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Abstract

Background: The serotonergic system has an important impact on basic physiological and higher brain functions. Acute and 
chronic enhancement of serotonin levels via selective serotonin reuptake inhibitor administration impacts neuroplasticity 
in humans, as shown by its effects on cortical excitability alterations induced by non-invasive brain stimulation, including 
transcranial direct current stimulation (tDCS). Nevertheless, the interaction between serotonin activation and neuroplasticity 
is not fully understood, particularly considering dose-dependent effects. Our goal was to explore dosage-dependent effects of 
acute serotonin enhancement on stimulation-induced plasticity in healthy individuals. 
Methods: Twelve healthy adults participated in 7 sessions conducted in a crossover, partially double-blinded, randomized, 
and sham-controlled study design. Anodal and cathodal tDCS was applied to the motor cortex under selective serotonin 
reuptake inhibitor (20 mg/40 mg citalopram) or placebo medication. Motor cortex excitability was monitored by single-pulse 
transcranial magnetic stimulation. 
Results: Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for approximately 60–120 
minutes after the intervention. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS regardless of the 
dosage while turning cathodal tDCS-induced excitability diminution into facilitation. For the latter, prolonged effects were 
observed when 40 mg was administrated. 
Conclusions: Acute serotonin enhancement modulates tDCS after-effects and has largely similar modulatory effects on 
motor cortex neuroplasticity regardless of the specific dosage. A  minor dosage-dependent effect was observed only for 
cathodal tDCS. The present findings support the concept of boosting the neuroplastic effects of anodal tDCS by serotonergic 
enhancement, a potential clinical approach for the treatment of neurological and psychiatric disorders.
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Introduction
Due to its extensive innervation of cortical and subcortical re-
gions, the serotonergic system has a remarkable role from 
basic physiological to higher brain functions (Mann, 1999; 
Ciranna, 2006). Studies in humans and animals have revealed 
a relevant impact of serotonin (5-hydroxytryptamine [5-HT]) on 
neuroplasticity (Bert et al., 2008; Ogren et al., 2008; Kraus et al., 
2017), the basis for the adaptive capacity of the central nervous 
system (Kleim and Jones, 2008). Neuroplasticity mechanisms 
are related to the efficacy of synaptic connections. Synapses 
can strengthen (via long-term potentiation [LTP]) or weaken (via 
long-term depression [LTD]) their efficacy, driven by a stimulus-
dependent increase or decrease in their activity. Animal studies 
showed that 5-HT modulates LTP and LTD, and these effects 
are associated with receptor subtypes, dosage, and duration of 
5-HT receptor activation (Kojic et al., 1997; Kemp and Manahan-
Vaughan, 2005). However, knowledge about serotonergic modu-
lation of neuroplasticity in humans is limited.

The effect of selective 5-HT reuptake inhibitors (SSRI) on 
human brain physiology has been investigated via plasticity-
inducing non-invasive brain stimulation (NIBS) approaches, 
including paired associative stimulation (PAS) (Batsikadze 
et al., 2013a), and transcranial direct current stimulation (tDCS) 
(Nitsche et al., 2009; Kuo et al., 2016). In the past 20 years, the 
mechanistic aspects of tDCS have been largely explored for the 
application in clinical scenarios. tDCS induces neuroplasticity 
non-invasively through the application of low-intensity current 
to the brain (Woods et al., 2016). For standard protocols, albeit 
extensively investigated for the motor cortex, tDCS effects are 
polarity dependent. As a primary effect, anodal tDCS induces 
a neuronal membrane depolarization via subthreshold elec-
trical current, whereas cathodal tDCS induces the opposite ef-
fect by neuronal membrane hyperpolarization (Nitsche and 
Paulus, 2000, 2001). At the macroscopic level, this translates, 
respectively, into enhancement or reduction of cortical excit-
ability (Lefaucheur et  al., 2017). Additionally, sufficient stimu-
lation duration results in calcium-dependent glutamatergic 
plasticity induction as a secondary effect demonstrated by 
pharmacological studies (Nitsche et  al., 2003b, 2004; Martins 
et al., 2019; Mosayebi-Samani et al., 2020). Animal studies indi-
cate that moderate and prolonged intracellular calcium influx 
causes LTD, while a larger calcium influx results in LTP (Lisman, 
2001; Malenka and Bear, 2004). Likewise, LTD can be switched 
to LTP via intensified intervention protocols. Moreover, calcium 
overflow by further intensifying interventions has been shown 
to result in counterregulatory mechanisms preventing LTP 
(Cummings et al., 1996; Lisman, 2001).

Similarly, tDCS after-effects are influenced by calcium dy-
namics (Nitsche et al., 2003b; Mosayebi-Samani et al., 2020) are 
dependent on stimulation parameters (Monte-Silva et al., 2013) 
and, can also be non-linear (Batsikadze et al., 2013b; Mosayebi 
Samani et  al., 2019; Hassanzahraee et  al., 2020). These effects 

likely rely on combined polarization and alteration of spontan-
eous activity (Fritsch et  al., 2010), which is well aligned with 
general plasticity mechanisms in animal models. How tDCS 
specifically interacts with ongoing synaptic activity to induce 
plasticity is still under investigation. Nevertheless, anodal and 
cathodal tDCS are assumed to induce LTP- and LTD-like effects 
(Nitsche et al., 2003b; Kronberg et al., 2017) in humans, and the 
after-effects are associated with N-methyl-d-aspartate receptor 
(NMDAR) and calcium-dependent plasticity of the glutamatergic 
system (Liebetanz et al., 2002). Changes in γ-aminobutyric acid 
(GABA) activity, which is reduced by both cathodal and anodal 
tDCS (Stagg et  al., 2009), are assumed to have a “gating role” 
to trigger glutamatergic plasticity, such that the interaction of 
GABA and glutamate alterations determine the propensity of 
tDCS-induced plasticity (Heimrath et al., 2020).

