Dietary Electrolyte Balance for Broiler Chickens Under Moderately High Ambient Temperatures and Relative Humidities

S. A. Borges,* A. V. Fischer da Silva,* J. Ariki,* D. M. Hooge,† and K. R. Cummings‡

*Department of Zootecnia, FCAV/UNESP, Rodovia Carlos Tonanni km 05, Jaboticabal, CEP 14870-000, Sao Paulo, Brazil; †Hooge Consulting Service, Inc., 8775 North Cedar Pass Road, Eagle Mountain, Utah 84043-3186; and ‡Church & Dwight Company, Inc., 469 North Harrison Street, Princeton, New Jersey 08543-5297

ABSTRACT Cobb male broiler chicks (1,000) on new litter were used to evaluate effects of dietary electrolyte balance [DEB; Na⁺K⁻Cl, milliequivalents (mEq) per kilogram] under tropical summer conditions. Corn-soybean meal-based mash diets had salt (NaCl) alone or in combination with one or more supplements: sodium bicarbonate (NaHCO₃), ammonium chloride (NH₄Cl), or potassium bicarbonate (KHCO₃). A completely randomized design, with five starter and grower feed treatments (control: 145, then 130 mEq/kg; or 0, 120, 240, or 360 mEq/kg throughout) and four replicate pens (1.5 m x 3.2 m) per treatment (50 chicks per pen), was used. Diets were analyzed for Na, K, and Cl for confirmation. There were no significant (P < 0.05) effects of treatments on mortality or processing parameters. Water intake increased linearly with increasing DEB, giving higher litter moistures and lower rectal temperatures. Blood HCO₃⁻ and pH increased with the highest DEB (360 mEq/kg) causing respiratory alkalosis. The DEB of 240 mEq/kg gave best weight gain and feed conversion ratio, and ideal DEB predicted by regression analyses were 186 and 197 mEq/kg from 0 to 21 d of age and 236 and 207 mEq/kg of feed from 0 to 42 d, respectively. These DEB corresponded to estimated (interpolated) values in predicted optimal 186 to 197 mEq/kg starter of Na 0.38 to 0.40% and Cl 0.405 to 0.39% (K = 0.52%), in 207 to 236 mEq/kg starter, Na 0.409 to 0.445% and Cl 0.326 to 0.372% Cl (K = 0.52%), and in grower Na 0.41 to 0.445%, Cl 0.315 to 0.267% (K = 0.47%).

2003 Poultry Science 82:301–308

INTRODUCTION

The addition of electrolyte salts to broiler chicken diets has been recommended as a way to minimize the deleterious effects of heat stress (Borges, 1997). Intestinal and renal homeostatic regulation attempt to maintain normal body content of electrolytes, and this is generally affected by higher intestinal absorption of monovalent ions than divalent ions within the electrolyte supplements (Teeter, 1997). The “strong ions” Na⁺, K⁺, and Cl⁻ have the greatest impact on acid-base balance or pH of blood and tissues. However, it is important to have the proper dietary ranges and ratios of these monovalent minerals (cations or + charged ions, and anions or − charged ions), without deficiency or toxicity, to meet poultry nutritional demands and achieve the best performance. Acids produced by metabolism (endogenous H⁺) also contribute to the acid-base balance.

The following equation describes situations when the bird has a constant acid-base balance, without either acid or base excess or deficiency:

\[\text{ingested (anions} - \text{cations)} + \text{endogenous H}^+ = \text{excreted (anions} - \text{cations)}. \]

According to Mongin (1981) the physiological acid-base altering effect of dietary Na⁺ + K⁺ − Cl⁻ (mEq/kg) is equal to the difference in excreted anions and cations (excreted anions − cations) plus the production of endogenous acid (endogenous H⁺), plus base concentration in extracellular fluids (BE_{ecf}), sometimes referred to as base excess or alkaline reserves (with the “ecf” referring to “extra cellular fluid”). The optimal dietary electrolyte intake in terms of physiological acid-base balance can minimize the value of BE_{ecf} to zero or near zero. This concept may be written as follows:

