); and 4)
assessment for cure of HCV infection based on HCV RNA CPT or HCPCS code
recorded ≥12 weeks after the end of the DAA regimen’s days’ supply.

Study Data
We collected the following information for the analyses: date of birth, diagnoses of HCV
infection and HIV infection (defined by one hospital or ≥2 outpatient ICD-9/-10
diagnoses of HIV [Supplementary Table 1] (31)), HCV RNA CPT and HCPCS codes
(Supplementary Table 2), and pharmacy claims for DAA treatments determined via
NDC codes (Supplementary Table 3), including dates dispensed and days supplied.
NDC codes were identified using Lexicon Plus (Cerner Corporation: Kansas City).

Statistical Analysis
Primary analysis: Overall HCV care cascade. We estimated the proportion and 95%
confidence interval (Wald interval) for each step of the HCV care cascade within Optum
as follows:
Step 1: Since birth year is a major determinant of HCV prevalence, to estimate the
number of individuals with HCV viremia between January 1, 2014 to December 31,
2019, we first stratified eligible individuals into the following three birth cohorts: 1) born
before 1945, 2) born between 1945 and 1969, and 3) born after 1969 (32). We then
estimated the number with HCV viremia within each birth cohort by multiplying the
number of eligible Optum beneficiaries in that birth cohort by the previously published
HCV prevalence estimate: 0.0021 (0.21%) for those born before 1945, 0.0163 (1.63%) for those born 1945-1969, and 0.0051 (0.51%) for those born after 1969 (32). These prevalence estimates were generated using statistical modeling and multiple data sources, including National Health and Nutrition Examination Survey (NHANES), National Vital Statistics System data, and external literature to capture high-risk populations (i.e., individuals who inject drugs, are homeless, or incarcerated) (32). To accurately estimate the prevalence of HCV viremia in a commercially insured sample, we then additionally adjusted each birth cohort estimate of HCV viremia by a weight that represented the reported prevalence of HCV viremia among persons with private insurance in NHANES 2015-2018 (prevalence=0.59) divided by the prevalence of HCV viremia in the total population in NHANES 2015-2018 (prevalence=0.96) for a weight=0.61 (33). The sum of the estimates of prevalence of HCV viremia in these birth cohorts served as the denominator for calculating the proportions in Steps 2-5.

Step 2: We calculated the proportion of patients with HCV viremia that had a recorded diagnosis of HCV infection between January 1, 2014 and December 31, 2019.

Step 3: We calculated the proportion of patients with HCV viremia that had both a recorded diagnosis of HCV infection and underwent confirmatory HCV RNA testing between January 1, 2014 and December 31, 2019.

Step 4: We calculated the proportion of patients with HCV viremia that were dispensed at least one fill for a DAA between January 1, 2014 and May 31, 2020. We evaluated
for DAA fills through May 31, 2020 to minimize the likelihood of missing dispensed DAA treatments among individuals that may have been diagnosed with HCV toward the end of our study period. If individuals were dispensed more than one treatment course, only the first course was analyzed.

Step 5: We calculated the proportion of patients with HCV viremia that were assessed for sustained virologic response ≥12 weeks after completing DAA therapy (SVR12) between January 1, 2014 and May 31, 2020. We also determined the proportion of individuals who were tested for cure ≥4 weeks after the end of the last DAA prescription’s days’ supply to minimize the likelihood of missing individuals tested for cure within 12 weeks of completing DAA therapy.