Due to possible synergistic effects, there is growing 
interest to investigate the association between plasticity-
inducing techniques and pharmacological approaches. It has 
been shown that the enhancement of 5-HT levels by SSRI 
modulates NIBS effects on the motor (Nitsche et  al., 2009; 
Batsikadze et al., 2013a; Kuo et al., 2016) and temporoparietal 
cortex (Prehn et  al., 2017), leading to enhanced facilitatory 
plasticity and improved memory formation in healthy par-
ticipants. More specifically, a single application of 20  mg 
citalopram (CIT) prolonged LTP-like plasticity induced by 
anodal tDCS as well as excitatory PAS, whereas it converted 
the after-effects of cathodal tDCS into excitatory plasticity 
and reduced the inhibitory PAS effect (Nitsche et  al., 2009; 
Batsikadze et al., 2013a). Chronic application of 20 mg CIT re-
sulted in more extended LTP-like plasticity, lasting approxi-
mately 24 hours after anodal tDCS, compared with 4–5 hours 
for a single dose. Furthermore, these effects were abolished 
by dextromethorphan (an NMDAR antagonist), suggesting 
their dependence on NMDA receptor activity (Kuo et al., 2016) 
and stressing the modulatory role of 5-HT on glutamatergic 
plasticity. This synergistic effect of tDCS and SSRI has clin-
ical relevance. The combination of 50 mg sertraline (an SSRI) 
and tDCS in patients with moderate to severe unipolar major 
depression showed a superior impact on major depression 
compared with placebo (PLC) and the respective single inter-
ventions (Brunoni et al., 2013).

Complex dosage-dependent effects of other 
neuromodulators on brain physiology and performance 
in humans have been demonstrated, such as for dopamine 
(Fresnoza et  al., 2014; Chen et  al., 2020). For 5-HT, a dose-
dependent enhancement on motor dexterity and motor 
output (assessed via functional magnetic resonance imaging - 
fMRI) was found after administering 20  mg paroxetine (op-
timal dosage) compared with 60 mg (Loubinoux et al., 2002a). 
However, mechanistic knowledge about the dosage-dependent 
effect of serotonergic enhancement on plasticity in humans 

Significance Statement
This study shows that in healthy humans, acute serotonin enhancement on the motor cortex influences neuroplasticity, the basis 
for the adaptive capacity of the brain, which is reduced in depression and relevant for brain recovery after injury. Citalopram 
enhanced neuroplasticity induced by anodal transcranial direct current stimulation (tDCS), a non-invasive brain stimulation 
tool, largely independently from the administered dosage (20 or 40 mg). Our results provide further insights into boosting the 
effects of anodal tDCS, which is probed as an antidepressant agent, and for the treatment of other brain diseases by serotonergic 
enhancement.
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is not presently available. In this study, we aimed to inves-
tigate dosage-dependent effects of acute 5-HT enhancement 
on motor cortex plasticity in healthy humans. We hypothe-
sized that 20 mg CIT increases and promotes LTP-like plasti-
city induced by anodal tDCS, while it converts the effects of 
cathodal tDCS from LTD- to LTP-like plasticity. Due to stronger 
calcium influx, for the higher dosage of CIT (40 mg), we hy-
pothesized that respective effects might be strengthened or 
converted due to calcium overflow. The results will not only 
provide mechanistic knowledge but may also help fine-tune 
plasticity modulation in the human brain.

Methods

Participants

Twelve healthy individuals (6 females, 27.08 ± 6.58 years old) 
participated in the study. All participants were right-handed 
according to the Edinburgh Handedness Inventory (Oldfield, 
1971), non-smokers, and were examined by a physician to as-
sess health conditions as well as contraindications for NIBS 
and CIT intake. Volunteers with a present or prior neurological 
or psychiatric disease, history of epileptic seizures, substance 
addiction, regular intake of central nervous system-acting 
medication, current pregnancy, cardiac pacemaker, or me-
tallic implants in the head were excluded. This study was con-
ducted according to the Declaration of Helsinki and approved 
by the local ethics committee. All participants gave written 
informed consent before starting the study and were finan-
cially compensated.

Monitoring Cortical Excitability

Motor-evoked potentials (MEPs) were obtained over the left pri-
mary motor cortex by single-pulse transcranial magnetic stimu-
lation (TMS), with a figure-of-8 coil (diameter, 70  mm; peak 
magnetic field, 2 Tesla) connected to a PowerMag stimulator 
(Mag&More, Munich, Germany). Surface electromyography was 
recorded from the right abductor digiti minimi muscle (ADM) 
using Ag-AgCl electrodes in a belly-tendon montage. The op-
timal stimulation position (hotspot) was defined as the site 
where TMS pulses applied with medium intensity resulted con-
sistently in the largest MEP of the right ADM. The coil was held 
tangentially to the skull, with the handle pointing backwards 
at an angle of 45° from the midline. The analog electromyog-
raphy signals were amplified, band pass-filtered at 2 Hz–2 kHz, 
digitized at a sampling rate of 5 kHz (CED, Cambridge, UK), con-
trolled by Signal Software (CED, v.2.13), and stored offline for fur-
ther analyses.

