not on hemodialysis. The ASP monitored for appropriate use of vancomycin as well as providing real-time guidance on dosing and serum concentration monitoring. If vancomycin was not indicated or de-escalation was warranted, the physician was contacted for discontinuation or de-escalation. To evaluate the impact of the program, we selected comparable patients from two other medicine units during the same period as the control group.

Results

There were 84 patients in the intervention group and 142 patients in the control group with similar age, weight, and creatinine clearance. The intervention group achieved a 20% reduction in the days of vancomycin use (median days of therapy 4.55 vs. 5.7 days, \(P = 0.001 \)), a higher percentage of patient achieving trough level of 10–20 mg/L (80.65% vs. 71.79%, \(P = 0.0001 \)) and 24-hour AUC >400 mg hours/L (95.16% vs. 74.6%, \(P = 0.001 \)), and a lower number of trough levels per course (1.51 vs. 2.54, \(P = 0.007 \)). The 3-month medication cost savings from the program on these two units was over $6,000.

Conclusion

An ASP supervised program led to a reduction in vancomycin days of therapy, early attainment of optimal exposure, and decreased use of laboratory resources. Moreover, the program lowered the overall healthcare cost.

Disclosures

All authors: No reported disclosures.

230. Characterization of Antibiotic Timeout Program Strategies Across the United States

Doaa Aljibre, PharmD, MSc;2 Caroline Cricco, PharmD;2 Patrick Kinn, PharmD, MPH;1 Kristi Kuper, PharmD, BCPs;1 Lucas T Schulz, PharmD, BCPs (AQ-ID);1 Erin K. McCready, PharmD, BCPs;1 and Michael Postelnick, BPh PharmD AQ-ID;1 1Department of Pharmacy, Northwestern Medicine, Chicago, Illinois; 2Department of Pharmacy, King Abdulaziz Medical City, Jeddah, Saudi Arabia, 3Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois, 4University of Wisconsin Health, Madison, Wisconsin, 5Vizient, Inc., Houston, Texas

Session: 51. Antimicrobial Stewardship: Interventions to Improve Outcomes
Thursday, October 4, 2018: 12:30 PM

Background

An antibiotic timeout (ATO) provides a potential opportunity to improve antibiotic utilization and decrease inappropriate antibiotic prescribing. The CDC and Joint Commission suggest ATO as an antimicrobial stewardship program (ASP) action to support optimal antibiotic use. Unfortunately, little is known about the design and implementation of an ATO. Our primary objective was to describe different ATO models established by hospitals across the United States.

Methods

Data describing ATO strategies and ASP efforts were collected via a Qualtrics survey as a part of a multicenter study conducted by Vizient member hospitals to research the impact of an ATO on various ASP reporting metrics.

Results

Seventy-one hospitals responded to the survey. Twenty (28%) had a formalized ATO. Most institutions utilizing an ATO were community hospitals (60%) and had formalized ASPs (95%). Hospitals with an ATO program trended toward a higher average combined number of ASP physician and pharmacist FTEs than those without a formalized ATO (1.72 vs. 1.2, \(P = 0.28 \)). Prescribers were responsible for the ATO in 40% of programs (N = 8), 30% were pharmacist-led, and the remainder were multidisciplinary. ATOs were most commonly performed daily (75%) as opposed to on select days of the week and targeted patients receiving antibiotics for 72 hours. Electronic medical record (EMR)-based ATOs (where the EMR prompted the responsible person/team to perform the timeout) were used by 14 programs, whereas 4 programs performed ATO manually through chart review. Forty percent of hospitals conducted ATO on all antibiotics and antifungals; 20% included only antibiotics in their ATO. For the remaining 40% of institutions, only select drugs were included in the ATO.

Conclusion

Multiple ATO strategies are used in the United States. Most ATOs are electronic-based, performed at 72 hours of antibiotic therapy, inclusive of all antibiotics, and supported by established ASPs. To our knowledge, this is the largest descriptive study on ATO implementation in the United States.

Figure 1. Distribution of hospital type and duration of ASPs by the presence of ATO

231. Facilitating the Everyday Steward: Impact of Mandatory Antimicrobial Indication/Duration and a 48 Hour Time Out

Ann Wirtz, PharmD;3 Alaina Burns, PharmD;4 Brian R. Lee, MPH, PhD;5 Tammy Frank, RPh, CPhHS;3 Laura Fitzmaurice, MD;1 Richard Ogden, PharmD, MBA, BCPs;3 Brian O'Neal, PharmD, MS, FASHP and Jennifer Goldman, MD, MS;1 Children's Mercy Kansas City, Kansas City, Missouri, 2Health Outcomes, Children's Mercy Kansas City and University of Missouri-Kansas City SOM, Kansas City, Missouri

Session: 51. Antimicrobial Stewardship: Interventions to Improve Outcomes
Thursday, October 4, 2018: 12:30 PM

Background

Required indication/duration and a 48-hour antimicrobial time out are an integral part of antimicrobial stewardship standards; however, limited data are available to demonstrate an effect on antimicrobial use and stewardship practice.

We evaluated the impact of mandatory declared indications/durations along with a 48-hour time out on antimicrobial utilization and antimicrobial stewardship program (ASP) interventions.

Methods

We performed a retrospective evaluation of ASP interventions and antimicrobial use following implementation of mandatory indication/duration at the point of order entry. A 48-hour antimicrobial time out was introduced on the same date. This study was conducted at Children’s Mercy Kansas City, a freestanding pediatric hospital located in Kansas City, Missouri. Data were collected from February 1, 2016 to January 31, 2018. A pre- and postcomparison was performed; interventions were implemented hospital-wide on February 14, 2017. ASP intervention rates were measured. Days of therapy (DOT) per 1,000 patient-days of antibiotics were evaluated. Poisson models were utilized to compare DOT rates pre- and postimplementation, and seasonal decomposition analyses were performed to account for seasonal variability.

Results

A significant decrease in DOT rates was observed in non-ASP monitored antibiotic postimplementation, including cefazolin (39.7 to 36.9; \(P < 0.001 \)), ampicillin (39.9 to 35.7; \(P < 0.001 \)), and clindamycin (38.2 to 35.9; \(P < 0.001 \)). Additionally, a decrease also occurred in ASP monitored antibiotics including ceftriaxone (46.5 to 43.4; \(P < 0.001 \)) and meropenem (8.7 to 6.6; \(P < 0.001 \)). Vancomycin usage was unchanged. Cefepime and piperacillin/tazobactam were excluded due to the impact of drug shortages. ASP intervention rates did not decrease (16.9% vs. 16.8%, \(P = 0.94 \)).

Figure 2. Personnel responsible for conducting ATOs

Disclosures. All authors: No reported disclosures.
