anxiety, depression and loneliness. In model a, the indirect effect of cognitive reappraisal on psychological quality and loneliness accounted for 6.5% of the total effect. In model B, the indirect effects accounted for 2.3%, 5.1% and 7.8% of the total effects respectively. Irrational design thinking refers to the way of thinking of art design, which deliberately breaks the rationality of thinking and makes the design interesting. The applied teaching mode of applying artistic thinking to the actual market work should be based on the actual working process of the enterprise. The project work simulation teaching combines the requirements of educational psychology for students' progressive knowledge with the open knowledge points of art to cultivate technical application-oriented talents with innovative design thinking.

Conclusion: As a form of thinking, irrational design thinking is closely related to fashion design. People can inspire and promote each other with different ways of thinking, which is the necessary thinking quality of innovative talents. We can fully understand the role of irrational thinking in garment fabric design and consciously strengthen the cultivation of irrational thinking ability, which can not only further improve the knowledge structure and broaden thinking, but also fully release the spirit of innovation and improve learning ability. In short, we should give full play to the important role of irrational factors in design elements, actively pay attention to the changes of students' psychological emotion and behavior, the changes of students' ability, the impact of students' psychological emotion and behavior on classroom learning effect and healthy behavior, and be good builders, managers, coordinators and collaborators of design methods. According to the psychological characteristics of these groups, we should actively and flexibly organize rich activities, strive to create a relaxed and harmonious living atmosphere, create a friendly and mutually beneficial teaching relationship, encourage and guide these groups, adjust their psychology and adapt to the new environment.

Acknowledgement: Research on the Development and Application of Recycled Textile Products Based on Public Commercial Space (Supported by the Project of Excellent Young Innovative Talents Training Program of Guangdong General Universities, Project No. 2018GWQNCX069, Li Wenjuan).

EFFECTS OF INTERMITTENT HYPOXIA EXPOSURE ON LEUKOCYTE COUNT AND ANXIETY IN EXERCISE-INDUCED HYPOHEMOGLOBIN RATS
Qun Yu1; Liping Wang1; Wei Fang1; Xiuxian Weng1; Wentao Lin1; Haroon Rashid1

1 College of Sport, Yancheng Normal University, Yancheng, Jiangsu 224000, China, 2 College of Exercise and Health, Guangzhou Sport University, Guangzhou, Guangdong 510000, China 3 Department of Structures & Environmental Engineering, University of Agriculture, Faisalabad 38000, Pakistan

Background: Hypoxia training is an effective method and tool widely used in sports training. Altitude training (hypoxia training) has been widely used by athletes to improve their aerobic capacity. Hypoxia can induce gene expression regulated by hypoxia inducible factor (HIF), then stimulate the production of erythropoietin (EPO), and finally promote the synthesis of hemoglobin. In the process of hypoxic training, the body is under the dual stimulation of hypoxic environment and exercise, which has a significant impact on peripheral blood immune cells, while high-intensity incremental load exercise in hypoxic environment will greatly change the level of psychological stress. To study the effects of intermittent hypoxic stimulation on leukocytes and psychological stress in exercise-induced low hemoglobin rats, so as to provide reference for the selection of high-intensity hypoxic training mode.

Participants and Methods: 60 6-week-old healthy male SD rats underwent 6-week incremental load running to establish exercise-induced low globulin model. Rats in each group were exposed to hypoxia for 1 hour, 2 hours and (1 + 1) hours at intervals of (1 + 1) hours and (1 + 1) hours in the atmospheric hypoxia chamber. In the artificial atmospheric anoxic environment, the anoxic concentration is controlled at about 14.5%. In addition to intermittent hypoxic exposure, rats were free to move in an additional compartment normoxia environment for 6 days per week for 3 weeks. After 3 weeks, the erythrocyte (RBC), hemoglobin (HB), erythrocyte pressure (HCT), total leukocyte (WBC), neutrophil (neut), lymphocyte (lymph), monocyte (mono), eosinophil (acidophil) and basophil (basophil) counts of exercise-induced hemoglobin hypoglobulin rats were measured, and the stress state of rats was observed and compared with that of normoxia recovery group. At the same time, there is a very significant positive correlation between state anxiety and trait anxiety. The anxiety component of mouse characteristics plays an important role in the generation of foreign language learning anxiety. Studies have shown that rat anxiety and activity efficacy can be used as comprehensive variables to measure rat state.

Results: After 1 hour, 2 hours and (1 + 1) hours of hypoxia exposure, the levels of hemoglobin, erythrocyte and HCT in the recovery group were significantly higher than those in the normoxia recovery group (P < 0.05, P < 0.01), and the leukocyte count in the hemoglobin inhibition model group was significantly lower than that in the control group (P < 0.01). Comparing three different hypoxia exposure modes, the (1 + 1) hour hypoxia exposure recovery group was more effective in preventing exercise-induced hypohemoglobin. Among the three types of hypoxia exposure, the leukocyte count in the 2-hour hypoxia exposure recovery group was significantly lower than that in the normoxia recovery group (P < 0.05), and there was no significant difference among other groups (P > 0.05). Except that there was no significant difference between the pre-test (M = 3.139, SD = 0.858) and post test (M = 3.750, SD = 0.996) scores of the “self-efficacy dimension of feeling positive emotions”, the subjects in the experimental group were pre-test (M = 3.250, SD = 0.684) and post test (m = 4.333, SD = 1.172) and pre-test (M = 2.528, SD = 0.540) and post test (M = 3.278, SD = 1.099) of the “self-efficacy dimension of feeling positive emotions” There were significant differences in the pre-test (M = 2.778, SD = 0.770) and post-test (M = 3.278, SD = 1.099) and the total score of emotion regulation self-efficacy (M = 35.083, SD = 5.931) and post-test (M = 43.917, SD = 8.806), and the post-test score was significantly higher than the pre-test score. That is, through intervention training, the scores of subjects in these dimensions have been significantly improved.

Conclusion: Hypoxia exposure can promote erythropoiesis and help to recover from exercise-induced hypoglycemia, while low-dose intermittent hypoxia exposure has little effect on immune function, and multiple low-dose hypoxia exposure has little effect on the level of psychological stress. The research results can be applied to the practice of sports training and improve the performance of sports training. Its mechanism needs to be further studied.

Acknowledgements: Supported by the Science and Technology Fund of Guizhou Province (No. LKA 201807).