THE EFFECT OF TRADE ON THE DEMAND FOR SKILL: EVIDENCE FROM THE INTERSTATE HIGHWAY SYSTEM

Guy Michaels*

Abstract—The advent of the U.S. Interstate Highway System provides an interesting experiment, which I use to identify the labor market effects of reduced trade barriers. This highway network was designed to connect cities and border crossings to serve national defense, and as an unintended consequence it crossed many rural counties. I find that these counties experienced an increase in trade-related activities, such as trucking and retail sales. By increasing trade, the highways raised the relative demand for skilled manufacturing workers in skill-abundant counties and reduced it elsewhere, consistent with the predictions of the Heckscher-Ohlin model.

I. Introduction

The effect of reducing global trade barriers on inequality has been the subject of intense debate (Freeman, 2004). In a two-factor Heckscher-Ohlin (H-O) model with two economies, the removal of trade barriers favors high-skilled workers in the skill-abundant developed world and low-skilled workers in the less-developed world. But recent work challenges the applicability of the H-O framework for the analysis of the labor market consequences of trade. We therefore have no consensus regarding the effect of trade on the relative demand for skilled labor.

The principal empirical challenge in assessing the general equilibrium effect of international trade on labor demand is identification. Recent work estimates the effects of trade liberalization (Attanasio, Goldberg, & Pavnik, 2004) and exchange rate shocks (Verhoogen, 2008) on labor demand in developing countries. While these case studies are informative, they may be insufficient to determine the effect of removing trade barriers on the demand for skill. First, the consequences of trade liberalization depend on the distribution of industrial protection, while exchange rate shocks affect exporters and importers in opposite ways. Second, governments that liberalize trade or face rapid currency devaluation may affect labor markets directly. Finally, current pervasive skill-biased technical change may also change the demand for skill. Taking a different approach, Borjas, Freeman, and Katz (1997) use factor-content analysis to estimate the effect of trade on wages. But as Panagariya (2000) shows, these calculations rely on a fairly restrictive set of assumptions. To better understand the effect of trade on the demand for skill, we require exogenous variation in trade barriers that affects a wide range of industries and allows us to control for other concurrent changes in the labor market equilibrium.

In this paper, I use the advent of the United States Interstate Highway System as an interesting policy experiment to estimate the effect of reducing trade barriers on the demand for skill. The construction of the Interstate Highway System began after funding was approved in 1956, and by 1975 the system was mostly complete, spanning over 40,000 miles. The highways were designed to address three policy goals. First, they intended to improve the connection between major metropolitan areas in the United States. Second, they were planned to serve U.S. national defense. And finally, they were designed to connect with major routes in Canada and Mexico. As a consequence—but not an objective—many rural counties were also connected to the Interstate Highway System. Rural counties crossed by the highways experienced an exogenous reduction in barriers to trade, providing an opportunity to examine how product market integration affects relative factor demand.

In order to document the effect of these reduced trade barriers, I put together several pieces of evidence. First, I show that large trucks used the rural interstate highways much more intensively than other types of vehicles. Second, as the highway construction was being completed, the trucking industry grew rapidly, and trucks became the primary mode of shipping goods within the United States; moreover, most of the value shipped by truck was transported across state boundaries, and therefore between counties. Finally, I find that highways increased trucking income and retail sales by about 7%–10% per capita in rural counties they crossed, relative to other rural counties. Although there are no data on trade flows between counties, this evidence suggests that rural highway counties did take advantage of the reduced barriers to increase their trade.

Received for publication July 18, 2006. Revision accepted for publication July 16, 2007.

* Department of Economics, LSE.