Pharmacological Intervention

CIT in dosages of 20 mg and 40 mg or equivalent PLC medica-
tion was administrated 2 hours before tDCS, immediately after 
determining the first TMS baseline excitability (baseline 1), to 
assure application of tDCS during peak plasma concentration 
(Bezchlibnyk-Butler et al., 2000). CIT inhibits the 5-HT transporter 
and enhances the availability of 5-HT in the somatodendritic 
area of serotonergic neurons and has no or very low affinity to 
other neurotransmitter systems (Stahl, 2013).

tDCS

Low-intensity direct current was applied by a battery-driven DC 
stimulator (NeuroConn, Germany) through a pair of rubber elec-
trodes embedded in 35-cm2 saline-soaked sponges. The target 
electrode was placed over the representation area of the right 
ADM with an angle orientation of 45° from the midsagittal line, 
and the return electrode was positioned above the contralat-
eral supraorbital region (Foerster et  al., 2019). The stimulation 
was applied with 1 mA for 13 minutes (anodal) or 9 minutes 
(cathodal) (Nitsche and Paulus, 2001; Nitsche et al., 2003a), with 
15-second ramping-up and -down of stimulation intensity. For 
sham tDCS, the stimulation was applied for only 30 seconds; 
however, the electrodes remained on the head for 13 or 9 min-
utes (Nitsche et al., 2008).

Experimental Procedures

The study was conducted in a crossover, randomized, sham-
controlled, and partially double-blinded design. Participants 
were blinded for medication and tDCS conditions, and the ex-
perimenter was blinded for the medication. Participants were in-
structed not to consume alcohol for 24 hours and caffeine for at 
least 3 hours before the beginning of the experimental sessions. 
Session starting times were established by the chronotype of 
each participant, evaluated by the Morningness-Eveningness 
Questionnaire Self-Assessment Version. All participants under-
went 7 sessions (Figure 1) with a washout period of at least 1 
week between sessions to minimize carry-over effects.

In each session, participants sat in a comfortable reclining 
chair with head and armrests and were instructed to remain 
relaxed. An inflatable pillow was placed around their necks to 
stabilize the head position. Initially, the motor cortex hotspot 
was identified, and the position of the TMS coil and ADM elec-
trodes was marked with a waterproof pen to guarantee stable 
positions throughout the session. TMS intensity was adjusted 
to elicit a baseline MEP average of 1 mV peak-to-peak amp-
litude (baseline 1). Immediately after obtaining baseline 1, 
participants received the pharmacological intervention (see 

Figure 1. Experimental procedure. Schematic representation of the experimental procedure. In each session, participants were submitted to a combination of 

transcranial direct current stimulation (tDCS) and medication. Citalopram-dependent excitability alterations were monitored before tDCS (baseline 1, 2/3). tDCS after-

effects were monitored via motor evoked potentials (MEPs) recordings immediately after tDCS, every 15 minutes until 30 minutes, every 30 minutes until 2 hours, and 

same-day evening (5–6 hours after stimulation).
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above). A second baseline was recorded 1 hour and forty-five 
minutes after medication intake to monitor the influence of 
the substance on cortical excitability (baseline 2), and, when 
necessary, TMS intensity was adjusted to result in baseline 
MEP amplitudes of 1 mV (baseline 3). After determination of 
baseline 2/3, TMS intensity was kept constant for the post-
tDCS measurements. Thirty MEPs were obtained for each cor-
tical excitability assessment. Next, tDCS was applied 2 hours 
after medication intake. Immediately after tDCS, MEPs were 
recorded at the time points of 0, 15, 30, 60, 90, and 120 minutes 
and 5–6 hours after tDCS (same-day evening [SE]). At the end 
of each session, participants reported the presence or absence 
of adverse effects from tDCS (Brunoni et al., 2011), any add-
itional side effects of medication, and if they thought to have 
received real or sham tDCS.

Data Analysis and Statistics

The presence of adverse effects due to CIT intake and during and 
after tDCS was analyzed by 1-way repeated-measures ANOVAs 
considering medication (20 mg, 40 mg, and PLC) and stimulation 
protocols (anodal, cathodal, and sham), respectively, as within-
subject factor. Blinding was evaluated using a chi-square test 
to assess whether participants could correctly guess the stimu-
lation conditions. Pearson’s correlation was used to investigate 
an association between chronotype scores and MEP amplitudes 
(average of 0–30 minutes after stimulation; early epoch) for all 
conditions.

Individual peak-to-peak MEP amplitudes were first visu-
ally inspected to exclude trials in which muscle activity be-
fore the TMS pulse was present. MEP amplitude means were 
calculated for each time point and for each stimulation while 
medication conditions were separated per participant. For the 
main analysis, post-tDCS measurements were normalized 
to baseline 2 when TMS intensity had not been adjusted; 
otherwise, it was normalized to baseline 3.  Because differ-
ences between baseline measurements may have an impact 
on primary outcome measures, differences between baseline 
MEP amplitudes and baseline TMS intensities (percentage of 
maximal stimulator output [%MSO]) were explored for non-
normalized data. One-way ANOVAs considering “condition” 
(sham+PLC; cathodal+PLC; anodal+PLC; cathodal+CIT20mg; 
anodal+CIT20mg; cathodal+CIT40mg; anodal+CIT40mg) as 
within-subject factor were conducted for baselines 1 and 2/3. 
Then, to explore if CIT and PLC medications had an influence 
on cortical excitability before tDCS application, 2 additional 
2-way repeated-measures ANOVA were calculated with condi-
tion and time (before and post-medication) as within-subject 
factors and MEP amplitudes or TMS intensities as dependent 
variables.