Secondary analysis: HCV care cascade among PWH. We described the HCV treatment cascade among PWH. We estimated the number of PWH that had HCV coinfection by multiplying the number of persons diagnosed with HIV by 0.15 (15%), which represented the approximate prevalence of HCV infection among PWH during the study period (34,35). To accurately estimate the prevalence of HCV viremia in a sample of commercially-insured PWH, we additionally adjusted the estimate of HCV viremia among PWH by a weight that represented the prevalence of HCV among persons with private insurance in NHANES 2015-2018 (prevalence=0.59) divided by the prevalence of HCV viremia in the total population in NHANES 2015-2018 (prevalence=0.96) for a weight=0.61 (33). This estimate of the number of PWH who had HCV coinfection served as the denominator for calculating the proportions in steps 2 through 5 above.
RESULTS

Study population. Between January 1, 2014 and December 31, 2019, there were 41,764,118 individuals with any healthcare coverage during the study period, of whom 21,838,227 met inclusion criteria (Figure 1). The study population had a median length of continuous enrollment of 2.7 (interquartile range [IQR]: 1.7-4.2) years. The median age of the sample was 48 (IQR: 32-65) years; 51.5% were female; and 15% were born before 1945, 38.5% were born between 1945-1969, and 46.5% were born after 1969. Of the 21,838,227 beneficiaries who met inclusion criteria, 120,311 (0.55%) were estimated to have HCV viremia based on national HCV prevalence estimates by birth cohort and insurance status. The adult beneficiaries excluded for having <1 year of continuous coverage had a median length of continuous enrollment of 190 (IQR: 91-305) days; median age of 40 (IQR: 26-55) years; 50.0% were female; and 5.8% were born before 1945, 32.3% were born between 1945-1969, and 46.5% were born after 1969.

Overall HCV care cascade. Among the 120,311 adult beneficiaries estimated to have HCV viremia, 109,233 (90.8%; 95%CI, 90.6-91.0%) had a recorded diagnosis of HCV infection, 75,549 (62.8%; 95%CI, 62.5-63.1%) had both a recorded diagnosis of HCV infection and underwent HCV RNA testing, 41,102 (34.2%; 95%CI, 33.9-34.4%) had DAA treatment dispensed, and 25,760 (21.4%; 95%CI, 21.2-21.6%) were tested for SVR ≥12 weeks after completion of their DAA treatment regimen (Figure 2).
Of the 41,102 individuals dispensed DAA therapy, 62.7% (25,760) were tested for SVR ≥12 weeks after completion of their HCV treatment regimen, and an additional 2,747 individuals had HCV RNA testing 4-12 weeks after end of therapy. Among the 41,102 individuals dispensed DAA therapy between January 1, 2014 and May 31, 2020, 54.8% were dispensed sofosbuvir/ledipasvir, 15.6% were dispensed sofosbuvir/velpatasvir, 12.2% were dispensed glecaprevir/pibrentasvir, 9.1% were dispensed sofosbuvir, and 8.3% were dispensed other DAAs; 94.6% were dispensed at least 8 weeks of DAA therapy.

HCV care cascade among PWH. Between January 1, 2014 and December 31, 2019, there were 53,946 PWH identified in Optum, of whom 4,973 (9.2%) were estimated to have HCV coinfection. Among these persons, 3,915 (78.7%; 95%CI, 77.6-79.9%) had a recorded diagnosis of HCV infection, 2,798 (56.3% ; 95%CI, 54.9-57.6%) had both a recorded diagnosis of HCV infection and HCV RNA testing, 1,357 (27.3%; 95%CI, 26.0-28.5%) were dispensed DAA therapy, and 1,001 (20.1%; 95%CI, 19.0-21.2%) were tested for SVR12 (Figure 3).

DISCUSSION

In this study, we identified gaps between the current delivery of HCV-related care and national treatment goals among a commercially-insured US population, with the largest drop-off observed in the treatment of HCV-infected individuals. We also identified similar gaps in the current delivery of HCV-related care among PWH and found that the proportions diagnosed and dispensed DAA treatment are suboptimal for achieving HCV
elimination goals among HIV/HCV-coinfected individuals. Our study highlights multiple opportunities for improving HCV-related care, particularly with regards to treatment of HCV, which is critical for HCV elimination.