I am grateful to Daron Acemoglu and Joshua Angrist for their many helpful suggestions. I also thank David Autor, Emek Basker, Esther Duflo, Oded Galor, Todd Gormley, Michael Greenstone, Elhanan Helpman, Alan Krueger, Victor Lavy, Yona Rubinstein, Peter Schott, Manuel Trajtenberg, and seminar participants at Boston University, Brown, ESWC 2005, Federal Reserve Board of Governors, Harvard, Hebrew University, LSE, MIT, Northwestern Kellogg, NBER Summer Institute, Oxford, Princeton, Tel Aviv University, UCLA Anderson, and Yale SOM for their comments. Special thanks are due to Fred Gey and Richard Weingroff for providing key data sources and to Lisa Sweeney and Daniel Sheehan for their advice on the use of GIS.

1 The H-O model cannot fully explain recent changes in worldwide labor demand (Krugman, 1995; Berman, Bound, & Machin, 1998). Against this backdrop, theoretical work suggests that reduced trade barriers may increase the demand for skilled labor even in economies with a low skill endowment (Feenstra & Hanson, 1996; Acemoglu, 2003; Kremer & Maskin, 2003; Matsuyama, 2007; and Antras, Garicano, & Rossi-Hansberg, 2006).

2 An extensive literature, dating back to Fogel (1964), examines the effects of transportation infrastructure on growth. Of this literature, my approach is closest to Chandra and Thompson (2000), who estimate the effects of the Interstate Highway System on growth in rural counties.

3 Horiba and Kirkpatrick (1981), Davis et al. (1997), and others use within-country variation in factor endowments to test various predictions of the Heckscher-Ohlin framework. But this literature has not identified exogenous variations in regional factor endowments or in trade barriers.
In order to guide the empirical investigation of the effect of reduced trade barriers on the demand for skill, I use a version of the H-O model. Despite its limitations in explaining recent changes in labor demand, the H-O model remains an important part of trade theory, and it is useful to test it in a setting that provides plausible identification. This paper considers the predictions of a two-factor H-O framework both with and without factor-price equalization, and discusses an extension that allows for endogenous labor mobility. I also document that there are large differences in human capital abundance between the different rural counties in the United States, and this variation can be used to test the H-O predictions.

To test these predictions, I interact the variation in highway construction with preexisting differences in human capital endowment between the rural counties, measured using the fraction of high school graduates among persons 25 years and older in 1950. I find that on average highways did not change the wage-bill of (high-skilled) nonproduction workers relative to the wage-bill of (low-skilled) production workers in manufacturing. But in rural counties that had a highly educated workforce, highways increased the relative wage-bill of nonproduction workers, and where the workforce was less educated, highways decreased the relative wage-bill of nonproduction workers. These results are robust to the inclusion of time-varying controls for geographic location and land abundance. This finding is consistent with the H-O prediction that trade increases the demand for skill where it is relatively abundant and decreases it elsewhere.

Using my estimates I calculate the elasticity of the wage-bill of nonproduction workers relative to production workers in manufacturing with respect to the ratio of domestic trade to local GDP. In a county that exceeds the mean level of education by one standard deviation this elasticity is roughly equal to 1. This finding suggests that trade may contribute to changes in labor market inequality, but its effects are not very large.

Another prediction of the H-O model is that trade shifts employment toward industries intensive in the relatively abundant factor. To test this prediction, I calculate a measure of skill intensity of the manufacturing workforce in each county using data on two-digit Standard Industrial Classification (SIC) industries. I find that highways did not significantly shift employment to skill-intensive manufacturing industries in skill-abundant counties, nor did it shift employment to low-skill industries where skill was scarce. This finding suggests that compositional changes may have taken place within industries or product classes. Alternatively, it is possible that trade has increased the demand for skilled workers in skill-abundant counties through other channels.