To identify if the intervention combinations had discern-
ible effects on motor cortex excitability compared with the 
sham+PLC combination, a repeated-measures ANOVA was 
performed with condition (7 levels) and time-point (8 levels) 
as within-subject factors and normalized MEPs as the de-
pendent variable. Moreover, to analyze the dose-dependent 
effect of CIT on MEP amplitudes over time, another repeated-
measures ANOVA was calculated considering tDCS polarity 
(anodal and cathodal), substance (CIT 20 mg, CIT 40 mg, and 
PLC) and time-point (baseline and 0, 15, 30, 60, 90, 120 min-
utes, SE) as within-subject factors and normalized MEPs as 
dependent variable. An additional analysis to compensate 
for variability between single measurement time-points was 
conducted for post-stimulation effects pooled into 3 epochs: 

early (0–30 minutes), late (60–120 minutes), and very late 
(SE). A 2-way ANOVA was calculated with condition and time 
epochs as within-subject factors and normalized MEPs as de-
pendent variable. Moreover, 3-way ANOVA was conducted 
considering tDCS polarity, substance, and time epochs as 
within-subject factors and normalized MEPs as dependent 
variable for the pooled data set.

Mauchly’s test of sphericity was conducted, and when 
necessary, the Greenhouse-Geisser correction was applied. 
When the respective ANOVA results showed significances, ex-
ploratory post-hoc Student’s t tests (paired samples, 2-tailed, 
P  <  .05, not corrected for multiple comparisons) were con-
ducted to detect significant differences between baseline 
and tDCS after-effects, and between conditions. All statistical 
analyses were performed with SPSS version 26.0 (IBM SPSS 
Statistics, New York, NY, USA).

Results

All participants tolerated tDCS well, and no significant differ-
ence of side effects was found between the stimulation proto-
cols. The most common and frequently reported side effects 
were mild itching, tingling, burning sensation, and skin red-
ness (supplementary Tables 1 and 2). Also, adverse effects of 
CIT did not significantly differ between dosages and were re-
ported as light to moderate sleepiness, dizziness, fatigue, head-
ache, nausea, and gastrointestinal discomfort, mainly when the 
40-mg dosage was administrated (supplementary Tables 3 and 4).  
No participant dropped out due to adverse effects of tDCS or 
medication. Moreover, we found no significant difference in 
the chi-square test result (χ 2 = 4.015, df = 6, P = .675), suggesting 
that blinding was not compromised (supplementary Table 
5). No significant correlation was found between chronotype 
scores and MEP amplitudes (sham+PLC = r(10) = −0.028, P = .535; 
cathodal+PLC = r(10) = 0.317, P = .842; anodal+PLC = r(10) = −0.06, 
P  =  .424; cathodal+20mg  =  r(10)  =  0.346, P  =  .864); 
anodal+20mg  =  r(10)  =  −0.397, P  =  .10; cathodal+ 
40mg  =  r(10)  =  −0.235, P  =  .231; anodal+40mg  =  r(10)  =  −0.418, 
P =  .088), showing that we successfully controlled for possible 
chronotype- and daytime-dependent plasticity differences 
by establishing the optimal time to start the session for each 
participant.

Comparison of Baseline MEP Amplitudes and %MSO 
Between Conditions

The repeated-measures 1-way ANOVA showed no significant 
differences of MEP amplitude values for baseline 1 (F(6,66) = 0.571, 
η p

2 = 0.049, P = .752) and baseline 2/3 (F(6, 66) = 0.917, η p
2 = 0.077, 

P  =  .489) across all conditions. The repeated-measures 2-way 
ANOVA revealed no significant main effects or interaction 
for the MEP amplitudes between baseline 1 and 2 (condi-
tion: F(6,66)  =  0.961, η p

2  =  0.080, P  =  .458; time: F(1,11)  =  4.789, 
η p

2 = 0.303, P = .051; condition × time: F(6,66) = 0.622, η p
2 = 0.053, 

P =  .712), implying medication did not significantly affect cor-
tical excitability. Likewise, the repeated-measures 1-way 
ANOVA showed no significant differences of %MSO for base-
line 1 (F[3.290,36.191] = 0.966, η p

2 = 0.081, P =  .455) and baseline 2/3 
(F(6,66)  =  1.103, η p

2  =  0.091, P  =  .370) across all conditions. The 
repeated-measures 2-way ANOVA showed no significant 
main effect for %MSO between baseline 1 and 3 (condition: 
F(6,66) = 1.063, η p

2 = 0.088, P = .394; time: F(1,11) = 4.726, η p
2 = 0.300, 

P = .052; condition × time: F[3.539,38.929] = 0.461, η p
2 = 0.040, P = .741). 

Baseline MEPs amplitudes and %MSO are listed in Table 1.
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Effect of CIT on tDCS-Induced Neuroplasticity 
(Overall Time Course)

The repeated-measures ANOVA conducted over all condi-
tions, including sham+PLC, revealed significant main effects 
of condition (F(6,66) = 9.671, η p

2 = 0.468, P <  .001) and time-point 
(F(7,77) = 13.702, η p

2 = 0.555, P < .001) and a significant condition 
× time-point interaction (F(42,462)  =  3.508, η p

2  =  0.429, P  <  .001), 
indicating a difference between real intervention compared 
with the sham+PLC condition. Additionally, the repeated-
measures ANOVA conducted to discern effects of stimulation 
and substance showed significant main effects of tDCS polarity 
(F(1,11) = 8.273, η p

2 = 0.468, P = .015) and time-point (F(2,22) = 14.011, 
η p

2 = 0.560, P <  .001). Significant interactions were revealed for 
tDCS polarity × substance (F(2,22) = 11.404, η p

2 = 0.509, P <  .001), 
tDCS polarity × time-point (F(7,77) = 5.133, η p

2 = 0.318, P < .001), and 
tDCS polarity × substance × time-point (F(14,154) = 5.224, η p

2 = 0.322, 
P < .001), revealing a discernible impact of dosage on tDCS con-
ditions. However, the main effect of substance (F(2,22)  =  2.902, 

η p
2  =  0.209, P  =  .076) and substance × time-point interactions 

(F(14,154) = 1.073, η p
2 = 0.089, P = .386) were not significant (Table 2).