Abbreviation Key: DEB = dietary electrolyte balance; mEq = milliequivalents.
The strong ions Na, K, and Cl are important monovalent minerals in broiler chicken feed formulation, with birds requiring an optimal DEB of around 250 mEq (Na\(^+\) + K\(^+\) - Cl\(^-\))/kg of feed. Assuming that the intake of other minerals is constant, then:

\[
\text{ingested}(\text{anions} - \text{cations}) = \text{excreted}(\text{anions} - \text{cations}) + \text{endogenous H}^+ + \text{BE}_{ecf}
\]

Weight gain, feed and water intake, feed conversion ratio, water intake:feed intake ratio, mortality, and litter moisture were evaluated during 0 to 21 d and 0 to 42 d of age. Weight gain was determined by differences in weight between initial and 21 d, and initial and 42 d of age, respectively. Feed intake was calculated from the difference between supplied feed and feed left in each pen. Mortality was calculated from the ratio between total feed intake and weight gain in the period in each pen and was adjusted for mortality (that is, weight gain and feed intake of birds that died were included).

Bell waterers were individually equipped with an independent water supply system made up of a hose and a 5-L container as described by Borges (1997), with water temperature and pH data being collected twice daily between 0600 and 0700 and 1300 and 1400, corresponding to the times of the day when ambient temperatures were the coolest and the warmest, respectively. Maximum and minimum average ambient temperature and relative humidity were monitored on a daily basis.

Water intake per bird was calculated on a weekly basis from the difference between the amount of water supplied and the water that was left by the end of the week, multiplied by the evaporation rate factor, and divided by the number of birds. To measure evaporation, four empty pens were equipped with waterers connected to containers as described above. Evaporation was calculated from the difference in volume between the beginning and end of the period. The water intake:feed intake ratio was calculated by dividing total water intake per bird by total feed intake per bird.

Rectal temperature was monitored on a daily basis starting when the birds were 12 d of age. Two birds were identified per pen for temperature measurement through rectal probe in the morning (0600 to 0700) and in the afternoon (1300 to 1400), corresponding to the coolest and warmest times of the day, respectively.

Mortality percent was calculated by dividing the number of birds that died in the period by the initial number of birds in the pen and multiplying by 100. On slaughter day, birds fasted were for 6 h. Then two birds per pen were weighed live, slaughtered by jugular vein slit (exsanguination), defeathered, eviscerated, weighed dressed, and the carcasses were cut for an evaluation of carcass and parts yield and abdominal fat.

Venous blood samples (1 mL/bird) were collected by brachial vein puncture using sterilized needle in two birds per pen. Whole-blood gas analyses were performed immediately after blood collection using the i-STAT Portable Clinical Analyzer\(^4\) and sensors. The trial design was com-
RESULTS AND DISCUSSION

Air Temperature, Relative Humidity, and Water Temperature

The minimum and maximum average ambient temperatures and relative humidities were 23 and 31°C and 75.5%, respectively, with a peak of 34°C and a minimum of 19°C, thus, proving the exposure of the birds to heat stress. Water temperature and water intake have been shown to be important factors in body temperature regulation in birds, particularly in acute heat challenges. Water temperature varied between 22.5 and 26.9°C and pH from 7.78 to 7.97. The figures found for water temperature (Beker and Teeter, 1994; Macari, 1996; Borges, 1997) and pH (Macari, 1996; Borges, 1997) are very close to those suggested as optimal levels for the maximum performance in birds and probably did not influence the results. The chemical analysis of drinking water showed Na, K, and Cl "traces."
TABLE 2. Performance of broilers fed diets with different dietary electrolyte balances (DEB; Na + K – Cl, mEq/kg) from 0 to 21 d of age under moderately high ambient temperatures