My interpretation that highways affect county-level outcomes by removing trade barriers faces several potential challenges. First, political agents may have changed highway routes in response to economic or demographic conditions in rural counties, contrary to the original planners' intent. In order to address this concern, I instrument for highway location using the original plan of routes proposed in 1944. I also construct a second instrument, based on the fact that an interstate highway is more likely to run through a rural county that lies to the north, south, east, or west of the nearest major city. Estimates using these instrumental variables (IV) are consistent with the ordinary least squares (OLS) estimates. In addition, I find that measures of trade and demand for skill do not differ significantly between highway and non-highway counties before highway construction was completed. Second, my empirical strategy considers labor market outcomes at the county level. Many studies find that wage differences vary persistently across local labor markets, and most workers in rural counties are employed in their county of residence. Nevertheless, we might be concerned that a change in relative factor demand due to trade may endogenously affect labor supply in the county. Unfortunately, I have no county-level data on the skill composition of migration to test this directly. I therefore examine the effect of highways on the relative wages and the relative employment of skilled workers, and find that both move in the same direction, although only their combined effect on the wage-bill is precisely estimated. These findings are consistent with a change in the relative demand for skill, so the effect on the relative wage-bill is not likely driven purely by migration. Finally, one might argue that highways could have affected patterns of commuting, changing the geographic skill distribution of employment. However, I find that highways had little effect on passenger car traffic, and that the fraction of workers who commute to work did not increase in highway counties relative to other counties.

Section II describes a simple theoretical framework, which considers the effects of trade on the relative demand for skilled workers. Section III presents a brief historical overview of the planning and construction of the Interstate Highway System. Section IV discusses the data and the samples I use. Section V discusses the effects of highways on trade. Section VI estimates the effect of highways on the relative demand for skilled workers, and section VII reports estimates of their effect on the industrial composition of employment. Section VIII presents conclusions.

4 The extension appears in the working-paper version of this manuscript, Michaels (2007).
5 I focus on manufacturing because of the availability of wage and employment data.
6 However, it is possible that removing trade barriers across countries may have other effects on equality.
7 Schott (2004) shows evidence of specialization within product classes in international trade.
8 See, for example, Acemoglu, Autor, and Lyle (2004); Bernard, Redding, and Schott (2005); and Card and DiNardo (2000).
II. Theoretical Framework

To frame the key questions of this investigation, it is useful to first discuss the theoretical implications of reducing trade barriers on the demand for skill. I begin by discussing a variation on the Heckscher-Ohlin model with a continuum of goods of Dornbusch, Fischer, and Samuelson (1980). The model assumes that differences in factor endowments determine the patterns and consequences of trade. The analysis begins with a single closed economy, and then considers two economies that differ only in their endowments and trade with each other. The model predicts that trade increases demand for the relatively abundant factor and shifts employment to industries intensive in that factor. These predictions persist even when factor prices are not equalized and when migration between the economies is possible.

Consider an economy with two factors of production: a continuum of high-skilled workers and a continuum of low-skilled workers. There is a continuum of goods along the interval \([0, 1]\). The production function for each good is

\[
Q(z) = F_z(H(z), L(z)),
\]

where \(H(z)\) and \(L(z)\) are the employment of high- and low-skilled labor in industry \(z\). I assume that the production functions are twice continuously differentiable, increase in each of the arguments (with diminishing marginal returns), and satisfy constant returns to scale and the Inada conditions. The goods are ranked in a strictly decreasing order of skill intensity in production and there are no factor intensity reversals.\(^9\) I assume that all factor and product markets are perfectly competitive with profit-maximizing firms and free entry.

Each consumer is endowed with one unit of labor of her type. Consumers are assumed to have an identical Cobb-Douglas utility function:

\[
U = \int_0^1 b(z) \ln d(z) dz,
\]

where \(d(z)\) is the quantity of good \(z\) consumed, and \(\int_0^1 b(z) dz = 1\). The model thus assumes that income effects and differences in preferences do not affect the pattern of trade.

