White Blood Cell Counts, Alcoholism, and Cirrhosis in Pneumococcal Pneumonia

Juliana G. Gardner, Divya R. Bhamidipati, Adriana M. Rueda, Duc T. M. Nguyen, Edward A. Graviss, and Daniel M. Musher

Departments of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas; Medical Care Line (Infectious Disease Section), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas; and Houston Methodist Research Institute, Texas

Background. An elevated white blood cell (WBC) count is a characteristic finding in pneumococcal pneumonia. Very low WBC counts, occurring in some cases, are often associated with overwhelming pneumonia and have been attributed to alcohol-induced suppression of bone marrow. However, a systematic study of neutropenia, leukocytosis, alcohol ingestion, and cirrhosis in pneumococcal pneumonia has not been previously reported.

Methods. Using a database of patients with pneumococcal pneumonia at our medical center, we extracted data on WBC counts at admission, differential counts, alcohol ingestion, and cirrhosis, and related these to 7-day and 30-day mortality.

Results. White blood cell counts were <6000/mm³ in 49 of 481 patients (10.2%) with pneumococcal pneumonia and >25000/mm³ in 40 (8.3%). Mortality at 7 days was 18.4% and 12.5%, respectively, 5-fold and 3-fold greater in patients with WBC <6000 or >25000 than in those with WBC counts between 6000 and 25000 (P < .001). Increased band forms were not associated with a worse outcome (P = .12). Alcohol use and cirrhosis were not associated with WBC counts <6000 (P = .63 and P = .41, respectively).

Conclusions. In a large series of cases of pneumococcal pneumonia, WBC counts <6000 or >25000 correlated significantly with increased 7-day mortality. More than 10% band forms was not associated with a poor outcome. Alcohol abuse was not associated with low WBC or increased mortality. Our findings suggest that greater consideration be given to more intense care for patients with bacterial pneumonia who have very high or very low WBC counts at the time of hospital admission.

Keywords. alcoholism; leukocytosis; neutropenia; pneumonia; white blood cell count.
pneumoniae as the predominant isolate, but without blood culture confirmation.

Electronic medical records were reviewed, and the initial WBC count and differential at the time of presentation were extracted. We determined mortality 7 and 30 days after admission. Patients with leukemia or medication-induced neutropenia were excluded, but we did not exclude patients with cirrhosis, human immunodeficiency virus infection, or other immunocompromising conditions. Alcohol abuse was defined as either a diagnosis of alcoholism or alcohol abuse or the documentation in the medical record of regular consumption of >6 drinks per day at any time during the preceding 2 years. We also included in this category patients who had previously been diagnosed alcohol abusers if the medical record stated more vaguely that, for example, they were now “drinking again.” Cirrhosis was diagnosed based on review of all discharge summaries.

Statistics

Descriptive data were reported as mean ± standard deviation for continuous variables and as frequencies and proportions for categorical variables. Differences across groups were compared using the χ2 test for categorical variables and the unpaired t tests or Kruskal-Wallis test for continuous variables as appropriate. Survival at 7 days and 30 days of different groups of WBC were

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. of Patients</th>
<th>7-Day Mortality</th>
<th>30-Day Mortality</th>
<th>Hazard Ratio</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC <6000</td>
<td>49</td>
<td>18.4%</td>
<td>30.6%</td>
<td>5.66</td>
<td><.001</td>
</tr>
<tr>
<td>WBC 6000-10000</td>
<td>85</td>
<td>5.9%</td>
<td>8.2%</td>
<td>1.49</td>
<td>.50</td>
</tr>
<tr>
<td>WBC 10000-25000</td>
<td>307</td>
<td>3.3%</td>
<td>11.1%</td>
<td>(Reference)</td>
<td></td>
</tr>
<tr>
<td>WBC >25000</td>
<td>40</td>
<td>12.5%</td>
<td>12.5%</td>
<td>(Reference)</td>
<td></td>
</tr>
<tr>
<td>Immature forms ≤10%</td>
<td>412</td>
<td>5.3%</td>
<td>12.4%</td>
<td>(Reference)</td>
<td></td>
</tr>
<tr>
<td>Immature forms >10%</td>
<td>69</td>
<td>10.1%</td>
<td>14.5%</td>
<td>3.59</td>
<td>.23</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>164</td>
<td>9.8%</td>
<td>15.2%</td>
<td>2.08</td>
<td>.06</td>
</tr>
<tr>
<td>Alcohol abuse</td>
<td>105</td>
<td>8.6%</td>
<td>13.3%</td>
<td>1.80</td>
<td>.22</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>27</td>
<td>14.8%</td>
<td>18.5%</td>
<td>3.11</td>
<td>.048</td>
</tr>
</tbody>
</table>