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Weight gain/bird (g)</th>
<th>Feed intake/bird (g)</th>
<th>Feed/gain (g/g)</th>
<th>Water intake (mL/bird per d)</th>
<th>Water/feed (L/kg)</th>
<th>Mortality%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1451</td>
<td>761abc</td>
<td>1,118b</td>
<td>1.470ab</td>
<td>99d</td>
<td>1.858d</td>
<td>3.00</td>
</tr>
<tr>
<td>0</td>
<td>751c</td>
<td>1,119b</td>
<td>1.490a</td>
<td>108c</td>
<td>2.028c</td>
<td>0.50</td>
</tr>
<tr>
<td>120</td>
<td>793ab</td>
<td>1,135ab</td>
<td>1.432b</td>
<td>110f</td>
<td>2.033c</td>
<td>2.00</td>
</tr>
<tr>
<td>240</td>
<td>796a</td>
<td>1,153a</td>
<td>1.449ab</td>
<td>1222</td>
<td>2.220b</td>
<td>1.00</td>
</tr>
<tr>
<td>360</td>
<td>757bc</td>
<td>1,109b</td>
<td>1.466ab</td>
<td>146b</td>
<td>2.756a</td>
<td>1.00</td>
</tr>
<tr>
<td>CV, %2</td>
<td>2.3</td>
<td>1.3</td>
<td>1.6</td>
<td>2.2</td>
<td>1.9</td>
<td>42.4</td>
</tr>
</tbody>
</table>

a–dMeans within a column and having superscripts but lacking a common superscript differ (P < 0.05).

*Control starter diet with salt (NaCl) based on National Research Council (1994) Na and Cl minimums. Other four treatments developed from a common basal feed with NaCl, NaHCO3, NH4Cl, and at highest DEB also KHCO3.

Coefficient of variation of means, CV%. There were four observations per mean.

Data converted to arc sin SQRT (X + 1) for analysis.

intake, and feed conversion was found for those treatments with extreme DEB of 0 and 360 mEq/kg of feed, explaining the quadratic effect found for these parameters across treatments. It should be remembered that the DEB 120 and 240 treatments were not significantly different in 0 to 21 d weight gain so there may actually be a range of optimal DEB levels rather than a single point. In the starter phase, no effect of DEB treatment was found on mortality rates.

Although not shown in Figure 1, feed intake from 0 to 21 d gave a quadratic response (YI FEED = 1,115.54 + 0.36X – 0.0010X2, R2 = 0.81) with maximum inflection point at 176 mEq/kg of diet, estimated (interpolated from Table 1 calculated nutrient values) to correspond with about 0.37% Na, 0.42% Cl, and 0.52% K. From 0 to 21 d, the 120 and 240 DEB levels did not differ in feed intake indicating a possible range of optimal values (Table 2).

Water intake increased linearly with increasing DEB in the diet (YI H2O = 102.7 + 0.104X; R2 = 0.87), probably to quench the thirst caused by increased Na and K intake because blood osmotic pressure in birds is a thirst-regulating factor. On the other hand, diets with high Cl content did not stimulate water intake. Possibly because of the progressive increase in water intake by the broilers and in order to maintain proper plasma osmotic balance, there was necessarily a reduction in dry matter intake capability with the DEB 360 mEq/kg level. This was shown by the relationship between water intake and feed intake, which was linear. That is, as the electrolyte balance in the diet increased, so did the water intake:feed intake ratio. This had a direct impact on weight gain in these broilers. However, the maximum inflection point in the feed intake curve (176 mEq/kg) may be a direct response to Na presence, an indirect response of the greatly increased water intake or both. It is hypothesized, based on these results, that there may be a saturation limit for the cation Na, which cannot exceed 0.37% of the diet (with estimated 0.42% Cl and 0.52% K) for maximum feed intake.

A linear effect of treatments on litter moisture (YLH2O% = 19.935 + 0.04124X, R2 = 0.73) was a consequence of the linear response found for water intake. Beginning with the first week of production, the birds fed diets with 360 mEq/kg had higher litter moisture (Table 5).

Grower Phase (21 to 42 d) and Overall (0 to 42 d)

In the grower period (21 to 42 d), the birds fed diets with DEB 240 showed higher weight gain than DEB 0 or 130 control, and higher feed intake than DEB 0 treatment (Table 3). The mortality adjusted feed conversion value was lower for DEB 240 than DEB 120 or 130 control treatments. Water intake was affected by the electrolyte balance in the diet. Water intake by the birds fed DEB 0 and 120 mEq/kg was essentially the same as that of the control group. Water intake by those birds fed diets containing DEB 360 mEq/kg was greater than that of the other groups. The same response pattern was found in relation to the water intake:feed intake ratio (Table 3).