A. Closed Economy Equilibrium

I now examine the existence and properties of a closed economy equilibrium, which is characterized by individual optimization, producer optimization, and market-clearing. First, individuals maximize utility subject to their budget constraint, so the expenditure share of each good is constant. Second, firms are competitive, so they maximize their profits

\[
\pi(z) = P(z)Q(z) - w_H H(z) - w_L L(z),
\]

where \(w_H\) and \(w_L\) are the wage rates for high- and low-skilled workers, and \(P(z)\) is the price of good \(z\). Free entry implies a zero profit condition: \(P(z)Q(z) = w_H H(z) + w_L L(z)\). Finally, the equality of supply and demand for every good implies \(P(z)Q(z) = b(z)(w_H + w_L)\).

Combining the last two expressions we get

\[
x(z) = L(z)/L = \frac{b(z)(1 + \omega h)}{1 + \omega h(\omega; z)},
\]

where \(x(z)\) the intensity of low-skilled labor in industry \(z\) relative to the economy as a whole, and \(\omega = w_H/w_L\) is the skill premium. The ratio of low- to high-skilled workers employed in the entire economy and in the production of good \(z\) are \(h = H/L\) and \(h(\omega; z) = H(\omega; z)/L(\omega; z)\). The market-clearing conditions for low- and high-skill labor are

\[
\int_0^1 x(z) dz = 1 \quad \text{and} \quad \int_0^1 x(z) h(\omega; z) dz = h.
\]

Combining these expressions gives an equilibrium condition for the closed economy:

\[
\phi(\omega; h) = \int_0^1 b(z)(1 + \omega h) \left[h(\omega; z) - h \right] dz = 0.
\]

Since the production functions satisfy the Inada conditions, there are low values of \(\omega\) such that \(h(\omega; z)\) is higher than \(h\) for all \(z\) and hence \(\phi(\omega; h)\) is positive at those values of \(\omega\); similarly, there high values of \(\omega\) for which \(\phi(\omega; h)\) is negative. Because the production functions are assumed to be neoclassical, \(\phi()\) is continuous in \(\omega\). Thus there exists an equilibrium level of skill premium in autarky, \(\omega = \omega^A\).

Next we note that \(\phi(\omega; h)\) is strictly decreasing in \(\omega\), so the equilibrium skill premium is unique. The left-most curve in figure 1 shows the existence and uniqueness of the equilibrium skill premium in the closed home economy. Given the equilibrium skill premium, \(\omega^A\), relative price structure and the supply and demand of each good are uniquely determined.

Predictably, an increase in the skill endowment of the economy reduces the skill premium:

\[
\frac{\partial \phi(\omega; h)}{\partial h} \bigg|_{\phi=0} = -1 \Rightarrow \frac{\partial \omega^A}{\partial h} = \left[\frac{\partial \phi(\omega; h)}{\partial \omega} \right]^{-1} < 0.
\]

B. The Effect of Opening to Trade

Consider opening the economy to trade with another such economy, which differs only in its factor endowments. The

\(^9\) In other words, I assume that industries’ skill intensity ranking does not change with factor prices.
foreign economy has a high-skilled labor force of size H^* and a low-skilled labor force of size L^*. The foreign economy is assumed to have a lower fraction of skilled workers: $h^* = \frac{H^*}{H}$, $h = \frac{L^*}{L}$. Figure 1 shows that the skill premium in the foreign economy, ω^*_{FPE}, is higher than the skill premium in the home economy, as shown in equation (7).

First I analyze the open economy equilibrium where the fraction of skilled workers does not differ greatly between the two economies, so trade equalizes factor prices. Denote the home economy’s share of low-skilled labor by $\xi = L/(L + L^*)$. The ratio of the stock of high-skilled workers to low-skilled workers in the two economies together is

$$h = \frac{H + H^*}{L + L^*} = \xi h + (1 - \xi)h^*. \quad (8)$$

Since factor prices are equal in both economies and the production technology is assumed to be identical, the factor requirements in producing both goods are the same in the two countries. The equilibrium conditions for high-skilled labor in the two countries are