Abbreviations: WBC, white blood cells.

*Compared to patients with 10000-25000 WBC.
depicted using Kaplan-Meier methodology. Univariate and multivariate Cox proportional-hazards models were used to determine the contribution of potential risk factors to risk of death. Results were reported as hazard ratios and 95% confidence intervals. All analyses were performed on Stata, version 13.1 (StataCorp LP, College Station, TX). A P value of <.05 was considered statistically significant.

RESULTS

Our database listed 481 patients with pneumococcal pneumonia. Of these, 49 (10.2%) had WBC counts <6000, 85 (17.7%) had 6000–9999 WBC, 307 (63.8%) had WBC 10 000–24 999, and 40 (8.3%) had WBC >25 000 (Table 2). Overall mortality at 7 days was 6.0%: 18.4% in patients with WBC <6000, and 12.5% in those with WBC >25 000, significantly greater than the mortality of 3.8% in those with WBC counts of 6000 to 25 000 ($P < .001$) (Table 2, Figure 1). At 30 days, mortality remained higher in patients who had been leukopenic at admission, but the difference was no longer significant for those who had had leukocytosis (Table 2).

A high number of early WBC forms was not associated with mortality. Thirty-four patients (7.1%) had 5%–10% bands, and 69 (14.3%) had >10% bands. There was no association between elevated band counts and mortality ($P = .12$). In fact, patients with >30% band forms appeared to have a lower mortality than those with 10%–20%, although small numbers of subjects precluded statistical analysis (Table 3). Alcohol abuse was cited in the records of 12 of 49 (24.5%) patients with WBC counts <6000 vs 93 of 432 (21.5%) in all patients with WBC ≥6000 ($P = .63$). Of 49 patients with WBC counts <6000, 4 (8.2%) had documented cirrhosis, vs 23 of 432 (5.3%) with WBC ≥6000 ($P = .41$). We found a tendency toward increased mortality among alcohol abusers, but even in our large series of cases, this number did not reach statistical significance (odds ratio [OR] = 1.80, $P = .22$) (Table 2). The rate of death in patients with cirrhosis was significantly greater than in those without cirrhosis (14%; OR = 3.11, $P < .05$).

To relate WBC counts to bacteremia, we excluded 35 patients whose blood was not cultured and 18 who had received antibiotics before blood cultures were obtained. In the remaining 428 cases, 23 of 41 with WBC <6000 (56.1%) were bacteremic, significantly higher than the 36.0% of patients with WBC 6000–25 000 ($P = .01$) (Table 4). The incidence of bacteremia in patients with WBC >25 000 (15 of 37; 40.5%) was not greater than in those with WBC between 6000 and 25 000 ($P = .59$). At day 7 of hospitalization, mortality was greater among bacteremic than nonbacteremic patients (16 of 164 [9.8%] vs 12 of 264 [4.5%]; $P = .03$), but this difference was not significant at 30 days (mortality = 15.2% and 12.5%, respectively; $P = .42$). Mean WBC counts in bacteremic and nonbacteremic cases were similar (15 100 per mm3 ± 790 vs 14 500 ± 690, respectively; $P = .45$).