An exploratory post-hoc t test showed that under PLC, com-
pared with respective baseline and sham stimulation, anodal tDCS 
enhanced cortical excitability for up to 120 minutes. In addition, the 
excitability-enhancing effect of anodal tDCS was prolonged until SE 
after stimulation under 20 and 40 mg CIT compared with baseline 
and sham tDCS. For cathodal tDCS, under PLC medication, excit-
ability was decreased for up to 60 minutes compared with baseline 
and sham stimulation. Under both CIT conditions, the SSRI con-
verted the excitability-diminishing effect of cathodal tDCS into fa-
cilitation. For 20 mg CIT, facilitation was extended until 90 minutes 
compared with baseline, and until 120 minutes after stimulation 
compared with sham. Under 40 mg CIT, compared with baseline 
and sham, the effect was prolonged further until SE (Figure 2).

Regarding dose-dependent effects of CIT, post-hoc com-
parisons showed a difference between anodal+PLC and 
anodal+CIT20mg with respect to increased excitability for 
stimulation combined with CIT at SE (P  =  .015). Likewise, the 

Table 1. MEP Amplitudes and Stimulation Intensity (%MSO) Before and After Substance Administration

tDCS Medication

MEP Amplitude (mV) %MSO

Baseline 1 Baseline 2 Baseline 3 Baseline 1 Baseline 3

Sham Placebo 0.97 ± 0.05 0.97 ± 0.13 1.01 ± 0.08 53.25 ± 11.01 53.25 ± 11.01
Anodal Placebo 1.01 ± 0.49 1.06 ± 0.19 1.00 ± 0.07 53.70 ± 7.44 53.58 ± 7.40

CIT 20 mg 0.97 ± 0.06 1.02 ± 0.45 0.97 ± 0.06 53.33 ± 10.31 53.20 ± 10.83
CIT 40 mg 1.00 ± 0.07 1.18 ± 0.36 1.01 ± 0.09 53.79 ± 8.51 53.04 ± 8.62

Cathodal Placebo 1.00 ± 0.84 1.07 ± 0.38 0.97 ± 0.07 52.00 ± 9.65 51.45 ± 9.82
CIT 20 mg 1.01 ± 0.09 1.12 ± 0.24 1.01 ± 0.04 52.33 ± 9.20 51.79 ± 9.15
CIT 40 mg 0.98 ± 0.07 1.19 ± 0.38 1.01 ± 0.08 51.33 ± 10.33 51.04 ± 9.62

CIT = citalopram, MEP = motor evoked potential, %MSO = percentage of maximal stimulator output – the stimulation intensity, mV = milivolts, tDCS = transcranial 

direct current stimulation. 

Baseline 1 refers to the MEP measured at the beginning of each session, baseline 2 refers to the MEP measured 1 hour and 45 minutes after medication intake, and 

baseline 3 refers to the MEP measurement immediately conducted after baseline 2 if transcranial magnetic stimulation intensity adjustment was necessary. Data are 

presented as mean ± standard deviation.

Table 2. Results of Repeated-Measures ANOVAs for Overall and Pooled (Epochs) Data

Factor d.f., error F value η2
p P value

Overall data analysis Condition 6, 66 9.671 0.468 <.001*
Time-point 7, 77 13.702 0.555 <.001*
Condition × time-point 42, 462 3.508 0.242 <.001*
tDCS polarity 1, 11 8.273 0.429 .015*
Substance 2, 22 2.902 0.209 .076
Time-point 7, 77 14.011 0.560 <.001*
tDCS polarity × substance 2, 22 11.404 0.509 <.001*
tDCS polarity × time-point 7, 77 5.133 0.318 <.001*
Substance × time-point 14, 154 1.073 0.089 .386
tDCS polarity × substance × time-point 14, 154 5.224 0.322 <.001*

Pooled data analysis Condition 6, 66 8.559 0.438 <.001*
Epochs 2, 22 10.082 0.478 .001*
Condition × epochs 12, 132 4.424 0.287 <.001*
tDCS polarity 1, 11 8.876 0.447 .013*
Substance 2, 22 2.193 0.166 .135
Epochs 2, 22 10.810 0.496 .001*
tDCS polarity × substance 2, 22 8.075 0.423 .002*
tDCS polarity × epochs 1.350, 14.894# 3.624 0.248 .067
Substance × epochs 4, 44 1.329 0.108 .274
tDCS polarity × substance × epochs 4, 44 8.519 0.436 <.001*

df = degrees of freedom, η 2p = partial eta squared, tDCS = transcranial direct current stimulation.
# = Greenhouse−Geisser correction according to violation of sphericity.
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comparison between anodal+PLC and anodal+CIT40mg demon-
strated enhanced excitability at SE under CIT (P = .042). However, 
CIT 20- and 40-mg conditions did not differ for any time point 
(P >  .05). In addition, post-hoc t tests revealed a difference be-
tween cathodal+PLC and cathodal+CIT20mg, showing an in-
crease of cortical excitability for up to 120 minutes under CIT. 
For cathodal+PLC vs cathodal+CIT40mg, excitability was in-
creased up to SE under CIT. As for the anodal tDCS condition, no 
difference was found between 20 and 40 mg for cathodal tDCS at 
any time point (P > .05). For all analyses, sham tDCS+PLC did not 
result in any significant changes of excitability across all time 
points (P > .05).