$$H = \int_0^1 \alpha(z) b(z) c(z) \left[(w_l L + w_h H) + (w_l L^* + w_h H^*) \right] P(z) \, dz,$$

$$\frac{1}{P(z)} \left[h^* \right] = \int_0^1 \frac{b(z)(1 + \omega^*_{FPE} \hat{h})}{1 + \omega h(\omega^*_{FPE}; z) \left[h^* + \omega(\omega^*_{FPE}; z) - \hat{h} \right]} \, dz = 0, \quad (10)$$

where $\alpha(z)$ is the fraction of total output of good z produced in the home economy. Producing one unit of commodity z requires $a(z)$ units of low-skilled labor and $c(z)$ units of high-skilled labor. The condition for high-skilled labor in the foreign economy is identical, except with $(1 - \alpha(z))$ instead of $\alpha(z)$. The equilibrium conditions for low-skilled labor are similar.

Putting together the results for both factors we have

$$\phi(\omega^*_{FPE}; \omega^*_{FPE}) = \int_0^1 \frac{\omega^*_{FPE} \hat{h}}{1 + \omega h(\omega^*_{FPE}; z) \left[h^* + \omega(\omega^*_{FPE}; z) - \hat{h} \right]} \, dz = 0, \quad (10)$$

where $\omega = \omega^*_{FPE}$ is the equilibrium skill premium with trade and factor-price equalization.

Using equation (7) we conclude that opening to trade increases the skill premium in the home economy (which has a high skill endowment) and decreases it in the foreign economy (see figure 1). Moreover, the effect of trade on the
skill premium increases with the difference in relative factor endowments. Since factor supply is assumed constant, the relative wage-bill of skilled workers in the home economy, \(S = \omega h \), increases with trade. In the foreign economy, where skill is scarce, trade decreases the relative wage-bill of skilled workers.

Because preferences for consumption goods are homothetic and identical, the skill composition of goods consumed in both economies is equal. The home economy employs more skill in production, so it must be a net exporter of skill.

In the working-paper version I show that even when endowments differ enough to give rise to complete specialization, the main predictions of the model remain unchanged. First, trade increases the relative wage (and wage-bill) of the locally abundant factor; second, it shifts production to goods intensive in that factor. I also show that these predictions are robust to allowing free migration between the two economies if we assume that workers also consume housing, which is not traded. Including land as a factor of production can change the model’s predictions, so in the empirical section I test whether controlling for differences in land abundance affects the outcomes of interest. The predictions of the model are unchanged when we add capital, as long as free flow of capital equals the interest rate.

In addition to the H-O effects considered thus far, trade may also affect the demand for skill in other ways; in fact, recent work suggests that opening to trade may increase demand for skill everywhere. Feenstra and Hanson (1996) argue that trade shifts production of goods with an intermediate level of skill from high-skilled economies to low-skilled economies, raising demand for skill in both. Matsuyama (2007) argues that exporting across country borders is relatively skill-intensive, so reducing trade barriers could favor skilled workers everywhere. If a similar mechanism applies to the domestic U.S. setting, trade may increase the demand for skilled workers even when skill is scarce. A similar result may occur if the assumption of identical and homothetic preferences is violated. For example, Leonardi (2003) argues that wealthier workers consume more skill-intensive goods, so if trade increases income it could favor skilled workers.

To test the effect of an exogenous reduction in trade barriers on the demand for skill, consider two potential trading blocs. Each bloc consists of two economies, one of which is more skill abundant. To make the link with the empirical work in the next section, I propose to think of the economies in each trading bloc as counties. Initially the home counties are autarkic, so relative wages are determined by local supply and demand. Highways are then constructed between the economies of one bloc, and we expect that they increase trade flows between those counties. I then examine the effect of opening to trade on the relative demand for skilled labor and on industry composition. Before I test these predictions, I trace the origins of the interstate highways and study their role in reducing trade barriers.