DISCUSSION

The results of the present study show that patients with pneumococcal pneumonia who, at the time of presentation, have WBC counts <6000 per mm3 have a >5-fold increase in the risk of death at 7 days compared with patients whose WBC counts are between 10 000 and 25 000. In the same comparison,
patients with WBC counts $>25,000$ had a >3-fold increase in mortality at 7 days. Somewhat surprisingly, we found no association between elevated band forms and outcome, and, paradoxically, the 7-day mortality actually appeared to decrease with $>20\%$ bands, although the sample size was very small (see Table 3). The high mortality in the 10$%$–20$%$ group could indicate inadequate production of immature forms in some patients with bandemia in response to severe infection. Bacteremia was associated with increased mortality at 7 days but not at 30 days, probably because acuity of the disease caused death initially, whereas complications of the pneumonia were responsible for death at 30 days; others who have reported a lack of association between bacteremia and outcome [13] have focused on 30-day mortality.

Most but not all previous studies have shown that low WBC counts are associated with a poor outcome in patients who have pneumococcal pneumonia (Table 1). An association between extremes of WBC counts and death from pneumococcal pneumonia was noted as long ago as 1917 [14]. However, only a very few studies have provided data together with statistical analysis, and, to our knowledge, no previous study has analyzed the associations among low or very elevated WBC counts and mortality in a single cohort of patients. Some earlier investigators stated that alcohol ingestion is associated with a worse outcome in pneumococcal pneumonia [5, 6, 15], whereas others [9, 10] did not agree. Multivariate statistical analysis was not done in these studies but, in our study, revealed no significant association between mortality and alcohol ingestion. Cirrhosis was associated with >3-fold risk for mortality.

Based on anecdotal reports, earlier investigators attributed low WBC counts in pneumococcal pneumonia to toxic suppression of the bone marrow by alcohol [5, 11]. Perlino and Rimland [12] reported a significant association between alcoholism and WBC $<4,000$ per mm3 in pneumococcal pneumonia. However, the present study with a much larger group of patients failed to confirm this finding: neither alcohol use nor cirrhosis was associated with WBC counts $<6,000$ ($P = .63$ and $P = .41$, respectively). Blot et al [16] developed a leukocyte score based on neutrophil, lymphocyte, and monocyte counts, and they found no association between alcoholism and this leukocyte score, consistent with our findings. In more recent years, suppression of hematopoiesis by cytokines and exhaustion of marrow reserves have been cited as the causes for low WBC counts in sepsis [17], but the presence of large numbers of early forms (bands and metamyelocytes) in the peripheral blood appears to oppose this hypothesis.

Instead, we propose the following hypothesis to explain neutropenia in serious bacterial infections: acute bacterial infection stimulates the release of cytokines, such as tumor necrosis factor-α, interleukins 6 and 8, granulocyte-colony stimulating factor, and CXCL-12, that mobilize the release of mature PMNs and immature forms (bands and metamyelocytes) from bone marrow [18, 19]. Infection also stimulates release of soluble E-selectin [19], triggering the complement cascade and activating vascular endothelium, especially in the lungs, causing intravascular leukostasis and capillary plugging by mature polymorphonuclear leukocytes [20–22]. As a result of these factors, the number of immature forms increases, while the number of circulating mature neutrophils declines. The final outcome depends upon the balance among these factors and the host’s response to them. Some patients with pneumococcal pneumonia who go untreated may initially have elevated WBC counts that then fall as the infection progresses, presumably depending upon the balance among the cytokines that are produced (D. M. M., unpublished observations, 1973–2015 and reference [5]).

CONCLUSIONS

In summary, in this study of a large number of patients with pneumococcal pneumonia, WBC counts that were very low ($<6,000$) or elevated ($>25,000$) correlated significantly with bacteremia and increased mortality. Bandemia was not associated with death. Neither alcoholism nor cirrhosis appeared to be responsible for the neutropenia. These data suggest that more intense care be regularly given to patients with pneumococcal pneumonia, and perhaps any bacterial pneumonia, who have very high or very low WBC counts.

Acknowledgments

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

4 • OFID • Gardner et al