The results for weight gain, feed intake, and feed conversion, water intake:feed intake ratio and mortality for the 0- to 42-d period are shown in Table 4. The 240 DEB treatment gave significantly higher weight gain, feed intake, water intake, and water:feed ratio and lower feed conversion ratio than the 145 and 130 DEB control and 0 DEB treatments. The 360 DEB treatment significantly
increased feed conversion ratio, water intake, and water:feed ratio compared to the 240 DEB treatment results. No differences in mortality were found between treatments. No differences in mortality were found between treatments.

Quadratic responses were found for 0- to 42-d weight gain, feed conversion (Figure 2), and although not shown, feed intake (Y = FEED = 3.964 + 1.85X – 0.004X^2; R^2 = 0.99), with inflection points at 236, 207, and 255 mEq/kg, respectively. These results are close to those observed by Mongin (1981) and Johnson and Karunajeewa (1985), who found 250 mEq/kg and 180 to 300 mEq/kg, respectively, to be optimum. From 0 to 42 d, there were no significant differences between 120, 240, and 360 DEB levels for weight gain or feed intake, but DEB 240 and 360 did differ in feed/gain (Table 4). This indicates that there may actually be an optimal DEB range rather than a single point for 0- to 42-d weight gain and feed intake.

The discrepancy between feed conversion (207 mEq/kg) and feed intake (255 mEq/kg) optimal DEB points may be due to additional Cl having a feed intake depressing effect, which is beneficial to feed conversion ratio. Sodium bicarbonate added to raise the DEB to the central range of 120 to 240 mEq/kg may have forced some Cl from the birds via the kidneys (because blood Cl would be used to excrete excess Na and would be partially replaced by HCO3 from the diet), thus, partially releasing the inhibition of Cl on feed intake. This relationship deserves further investigation.

Imbalances in electrolyte supplementation can cause inappetence with weight gain reduction and death when compensatory mechanisms are not enough to maintain the acid-base homeostasis (Mongin, 1981). The blood HCO3 levels increased with the highest DEB in the feed (360 mEq), resulting in higher blood pH (Table 6), and, as a consequence, respiratory alkalosis occurred because HCO3, Na, and K had alkalogenic effects on body fluids (Ruiz-Lopez and Austic, 1993). This explains the low performance in these animals. Therefore, special care should be given to feed formulation in order not to use Na levels below 0.15% and above 0.45% or Cl levels above 0.71%. On the other hand, diets with DEB that are very low (for example, close to 0 mEq/kg) may result in metabolic acidosis because the Cl^- anion is readily absorbed by the gut and is acidogenic.

No significant effects of DEB were found on mortality (Table 4), carcass yield, breast, thigh plus leg, back, wing, feet plus head, or abdominal fat (results not shown) in broilers grown to 42 d of age. Carcass moisture was not evaluated.

Water intake depends on several factors, among which are bird age (body weight), ambient temperature, and the amount of electrolyte salts, especially Na or K salts, added...
FIGURE 2. Effect of dietary electrolyte balance (Na + K – Cl, mEq/kg) on predicted weight gain (YWTG) and feed conversion ratio (YFCR) of broiler chickens from 0 to 42 d of age.

FIGURE 3. Effects of different dietary electrolyte balances (Na + K – Cl, mEq/kg) on predicted average daily water intake and weekly litter moisture of broiler chickens from 0 to 42 d of age.

to the feed (Borges, 1997). In this trial, increasing the DEB caused a linear increase in water intake and in the water intake:feed intake ratio (Table 4; Figure 3). The progressive increase in water intake was reflected in increased litter moisture (Table 5; Figure 3). At 1 wk of age, birds that were fed diets with 360 mEq/kg had higher litter moisture, and by the fourth week, litter moisture became more marked, rendering management difficult, and this may have had an adverse effect on performance. The birds fed 240 mEq/kg diets had high litter moisture after the fourth week, but they also had the best weight gain and feed conversion ratio. Water intake increased with age and with DEB level. However, water turnover increased with increasing DEB but decreased with increasing bird age (data not shown).