Effect of CIT on tDCS-Induced Neuroplasticity 
(Epoched Data)

The repeated-measures ANOVA showed significant main ef-
fects for condition (F(6,66) = 8.559, η p

2 = 0.438, P < .001) and epoch 

(F(2,22) = 10.082, η p
2 = 0.478, P = .001) and a significant condition × 

epoch interaction (F(12,132) = 4.424, η p
2 = 0.478, P < .001). Moreover, 

the ANOVA conducted to specifically explore the impact of CIT 
on epochs revealed significant main effects for tDCS polarity 
(F(1,11)  =  8.876, η p

2  =  0.447, P  =  .013) and epoch (F(2,22)  =  10.810, 
η p

2  =  0.496, P  =  .001), significant tDCS polarity × substance 
(F(2,22) = 8.075, η p

2 = 0.423, P = .002), and tDCS polarity × substance 
× epoch interactions (F(4,44) = 8.519, η p

2 = 0.436, P < .001). However, 
no significant effects were found for substance (F(2,22)  =  2.193, 
η p

2  =  0.166, P  =  .135), tDCS polarity × epoch (F[1.350,14.894]  =  3.624, 
η p

2  =  0.248, P  =  .067), and substance × epoch (F(4,44)  =  1.329, 
η p

2 = 0.108, P = .274).
For anodal tDCS compared with sham, exploratory post-hoc t 

tests revealed that under PLC, cortical excitability was enhanced 
significantly for the early (P  =  .004) and late (P  =  .030) epochs. 
Under both 20- and 40-mg effects, excitability was increased in 
all epochs compared with sham tDCS. In detail, for 20 mg, excit-
ability was enhanced in the early (P < .001), late (P < .001), and 

Figure 2. Averaged motor evoked potentials (MEPs) post-stimulation for all intervention conditions and time points. MEPs were obtained before, immediately after, and 

15, 30, 60, 90, and 120 minutes after transcranial direct current stimulation (tDCS). In addition, MEPs were recorded at same-day evening (SE), which was 5 to 6 hours 

after stimulation. (A) For anodal tDCS, compared with the respective baseline values and sham, cortical excitability was increased under placebo medication (PLC) for 

up to 120 minutes and up to SE under citalopram (CIT), regardless of dosage. Under CIT (20 and 40 mg), the excitability enhancement was larger compared with an-

odal + PLC only at SE. (B) For cathodal tDCS, compared with the respective baseline values and sham, excitability was decreased under placebo medication for up to 

60 minutes. In contrast, under CIT, the excitability-diminishing effect was converted into excitation, and this effect was significant for up to 120 minutes under 20 mg 

and up to SE under 40 mg CIT. Sham tDCS did not change cortical excitability across time. Error bars represent standard error of the mean. Filled symbols represent a 

significant difference of MEP amplitudes compared with the respective baselines. Floating symbols represent significant differences between active and sham stimu-

lation conditions (*) and between active conditions (#) (paired t test, 2-tailed, P < .05).
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very late epochs (P =  .006). For 40-mg CIT, the same pattern of 
results was observed for the early (P < .001), late (P < .001), and 
very late epochs (P  =  .017). For cathodal tDCS compared with 
sham, a decrease of excitability was observed only for the early 
epoch under PLC (P =  .015). For the CIT effect, the excitability-
diminishing after-effects of cathodal tDCS were converted into 
facilitation for the early (P < .001) and late epochs (P = .006) when 
20 mg was administrated and for all epochs when 40 mg was ap-
plied (early: P = .001; late: P = .001; very late: P = .005).

With regard to the dose-dependency effects of CIT, post-hoc 
showed a difference between anodal+PLC and anodal+CIT20mg 
(P  =  .015) and, anodal+PLC and anodal+CIT40mg (P  =  .042) for 
the very late epoch, showing increased excitability for the con-
ditions combined with the substance. However, no difference 
was identified between 20 and 40  mg for any epoch (P  >  .05). 
In addition, post-hoc t tests revealed a difference between 
cathodal+PLC and cathodal+CIT20mg, showing increased cor-
tical excitability for early (P < .001) and late epochs (P = .006) in 
the CIT condition. For cathodal+PLC vs cathodal+CIT40mg, ex-
citability was increased for early (P <  .001), late (P <  .001), and 
very late (P < .015) epochs under CIT. Again, as for anodal tDCS, 
no difference was found between 20- and 40-mg CIT conditions 
for cathodal tDCS in any epoch (P > .05). For all analyses, sham 
tDCS+PLC did not result in significant changes (P > .05) of excit-
ability across epochs (Figure 3).

Discussion

In this study, we investigated the dosage-dependent effects of 
acute 5-HT enhancement on motor cortex plasticity in healthy 
individuals. The results show that acute augmentation of 5-HT 
levels by CIT increased and prolonged the LTP-like plasticity in-
duced by anodal tDCS under both 20-mg and 40-mg dosages. In 
contrast, the LTD-like plasticity induced by cathodal tDCS was 
switched to LTP-like plasticity, and these after-effects lasted up 
to the evening of the intervention day only under the 40-mg 
dosage, showing a dosage-dependent effect for cathodal tDCS.

In healthy humans, the effect of enhancement of 5-HT levels 
alone (Robol et al., 2004) or in combination with tDCS (Nitsche 
et al., 2009; Kuo et al., 2016) on cortical excitability was previ-
ously investigated. Prior studies assessed the effects of 20 mg 

CIT in combination with 1 mA tDCS on motor cortical excit-
ability. Acute and chronic application of CIT with that dosage 
enhanced and prolonged LTP-like plasticity induced by anodal 
tDCS and converted LTD-like plasticity induced by cathodal 
tDCS into facilitation (Nitsche et al., 2009; Kuo et al., 2016). The 
results of the present study not only replicate these effects but 
show that within the dosage range explored, these effects are 
largely similar for lower and higher dosages. Besides, other 
studies with healthy participants demonstrated similar ef-
fects of SSRIs in enhancing visual LTP-like plasticity (Normann 
et al., 2007), memory performance (Prehn et al., 2017), sensori-
motor activation (Loubinoux et  al., 1999), and motor learning 
(Loubinoux et al., 2002a, 2002b, 2005), supporting the excitatory 
and cognition-improving effect of 5-HT.

