Primary Hodgkin’s disease of the CNS in an immunocompetent patient: A case study and review of the literature

Jim Biagi, Robert G. MacKenzie, Megan S. Lim, Michelle Sapp, and Neil Berinstein

Divisions of Medical Oncology and Hematology (J.B., N.B.), Radiation Oncology (R.G.M.), and Pathology (M.S.L., M.S.), Toronto - Sunnybrook Regional Cancer Centre, Sunnybrook and Women’s College Health Science Centre, University of Toronto, Toronto, Ontario, Canada M4N 3M5

Received 18 April 2000, accepted 19 June 2000.

Address correspondence and reprint requests to Robert G. MacKenzie, Division of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Centre, 2075 Bayview Ave., Toronto, Ontario, Canada, M4N 3M5.

Abbreviations used are as follows: CSF, cerebrospinal fluid; HIV, human immunodeficiency virus.

Hodgkin’s disease with CNS involvement is uncommon, even in the HIV-positive population, and usually occurs in the setting of advanced or recurrent disease. Reports of primary Hodgkin’s disease confined to the CNS are exceedingly rare. We describe a case of primary CNS Hodgkin’s disease in a patient previously treated with 131I for Grave’s hyperthyroidism and review the literature with respect to potential risk factors, management, and treatment outcomes.

Case Study

A 52-year-old right-handed male truck driver developed sudden onset of headache and confusion. He presented to the emergency department 2 days later with mild disorientation and receptive aphasia. Functional inquiry was negative for fatigue, weight loss, pruritis, fever, and night sweats. Physical examination revealed proptosis, but no evidence of peripheral adenopathy or hepatosplenomegaly. Assessment of cranial nerves, power, sensation, and coordination revealed no abnormalities.

Past health included a history of Grave’s hyperthyroidism with ophthalmopathy 4 years earlier. The patient was treated with radioactive iodine at a total dose of 229 mibq (6.2 mCi) administered orally. There was a 40-pack-year smoking history. Medication on admission was limited to l-thyroxine, 0.125 mg per day. Family history was negative for cancer.

Initial investigations revealed a normal complete blood cell count, peripheral blood smear, electrolytes, blood urea nitrogen, creatinine, random glucose, and international normalized ratio. Serum lactate dehydrogenase and erythrocyte sedimentation rate were not performed. A CT scan with contrast of the head revealed a contrast-enhancing 1.0 cm left temporoparietal lesion, with significant edema and mass effect (Fig. 1).
Treatment was initiated in the emergency department with phenytoin and dexamethasone. Craniotomy with tumor resection was performed 2 days later. Two mass lesions measuring $8 \times 6 \times 4$ mm and $2 \times 2 \times 1$ mm were removed without complications. The larger lesion was parenchymal, with the smaller adjacent mass adherent to the arachnoid mater.

Pathologic work-up included histologic and immunohistochemical studies, as well as in situ hybridization for Epstein-Barr virus RNA. The surgical specimen was fixed in 10% neutral buffered formalin and embedded in paraffin, and sections were stained with hematoxylin and eosin. For immunohistochemical staining, commercially available antibodies and the biotinylated-streptavidin horseradish peroxidase technique were used. In situ hybridization for Epstein-Barr virus RNA was performed using the EBER-1 probe (Novocastra Laboratories, Newcastle upon Tyne, U.K.).

Examination of the hematoxylin- and eosin-stained tissue demonstrated a mixed infiltrate composed of lymphocytes, plasma cells, numerous eosinophils, and large pleomorphic malignant cells separated into vague nodules by fibrous tissue. Numerous multinucleated cells with classic features of Reed-Sternberg cells were present (Fig. 2a). Lacunar variants and mononuclear variants were frequently identified. The Reed-Sternberg cells were CD30- (Fig. 2b) and CD15-positive. They were negative for CD45, CD20, and CD3, although the reactive component revealed a mixed infiltrate of T cells and B cells. Reed-Sternberg cells and lymphocytes were negative for Epstein-Barr virus LMP-1 protein and RNA using the EBER-1 probe.

The patient's postoperative course was uneventful, and the dexamethasone was successfully tapered. He achieved full neurologic recovery and was discharged on phenytoin with no documented seizures.

Subsequent staging work-up included a normal bone marrow aspirate and biopsy. A lumbar puncture yielded clear CSF characterized by normal white cell count, normal protein level, and slightly elevated glucose. The CSF was negative for malignant cells. Ultrasound of liver and CT scan of thorax, abdomen, and pelvis revealed no significant abnormality. A whole-body gallium scan was within normal limits. Thyroid ultrasound revealed a small coarse gland with no significant abnormality. HIV testing was negative.

The patient was classified as Ann Arbor stage IEA. Radiation planning was begun 10 weeks after surgery. The target volume included the whole brain and meninges. The patient was treated supine, immobilized in
a plastic shell. A lateral parallel pair was used to deliver a dose of 3000 cGy in 17 fractions to midplane on cobalt-60. The eyes were shielded throughout therapy. A weighted lateral parallel pair was used to boost original sites of gross disease with a margin of 2 cm to a dose of 500 cGy in 3 fractions. Radiation was well tolerated.