The stimulus to higher levels of water intake, as well as a higher rate of water exchange in the bird’s body at high temperatures can be beneficial because the increase in water intake cools the birds and reduces mortality in broilers exposed to heat stress (Branton et al., 1986). On the other hand, the higher the level of water intake, the higher its excretion, resulting in litter with higher moisture. Achieving the optimal point in the triad of dietary electrolyte balance, water intake, and litter moisture for commercial broilers seems to be the challenge. The rectal temperatures of broilers were influenced by the DEB in the diets (P < 0.01) and by the collection time, morning vs. afternoon (P < 0.01). In the afternoon, bird temperatures increased regardless of treatments. However, the internal temperatures of the broilers decreased linearly as the DEB increased, and birds that were fed diets with 240 and 360 mEq/kg had the lowest temperatures and smallest body heat variation from morning to afternoon (Figure 4). This may have been a direct result of greater water intake by these birds, supporting the hypothesis that the stimulus to increase water intake is a crucial factor in maintaining livability in the hot months of the year. Presumably, heat dissipation and the efficiency in evaporative heat loss also increased with increased water intake although these effects were not measured. Thus, diets formulated by taking into account the concept of DEB balance can help enable broiler chickens better maintain their acid-base homeostasis and body temperature.

In conclusion, of the five DEB (Na+K–Cl, mEq/kg) levels evaluated in summer using male Cobb broiler chickens 0 to 42 d, started on clean litter, 240 mEq/kg

TABLE 5. Litter moisture of broilers fed diets with different electrolyte balances (DEB; Na + K – Cl, mEq/kg) from 0 to 42 d under moderately high ambient temperatures

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>1 wk</th>
<th>2 wk</th>
<th>3 wk</th>
<th>4 wk</th>
<th>5 wk</th>
<th>6 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>145, 130</td>
<td>12.26<sup>b</sup></td>
<td>16.82<sup>b</sup></td>
<td>19.43<sup>b</sup></td>
<td>31.67<sup>c</sup></td>
<td>25.35<sup>c</sup></td>
<td>32.22<sup>c</sup></td>
</tr>
<tr>
<td>0</td>
<td>15.82<sup>ab</sup></td>
<td>21.65<sup>ab</sup></td>
<td>22.92<sup>ab</sup></td>
<td>29.85<sup>c</sup></td>
<td>29.89<sup>bc</sup></td>
<td>37.18<sup>c</sup></td>
</tr>
<tr>
<td>120</td>
<td>17.17<sup>ab</sup></td>
<td>21.70<sup>ab</sup></td>
<td>22.57<sup>ab</sup></td>
<td>30.93<sup>c</sup></td>
<td>28.63<sup>bc</sup></td>
<td>34.67<sup>c</sup></td>
</tr>
<tr>
<td>240</td>
<td>18.07<sup>ab</sup></td>
<td>21.57<sup>ab</sup></td>
<td>25.51<sup>b</sup></td>
<td>38.82<sup>b</sup></td>
<td>35.14<sup>b</sup></td>
<td>42.41<sup>b</sup></td>
</tr>
<tr>
<td>360</td>
<td>21.40<sup>a</sup></td>
<td>28.13<sup>a</sup></td>
<td>38.43<sup>a</sup></td>
<td>51.39<sup>a</sup></td>
<td>49.40<sup>a</sup></td>
<td>55.45<sup>a</sup></td>
</tr>
<tr>
<td>CV, %<sup>2</sup></td>
<td>9.6</td>
<td>7.9</td>
<td>7.7</td>
<td>8.7</td>
<td>8.2</td>
<td>6.6</td>
</tr>
</tbody>
</table>

^a^bMeans in a column without a common superscript letter differ significantly (P < 0.05).

¹Control with salt (NaCl) as industry standard: starter 145 mEq/kg (0 to 21 d) and grower 130 mEq/kg (21 to 42 d). The other four treatments were developed from a common basal feed plus NaCl, NaHCO₃, NH₄Cl, and at highest DEB also KHCO₃.