So far, 7 different families of 5-HT receptors (5-HT1–7) have 
been described in the literature and with the exception of the 
5-HT3 receptor (ligand-gated ion channel), all others are distinct 
G protein-coupled receptors. Given this receptor subtype diver-
sity, it is understandable that under physiological and patho-
logical conditions the specific involvement of each receptor may 
differ (Barnes and Sharp, 1999), and the exploration of their con-
tribution to cortical excitability and plasticity remains a scien-
tific challenge. Nevertheless, the functionality of different 5-HT 
receptors may help to interpret our findings. Animal in vivo and 
in vitro studies have revealed that administration of SSRI and 
5-HT agonists increase LTP (Mori et al., 2001; Ohashi et al., 2002; 
Dale et al., 2014), and, in contrast, LTD induction is inhibited or 
converted into LTP (Kemp and Manahan-Vaughan, 2005), which 
is in accordance with our findings. Further, a general excita-
tory effect of 5-HT on the motor cortex has been suggested by 
genetic or pharmacological manipulation of 5-HT1A receptors 
(Scullion et  al., 2013). This excitatory effect could be partially 
linked to reduced GABAergic interneuron activity accomplished 
by 5-HT1A receptors (Llado-Pelfort et al., 2012), which modulate 
the excitation-inhibition balance in the direction of excita-
tion and thus promote LTP but reduce LTD. Another candidate 
mechanism of action is LTP promotion by 5-HT4 receptor activa-
tion. By increasing calcium influx through NMDARs, it has been 
shown that protein-kinase A  (PKA) regulates synaptic plasti-
city induction (Lau et al., 2009). The amount of PKA-mediated 
phosphorylation increases with neuronal depolarization, which 

Figure 3.  Averaged motor evoked potentials (MEPs) post-stimulation for all intervention conditions and pooled time points (epochs). For anodal transcranial direct 

current stimulation (tDCS), exploratory post-hoc comparisons indicate an excitability enhancement for the early and late epochs under placebo (PLC) medication com-

pared with sham stimulation. Under citalopram (CIT - 20 and 40 mg), compared with sham stimulation, excitability was increased in all epochs, and compared with 

anodal + PLC, CIT combined with anodal tDCS resulted in larger excitability enhancements in the very late epoch regardless of CIT dosage. In contrast, for cathodal 

tDCS, an excitability decrease is observed only for the early epoch under PLC medication compared with sham tDCS. Under 20 mg CIT, the after-effects were converted 

into facilitation up to the late epoch compared with sham and cathodal + PLC conditions. Under 40 mg CIT, compared with sham and cathodal + PLC, the after-effects 

were converted into facilitation for all epochs. Error bars represent standard error of the mean. Floating symbols indicate significant differences between active stimu-

lation and sham (#) and between active conditions (*) (paired t test, 2-tailed, P < .05).
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results in the strengthening of synaptic connections (Schafe 
et al., 1999), and this mechanism is dynamically regulated de-
pending on 5-HT4 receptor activity, as it can either increase or 
decrease GABAA current with a low or high basal PKA level, re-
spectively (Cai et al., 2002; Ciranna, 2006).

In accordance, 5-HT4 receptor agonists have been shown 
to convert LTD to LTP and also prevent depotentiation of LTP 
(Kemp and Manahan-Vaughan, 2005), similar to the results we 
observed for tDCS-induced plasticity. 5-HT2A receptor activa-
tion further regulates NMDAR-dependent plasticity (Joo et  al., 
2015) and increases glutamatergic signaling by augmenting the 
activity of GluN2A-containing NMDAR (Dantsuji et  al., 2019), 
indicating that a change of calcium dynamics can be achieved 
also via this mechanism. Another mechanistic explanation for 
altered tDCS after-effects under CIT is that SSRI reduces mem-
brane potassium conductance via 5-HT2C receptors (Panicker 
et al., 1991), which enhances the amplitude of depolarizing syn-
aptic responses (Gu, 2002) and leads to enhanced LTP-like plasti-
city (in the case of anodal tDCS by an increase of calcium influx). 
In the case of cathodal tDCS, low calcium influx is needed to in-
duce LTD-like plasticity. A respective increase of calcium influx 
induced by 5-HT2C receptor activation might bring calcium con-
centration from the LTD- to LTP-inducing range and thus con-
vert the direction of plasticity (Batsikadze et al., 2013b; Mosayebi 
Samani et al., 2019; Mosayebi-Samani et al., 2020). Considering 
that tDCS effects are NMDAR- and calcium-dependent (Nitsche 
et  al., 2004; Mosayebi-Samani et  al., 2020), these GABA- and 
NMDAR-dependent mechanisms fit well with the known mech-
anisms of plasticity induction by tDCS.