Follow-up CT scans at 1, 6, 12, and 20 months post-treatment revealed no evidence of recurrence. At 21 months from completion of radiation treatment, the patient remains well with no evidence of local or systemic Hodgkin’s disease.

Discussion

CNS Hodgkin’s disease has been described in patients with disseminated disease, particularly those with relapse involving extranodal sites (Cutner et al., 1979; Djurovich et al., 1980; Sapozink and Kaplan, 1983). Primary Hodgkin’s disease isolated to the CNS is exceedingly rare (Algers et al., 1981; Wood and Colman, 1973). A review of the literature over the past 50 years reveals only 9 well-documented cases of Hodgkin's disease confined to the craniospinal axis at presentation (Table 1). Tumors have been described as isolated cerebral or cerebellar masses or, less commonly, parenchymal disease with attachment to the dura or bone. In two cases, disease was confined to the dura (Bender and Mayernik, 1986; Nagashima et al., 1980). In one report, the primary CNS lesion was treated 3 months before lung involvement was ultimately discovered (Deckert-Schluter et al., 1998). Other case reports (Bertelsen, 1970; Burstein et al., 1963; Henry et al., 1974; Zimmerman, 1975) provide inadequate diagnostic information or have been reclassified as non-Hodgkin’s lymphoma, an unsurprising finding given the evolving pathologic classification and staging methods over the period of this review.

Patients with immunodeficiency are at increased risk of malignancy, including Hodgkin’s disease (Gatti and Good, 1971; Rabkin et al., 1991). An increased risk of Hodgkin’s disease has been confirmed in those infected with HIV (Hessol et al., 1992; Levine, 1998; Schoeppel et al., 1986; Serraino et al., 1997; Straus, 1997). HIV-infected patients with Hodgkin’s disease are more likely to present with B symptoms, mixed cellularity histology, extranodal involvement, and advanced stage of disease (Carbone et al., 1991; Tirelli et al., 1992). Epstein-Barr virus infection is common in this population, particularly in those aged 50 years and older (Tirelli et al., 1995). Primary CNS malignancies including high-grade non-Hodgkin’s lymphoma and Kaposi’s sarcoma have been associated with the low CD4+ count of HIV infection (Petruckevitch et al., 1999; Rubio, 1994). A similar association has not been established for CNS Hodgkin’s disease. However, as HIV-related Hodgkin’s disease cases accumulate, a propensity for primary CNS involvement may emerge.

Interest in radiation-induced cancers has grown in recent years as the number of long-term survivors has increased. The results of epidemiologic reviews are of particular interest in this case because of the possible relationship between 131I exposure and development of Hodgkin’s disease. A number of population-based studies from the United States and Sweden have examined cancer incidence in patients undergoing diagnostic 131I scans and therapeutic doses of 131I for hyperthyroidism or thyroid cancer. These studies have reported an increased risk of some solid tumors (Goldman et al., 1988; Hoffman et al., 1982) and chronic myeloid leukemia (Shimon et al., 1995; Walgraef et al., 1991). An increase in the incidence of lymphoma or acute leukemia has not been observed (De Vathaire et al., 1997; Hall et al., 1992; Holm et al., 1991). Large population-based reviews have not identified an increase in the relative risk of death from hematopoietic or lymphoreticular malignancy among patients treated with 131I (Franklyn et al., 1998; Ron et al., 1998). The weight of the evidence suggests that 131I exposure is unlikely to be related to the pathogenesis of Hodgkin’s disease in this case.

The optimum management of primary CNS Hodgkin’s disease is not known. The role of chemotherapy is under active investigation in primary CNS lymphoma because of disappointing results with radiotherapy alone (Laperriere et al., 1997; Nelson et al., 1992; Neuwelt et al., 1991).
Chemotherapy is also playing a larger role in the management of localized extracranial Hodgkin’s disease. In current risk-adapted treatment protocols, radiotherapy alone is limited to selected patients with favorable prognostic factors (Gospodarowicz et al., 1992; Specht et al., 1988). Combined modality therapy has been recommended with increasing frequency for patients judged to be at risk of local or distant failure when treated with radiotherapy alone (Abrahamsen et al., 1996; Tubiana et al., 1985).

The reported outcomes following treatment of primary CNS Hodgkin’s disease (Table 1) suggest that the short-term prognosis for these patients is excellent. Seven of 8 evaluable patients remain alive and free of recurrence with follow-up ranging between 6 and 36 months. Although 3 of the 9 reported cases were treated with chemotherapy, there is insufficient data to recommend the routine use of adjunctive intrathecal or systemic chemotherapy without evidence of positive CSF cytology or extracranial extension. It is not clear if whole-brain irradiation is required to prevent intracranial relapse. Conclusions regarding treatment efficacy are clearly limited by small numbers and lack of long term follow-up.

In summary, primary Hodgkin’s disease limited to the CNS is exceedingly rare. The risk factors for this presentation remain undefined. Although follow-up is short, radiotherapy alone appears to provide excellent disease-free survival. Chemotherapy may be reserved for patients with positive CSF, extracranial disease, or subsequent relapse.

References

Cancer 28A, 1841-1846.