²Coefficient of variation of means, CV%. There were four observations per mean.
TABLE 6. Effects of different dietary electrolyte balances (DEB; Na\(^+\)K\(^-\)Cl, mEq/kg) on blood partial pressure of CO\(_2\) (pCO\(_2\)), bicarbonate (HCO\(_3\)), and pH of broilers at 42 d of age under moderately high ambient temperatures

<table>
<thead>
<tr>
<th>DEB (mEq/kg)</th>
<th>Blood pCO(_2) (mmHg)</th>
<th>Blood HCO(_3) (mmol/L)</th>
<th>Blood pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40.75</td>
<td>21.00(^c)</td>
<td>7.32(^b)</td>
</tr>
<tr>
<td>120</td>
<td>44.42</td>
<td>23.75(^{bc})</td>
<td>7.34(^a)</td>
</tr>
<tr>
<td>240</td>
<td>46.42</td>
<td>25.25(^b)</td>
<td>7.33(^b)</td>
</tr>
<tr>
<td>360</td>
<td>42.92</td>
<td>29.00(^a)</td>
<td>7.43(^a)</td>
</tr>
<tr>
<td>CV, %(^2)</td>
<td>27.8</td>
<td>0.57</td>
<td></td>
</tr>
</tbody>
</table>

*Means in a column and without a common superscript letter differ significantly (\(P < 0.05\)).

1These four DEB treatments were developed using a common basal feed plus NaCl, NaHCO\(_3\), NH\(_4\)Cl, and at highest DEB also KHCO\(_3\).

2Coefficient of variation of means, CV%. There were four observations per mean.

** gave the best BW gain and feed conversion ratio (\(P < 0.05\); vs. 0 mEq/kg or 145/130 mEq/kg control, other treatments intermediate). Potassium levels in the diets (0.52% K in starter; 0.47% K in grower) were lower than expected based on U.S. table values because the Brazilian soybean meals were lower in K. Supplementation with sodium bicarbonate (NaHCO\(_3\)) and ammonium chloride (NH\(_4\)Cl), along with salt (NaCl), was used to obtain 240 mEq/kg. Mortality was not affected by DEB treatment.

The predicted optimum DEB levels, based on regression analyses for weight gain and feed conversion ratio, were 186 and 197 mEq/kg from 0 to 21 d and 236 and 207 mEq/kg from 0 to 42 d, respectively. Corresponding optimum dietary Na and Cl ranges were 0 to 21 d, Na 0.38 to 0.40%, Cl 0.405 to 0.39% (K = 0.52%); 0 to 42 d, in starter, Na 0.409 to 0.445%, Cl 0.268 to 0.314% (K = 0.52%); and grower, Na 0.409 to 0.445%, Cl 0.267 to 0.315% (K = 0.47%). Estimates are based on diets supplemented with Na, Cl, and HCO\(_3\) (plus NH\(_4\)). These monovalent mineral levels are higher than those conventionally used in the broiler industry during summer months. The optimal starter feed DEB (0 to 21 d) combined with the optimal grower feed DEB from the 0 to 42 d data analysis would warrant further testing. Regression analyses for the grower period gave inconsistent results.

Water intake increased with bird age and higher DEB, resulting in increased litter moisture and reduced rectal temperature of market age broilers under heat stress. However, there was a limit to electrolyte addition because the high DEB diet with 360 mEq/kg (containing +0.11 to

** FIGURE 4.** Left panel: Morning (AM) and afternoon (PM) rectal temperature (C) of broiler chickens from 12 to 42 d of age when fed diets with different electrolyte balances (Na + K – Cl, Eq/kg) in summer. \(^{a,b}\)Significant differences between AM and PM (\(P < 0.01\)); \(^{a,b}\)Significant differences between treatments (\(P < 0.01\)). Right panel: Change in rectal temperature (C) from morning (AM) to afternoon (PM) by treatments. \(^{a,b}\)Significant differences between treatments (\(P < 0.01\)).
+0.12% K from KHCO₃, as well as increased Na from NaHCO₃, resulted in poor live performance, higher litter moisture, and respiratory alkalosis, as shown by higher blood pH and HCO₃ compared to control birds.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of Mario Tavares Moura, with Quimica Geral do Nordeste (QGN)-Carbonor, Rua Octonal 640, CEP 42810-000, Copec, Caracari, Bahia, Brazil, in translating research materials from Portuguese to English and from English to Portuguese.

REFERENCES

Borges, S. A. 1997. Suplementação de cloreto de potássio e bicarbonato de sódio para frangos de corte durante o verão. Dissertação de mestrado. UNESP, Jaboticabal, Brazil.
Macari, M. 1996. Água na avicultura industrial. FUNEP, Jaboticabal, Brazil.