III. History of the Interstate Highway System

The Interstate Highway System provides a natural experiment that I envision as inducing an exogenous reduction in trade barriers. During the first half of the twentieth century, much of the economic activity in the United States was localized, as distances were long and transcontinental travel was slow. Lewis (1997) describes President Franklin Delano Roosevelt’s early interest in constructing a national network of highways to reduce travel time:

> Given his interest in road building, it is little wonder that early in 1937 [President] Roosevelt called Thomas MacDonald, chief of the Bureau of Public Roads, to the White House. On a map of the United States, the president had drawn three lines north and south and three lines east and west. These would be the routes for a new transcontinental system of interstate toll highways, he explained.

This grid pattern persisted in all the subsequent modifications of the highway plan; the next section describes how I use it to construct an instrument for the highway system. In 1941, President Roosevelt appointed a National Interregional Highway Committee. This committee was headed by the Commissioner of Public Roads, and appears to have been professional, rather than political (U.S. Department of Transportation, Federal Highway Administration, 2002). In the subsequent analysis, I refer to the plan recommended by this committee in 1944 as the “1944 plan” (see figure 2).

Congress acted on these recommendations in the Federal-Aid Highway Act of 1944, which laid out a plan for a system of highways designed “to connect by routes as direct as practicable the principal metropolitan areas, cities and industrial centers, to serve the national defense and to connect suitable border points with routes of continental importance in the Dominion of Canada and the Republic of Mexico.”

Although rural areas were not considered by the planners, highways were designed to cross many rural counties as an unintended consequence of meeting these policy goals.

The construction of the Interstate Highway System began following the approval of the Federal-Aid Highway Act of 1956, which also changed the planned routes of the highways. The legislation stipulated that access to the highways

11 The model also predicts that each industry becomes relatively more intensive in the locally scarce good. Unfortunately, due to data limitations I am unable to examine this prediction.

12 Adding intermediate goods may actually amplify the effect of trade on relative factor prices, as discussed in Redding and Schott (2003).

14 In subsequent years further changes were made to the design of the system, but they were relatively minor.
be free, except for a few existing toll highways incorporated into the Interstate Highway System. The federal government bore 90% of the cost of construction, while the states financed the remaining 10%. Figure 3 shows that in 1966 the highways were still mostly disconnected—thick lines show constructed sections, while thin lines show planned sections. By 1975, however, almost all the sections had been completed (see figure 4).

IV. Data and Samples

I use a number of data sources to construct the sample of interstate highways. First, the National Transportation Atlas Database (U.S. Department of Transportation, Bureau of Transportation Statistics, 2002) identifies the exact routes of the highways. Second, I use historical data to restrict the sample to highways that were mostly constructed from 1959 to 1975. I exclude state-interstate highway cells for which the 1975 mileage was less than 80% of the 2002 mileage.15 Using maps issued by the Bureau of Public Roads and the Federal Highway Administration, I exclude state-interstate highway cells where the 1959 mileage exceeded 20% of the 1975 mileage. This selection criterion excludes toll highways, which were constructed before 1959 and later incorporated into the Interstate Highway System. Third, I restrict the sample to longer highways, which are more likely connect distant locations (as envisioned by the early planners), and are therefore less affected by local economic conditions. I therefore exclude all three-digit highways, which serve metropolitan areas, and restrict the sample to highways whose total remaining length exceeds 500 miles. This leaves most segments of eighteen highways, half of which run primarily north and south and half of which run primarily east and west. Together these segments extend over more than 24,000 miles, more than half of the total length of the Interstate Highway System.