In this sample of commercially-insured individuals, we found that the largest gap in HCV-related care was in the initiation of HCV treatment. Despite the availability of highly efficacious and safe DAA regimens, only 34% of adult beneficiaries estimated to have HCV viremia were dispensed DAA therapy. This estimate is similar to the 35% prevalence of DAA treatment initiation recently reported in a separate sample of recipients of private insurance in HealthVerity, a nationwide administrative claims database (36). Our estimates are also similar to several other studies that utilized administrative claims to describe HCV care delivery during the DAA era, with any differences likely due to differences in study design (15,21,30). While our findings reflect an improvement in HCV treatment since the pre-DAA era, they also highlight the critical need to expand treatment access among HCV-infected individuals to meet national HCV elimination goals. Treatment expansion will require eliminating insurer-related barriers to DAA therapy, integrating HCV treatment into primary care settings, and continuing to identify HCV-infected individuals and linking them into care. Lastly, a key target for HCV elimination in the US will be expansion of DAA access and treatment of high-risk populations, such as persons who inject drugs, are incarcerated, or homeless.

We also found that a proportion of health plan members living with HCV remained undiagnosed from 2014-2019. In our study, 91% of individuals estimated to have HCV
viremia had a recorded diagnosis of HCV infection and 63% had both a recorded HCV
diagnosis and confirmatory HCV RNA testing. This is an improvement from the pre-DAA
era when 50% of persons with HCV infection were diagnosed and only 27% completed
confirmatory HCV RNA testing (11). Our findings are consistent with reported increases
in HCV diagnosis seen in previous studies (15,37,38).

We chose to identify health plan members with a recorded HCV diagnosis based on
ICD-9/10 diagnosis codes given the possibility that HCV-infected individuals may have
completed HCV RNA testing out-of-network or prior to our study period. To classify HCV
diagnosis, we used a previously validated algorithm that has been shown to have >80%
PPV for a confirmed HCV diagnosis (28,30,39). We also identified those with a recorded
HCV diagnosis who underwent confirmatory HCV RNA testing to serve as a proxy for
linkage to care. While we were unable to determine the proportion who were truly
viremic given the absence of available laboratory data, we suspect that a high
proportion are viremic in the presence of at least 2 outpatient HCV diagnosis codes. Our
findings are likely reflective of improved HCV screening initiatives, including birth cohort
HCV screening recommendations and use of electronic medical record alerts for HCV
testing. However, continued attention to HCV diagnosis and linkage into care will be
necessary to achieve HCV elimination. To this end, in 2020, the USPSTF and US
Centers for Disease Control and Prevention recommended one-time HCV screening in
all adults (13), but other initiatives such as state-mandated screening and opt-out
screening in acute care settings could further improve HCV diagnosis nationally (40,41).
Because HIV/HCV coinfection represent a high-risk subgroup, we conducted a separate analysis to evaluate the HCV care cascade among PWH in Optum. Despite the increased risk of liver complications among persons with HIV (42), we found that HIV/HCV-coinfected individuals had lower proportions of HCV diagnosis, HCV RNA testing, and treatment than those without HIV. Notably, only 27% of beneficiaries with HIV and HCV coinfection were dispensed DAA treatment through May 2020. It is challenging to make direct comparisons with other studies, since prior analyses were limited to single centers (23–25) and interval cohort studies (26,27). Possible explanations for the low prevalence of HCV treatment initiation might include lower engagement in medical care among PWH, variable access to subspecialty care, and concern for DAA-antiretroviral drug interactions. However, it is possible that we might have inaccurately estimated the prevalence of HCV coinfection, since its prevalence in commercially-insured PWH is unknown; however, we did adjust our estimates for the prevalence of HCV viremia among persons with private insurance (33). Furthermore, we might have incompletely captured HCV treatment if DAAs were obtained outside of their commercial health plan, such as through AIDS Drug Assistance Programs. Our findings underscore the need for further analyses to evaluate the HCV care cascade among PWH, including accurately determining the prevalence of HIV/HCV coinfection nationally and by insurance type.