To our knowledge, this is the first study to investigate 
dosage-dependent effects of serotonergic enhancement on 
tDCS-induced plasticity in healthy humans. In our study, we 
found a minor dosage-dependent effect only for cathodal tDCS. 
For anodal tDCS, we did not observe a further enhancement of 
LTP-like plasticity induced by tDCS compared with 20 mg, prob-
ably showing that with the dosages used, we were in a dosage 
window of relatively homogeneous effects. This does not ex-
clude non-linear effects, including bell-shaped effects, with 
larger dosages, which are, however, beyond therapeutic dosages 
and also difficult to achieve in humans because of side effects. 
Late and longer-lasting facilitatory effects of higher dosages of 
5-HT was demonstrated in slices (Huang and Kandel, 2007), and 
enhanced LTP induction was also observed by higher dosages 
of a 5-HT1A/7 agonist in vivo (Klancnik et al., 1989; Orban et al., 
2013). Likewise, a bell-shaped modulation of 5-HT1A receptor 
agonists on neuronal excitability was shown in vivo; here, the 
facilitatory effect was reduced under high dosages (Llado-Pelfort 
et al., 2012). Additionally, a behavioral study in animals showed 
improved memory consolidation when a medium-dosed 5-HT7 
agonist was applied, while both low and high dosages had no 
effect on performance (Meneses et al., 2015). Such non-linear ef-
fects were also observed in healthy humans, where 20 mg and 
60 mg of paroxetine were administrated to investigate the ef-
fects of 5-HT on primary sensorimotor cortex activation using 
fMRI. The optimal dosage for sensorimotor activation was 20 mg, 
suggesting an inverted-U dose–response curve (Loubinoux et al., 
2002b). These heterogeneous results, compared with the results 
of the present study, may be due to the specific SSRI applied, 
since paroxetine acts also on cholinergic and noradrenergic sys-
tems, while CIT is a more selective SSRI (Perna et al., 2001). Also, 
the higher dosage applied in the present study might not have 
been sufficient to observe non-linearities.

Both SSRIs and tDCS have been proposed to have improving 
effects on cognition and behavior. SSRIs are well-known 

pharmacological interventions for treatment of neurological 
and psychiatric disorders (von Wolff et  al., 2013), and their 
neurogenesis- and plasticity-enhancing effects are related to 
the improvement of clinical symptoms (Kraus et  al., 2017). In 
addition, there is a growing body of evidence for therapeutic 
tDCS-induced plasticity for treatment of cognitive impair-
ment (Meinzer et al., 2015; Antonenko and Floel, 2016; Im et al., 
2019), and neurological and psychiatric disorders (Meron et al., 
2015; Sampaio-Junior et  al., 2018; Lindenmayer et  al., 2019). 
Serotonergic enhancement and tDCS are used as treatment ap-
proaches in various diseases to reduce symptoms and enhance 
rehabilitation, and considering that plasticity is impaired in pa-
tients with depression (Normann et al., 2007; Grimm et al., 2008; 
Noda et al., 2018), one important mechanistic foundation is re-
instalment/enhancement of plasticity.

Due to synergistic effects of 5-HT and tDCS on plasticity, the 
option to boost plasticity and functional outcomes by combin-
ation of SSRI and tDCS gained increasing attention in the past 
years. In patients with major depressive disorder, SSRI (50 mg 
sertraline) combined with anodal tDCS over the dorsolateral pre-
frontal cortex was superior compared with SSRI or tDCS alone 
(Brunoni et al., 2013; Padberg et al., 2017). This synergistic effect 
might not be limited to the treatment of depression. In a case 
report, bilateral prefrontal cortex tDCS combined with sertraline 
in obsessive compulsive disorder was efficient for improve-
ment of anxiety and obsessive compulsive symptoms (Palm 
et  al., 2017). Furthermore, in healthy young and older partici-
pants, CIT (20 mg) combined with anodal tDCS applied over the 
right temporoparietal cortex improved immediate memory per-
formance (Prehn et al., 2017). These results are preliminary but 
promising concerning combined brain stimulation and pharma-
cological approaches for clinical application. In connection, 
our findings suggest that CIT up to 40 mg, as applied in clinical 
practice, combined with tDCS results in LTP-like plasticity en-
hancement. Our findings encourage future studies to investigate 
the role of 5-HT augmentation combined with tDCS also for a 
broader range of symptoms, which might profit from plasticity 
enhancement, including cognitive and motor rehabilitation.

Some limiting aspects need to be considered for interpreting 
the results of the present study. Our sample comprised young 
healthy adults, and thus, these results cannot be completely 
extrapolated to clinical populations and older age groups. In 
addition, we did not adjust the medication dosage to the body 
weight or body mass index, which may potentially increase 
variability and blur dosage-dependent differences. Although 
even in clinical practice dosages are typically standardized, 
it might be advantageous to account for body composition 
as well as substance serum concentration in future research. 
Single-dose application might additionally face limitations 
regarding the investigation of the effects of serotonergic en-
hancement on plasticity. Interestingly, however, the available 
evidence for acute and chronic application of CIT (20 mg) com-
bined with tDCS shows quite similar results: CIT increased 
and prolonged facilitatory plasticity induced by anodal tDCS 
and converted inhibitory plasticity induced by cathodal tDCS 
into facilitation in both applications. The main difference be-
tween acute and chronic substance administration on cor-
tical excitability was the duration of the effects (Nitsche et al., 
2009; Kuo et  al., 2016). Moreover, the assessment of specific 
receptor subtypes as 5-HT1A, linked to the antidepressant ef-
fects of SSRIs (Lucas et al., 2007), and 5-HT4, associated with 
learning and memory (Hagena and Manahan-Vaughan, 2017; 
Murphy et  al., 2019), might provide more specific mechan-
istic information in future studies. Finally, the combination of 
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physiological measures and functional effects such as motor 
learning may help transfer research results from healthy indi-
viduals to patients and should be explored in detail by future 
studies.

This study confirms that acute 5-HT enhancement affects 
neuroplasticity in healthy humans. CIT enhanced LTP-like plas-
ticity induced by anodal tDCS largely independently from the 
administered dosage. In contrast, a partially dosage-dependent 
effect was found for the impact of CIT on cathodal tDCS-induced 
LTD-like plasticity. Here, CIT converted LTD- into LTP-like plas-
ticity under both dosages, but the effect lasted for several hours 
only under the higher 40-mg dosage.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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