The interstate highways were constructed in all 48 contiguous states, but they only crossed some counties, affording substantial within-state variation. Counties are a meaningful geographic unit for the analysis of labor markets, since from 1970 to 1990 only about 20%–30% of workers in rural counties commuted to work outside their county of residence. Publicly available microdata do not identify individuals’ county of residence, so I use aggregate county-level data from various sources. First, County and City Data

15 To determine the length of each highway in December 1975 in every state, I use the Interstate Gap Study (U.S. Department of Transportation, Federal Highway Administration, 1976); this study is a report to Congress by the Department of Transportation.
Books provide data on earnings and employment of production and nonproduction workers in manufacturing, retail sales, schooling, and population. Second, Bureau of Economic Analysis Regional Economic Accounts give data on earnings in trucking and warehousing. Third, County Business Patterns present information on the industrial composition of manufacturing. Finally, the National Transportation Atlas Database allows me to ascertain the geographic location of counties and cities. I limit the sample to counties whose population in 1950 was more than 50% rural and whose land area changed by no more than 5% from 1950 to 1980. I also exclude counties that had one or more highway segments running through them, but no segment was constructed between 1959 and 1975.

Table 1 shows descriptive statistics for the sample of counties. Sample counties were predominantly rural in 1950, so they were more sparsely populated and somewhat poorer than non-sample counties. About three-quarters of the mileage was planned for construction on new right-of-way, most likely due to the high cost of land adjacent to existing highways. This suggests that highway counties may have been negatively selected compared with non-highway counties. But table 1 shows that highway counties were somewhat richer and experienced faster population growth even before the construction of the highways. These differential rates of population growth motivate an analysis that compares counties in per capita terms and examines the possibility of preexisting trends in key variables.

Although the interstate highways were not intended to serve rural counties, their routes may have been changed by political considerations correlated with the economic conditions that prevailed after World War II. I therefore use an indicator for having a highway planned in 1944 (z_{1c}) as an instrument for the location of the Interstate Highway System.16

I use the geographic variation in the allocation of highways to counties to generate a second instrument. Figure 5 shows a key feature of the Interstate Highway System, dating back to President Roosevelt: routes are mostly along lines of latitude and longitude. Since highways were also planned to connect cities, I calculate the orientation of the nearest large city with respect to each county’s geographic centroid:17

16 In concurrent and independent research, Baum-Snow (2007) looks at the effect of highways on population growth in suburban areas. He uses a 1947 map of the Interstate Highway System to construct an instrument for the routes of highways in metropolitan areas. Lahr, Duran, and Varughese (2005) also examine the effect of highways on the size of metropolitan areas.

17 The sample of cities is constructed using 1950 population data. It includes the most populous city in each state and any city that had at least 100,000 persons. The resulting sample includes 119 cities. I calculated the geographic centroid of each county using the Geographic Information System.
where \((x_c, y_c)\) and \((\tilde{x}_c, \tilde{y}_c)\) are the coordinates of the county centroid and the nearest city. I use this measure to construct an instrument for the probability that a county received a highway:

\[
z_{2c} = \frac{45 - |A_c|}{45},
\]

(11)

Figure 6 plots a kernel regression of the probability that a highway crosses a county as a function of the orientation.

If you live in a rural county and the nearest major city is to...
your north, east, or west, the odds of having an interstate run through your county are much better than if the city’s orientation is off one of the major axes.

To test whether the two instruments affect the probability that a highway crosses a county, I estimate the following cross-section regressions of the form:

\[\text{highway}_c = \alpha z_c + \beta x_c + \epsilon_c, \quad (12) \]

where \(\text{highway}_c \) is an indicator for a segment of the Interstate Highway System crossing county \(c \), \(z_c \) includes either (or both) instruments \(z_{1c}, z_{2c} \), and \(\epsilon_c \) is a residual. The county-level controls, \(x_c \), vary across specifications, and include region fixed effects and the distance from the county centroid to the nearest city. Table 2 shows that the instrument based on the 1944 plan is a very strong predictor of the routes along which highways were eventually constructed. The instrument based on the direction to the nearest city also has substantial predictive power for the location of highways.\(^{18}\)