Our study has several potential limitations. First, we may have inaccurately estimated the prevalence of HCV infection in our sample. We utilized national birth cohort HCV prevalence estimates to estimate the prevalence of HCV infection by birth cohort (32).
Moreover, since high-risk populations with HCV viremia may not be well-represented in our commercially-insured sample, we additionally adjusted the birth cohort estimates of HCV viremia by a weight accounting for the reported prevalence of HCV viremia among persons with private insurance during the DAA era (NHANES 2015-2018) (33). However, if beneficiaries changed insurers or had dual coverage with Medicare, their HCV-related care might not have been captured in Optum.

Second, the use of claims may have resulted in misclassification of HCV or HIV infection. Additionally, the lack of sufficient laboratory testing to confirm HCV viremia among those tested may result in misclassification bias. While historically around 70% of HCV seropositive individuals are viremic, we suspect individuals that have at least 2 outpatient HCV diagnosis codes have a higher likelihood of being viremic.

Third, the low prevalence of HIV infection in our study population makes the HCV care cascade more reliant on knowing the true prevalence of HCV coinfection among PWH. Additional studies are needed to describe the HCV care cascade among PWH in various settings.

Fourth, our results are not generalizable to other populations heavily affected by HCV infection, such as individuals who inject drugs, are incarcerated, are homeless, or are enrolled in state Medicaid programs. To the extent that other large systems such as correctional systems or state Medicaid programs are able to create similar care continua, a more complete picture of HCV treatment in the US could be derived.
Finally, we did not evaluate changes in the care cascade over time given that our study period was 6 years in duration; however, this period represented the initial 6 years of the DAA era.

In conclusion, our findings identified persistent gaps between the current delivery of HCV-related care and national treatment goals. Our study suggests that ongoing efforts are needed to improve HCV-related care and achieve HCV elimination in the US. Periodic evaluation of the HCV care cascade is critical to monitoring national progress towards HCV elimination. Future studies should evaluate the delivery of HCV-related care among patients with Medicaid and within other high-risk populations as well as monitor the delivery of HCV-related care over time.

Financial Support
Funding was not received for the writing of this manuscript.

Potential Conflicts of Interest
CL receives research grant support from the FDA, Pfizer, Sanofi, and John Wiley & Sons and his spouse is an employee of Merck (neither he nor his spouse hold stock in the company). DLW receives research grant support from Gilead. JK receives research grant support from Gilead and Abbvie. SR receives research grant support from Gilead.
Patient Consent Statement

This study did not include factors necessitating patient consent.

34. People Coinfected with HIV and Viral Hepatitis | CDC [Internet]. 2021 [cited 2021 Nov 12]. Available from: https://www.cdc.gov/hepatitis/populations/hiv.htm

Figure 1. Selection of eligible health plan members within the Optum de-identified Clinformatics® Data Mart Database between January 1, 2014 and December 31, 2019.

- 41.8 million beneficiaries (1/1/14-12/31/19)
 - 7.8 million < 18 years of age
- 34 million adult beneficiaries (1/1/14-12/31/19)
 - 12.2 million without ≥1 year of continuous
- 21.8 million adults ≥1 year of coverage (1/1/14-12/31/19)
Figure 2. Hepatitis C care cascade within the Optum de-identified Clininformatics® Data Mart Database between January 1, 2014 and December 31, 2019. The proportion dispensed direct-acting antiviral therapy and assess for sustained virologic response were determined through May 31, 2020.

Bars indicate 95% confidence interval.

Abbreviations: DAA=direct-acting antiviral; HCV=hepatitis C virus; RNA=ribonucleic acid; SVR12=sustained virologic response \geq12 weeks after completing therapy.
Figure 3. Hepatitis C care cascade for people with HIV coinfection within the Optum deidentified Clinformatics® Data Mart Database between January 1, 2014 and December 31, 2019. The proportion dispensed direct-acting antiviral therapy and assess for sustained virologic response were determined through May 31, 2020.

Bars indicate 95% confidence interval.

Abbreviations: DAA=direct-acting antiviral; HCV=hepatitis C virus; RNA=ribonucleic acid; SVR12=sustained virologic response ≥12 weeks after completing therapy.