V. The Effect of Highways on Trade Barriers

In this section I investigate the effect of the Interstate Highway System on domestic trade. By allowing traffic to flow more rapidly, the highways reduced barriers to domestic trade, facilitating cross-county commerce. Since I have no data on county-level imports and exports to the rest of the nation, I measure correlates of domestic commerce—trucking and retail sales. I find that trucks used rural highways very intensively, and aggregate data suggest that the Interstate Highway System contributed to the growth of the trucking industry. Next, I show that highway counties experienced a large increase in trucking and retail sales relative to other counties after the Interstate Highway System was completed. While highways appear to have affected trade, I show that cross-county commuting did not change differentially for highway counties relative to other counties. Finally, I discuss the implications of highways for the equalization of prices and wages.

The Interstate Highway System consists almost entirely of four-lane, divided highways with controlled and limited access. As such, it allows vehicles to travel more safely and at higher speeds in rural areas. Data from 1982 to 1991 suggests that the average speed of vehicles on rural interstate highways was at least 6%–9% higher than the average speed on other rural principal and minor arterials and 10%–15% higher than the average speed on rural major collectors.\(^{19}\) In addition, rural interstate highways allow traffic to bypass small urban areas, allowing even larger time gains. Since the late 1970s, rural interstate highways have carried about 8% of the total passenger car traffic and 11% of single-unit truck traffic in the United States. In contrast, rural interstate highways have borne over 30% of the total traffic of combination trucks, which are typically

\(^{18}\) I later use the instruments to test whether outcomes change differentially over time for highway and non-highway counties. For that purpose I interact each instrument with a dummy for post-1975, and use this interaction term to instrument for the interaction of the highway dummy with post-1975. The first stage for the interacted regression is essentially identical to the results in table 2.

\(^{19}\) The data are from the National Transportation Statistics (U.S. Department of Transportation, Bureau of Transportation Statistics, 1993, table 13).
designed to transport large volumes over long distances (table 3). In fact, in the past couple of decades trucks account for almost one-fifth of the traffic on rural interstate highways. It thus appears that the Interstate Highway System has proved very important for the trucking industry.

During the 1970s, as the Interstate Highway System opened for traffic, the use of combination trucks expanded much more rapidly than in previous or subsequent decades (see figure 7). In 1969, the ratio of earnings in the trucking and warehousing industry over earnings in the railroad

A combination truck consists of a truck tractor and at least one trailer unit.

Federal regulations that govern the weight and dimensions of trucks and other motor vehicles were first enacted in the Federal-Aid Highway Act of 1956. These rules were subsequently revised in 1975 and during the subsequent deregulation of the trucking industry (U.S. House of Representatives, 2002). It is therefore unlikely that the increased use of combination trucks in the first half of the 1970s was caused by changes in regulation. However, changes in the extent of outsourcing of trucking services may have been, at least in part, a response to the Interstate Highway System and the deregulation that followed its construction.

Table 2—Determinants of Highway Assignment to Counties

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway planned in 1944 legislation</td>
<td>0.795</td>
<td>0.798</td>
<td>0.842</td>
<td>0.789</td>
<td>0.785</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.780</td>
<td>(0.024)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Direction to nearest city instrument</td>
<td>0.218</td>
<td>0.221</td>
<td>0.186</td>
<td>0.231</td>
<td>0.232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.055</td>
<td>(0.051)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>1950 population weights</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Distance to nearest city</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Geographic indicators</td>
<td>None</td>
<td>Region</td>
<td>Region</td>
<td>Region</td>
<td>Region</td>
<td>State</td>
<td>None</td>
<td>Region</td>
<td>Region</td>
<td>Region</td>
<td>State</td>
<td>Region</td>
</tr>
</tbody>
</table>

Notes: Cross-section regressions for sample counties. Columns 1–11 use the full sample of counties (2000 observations) and column 12 uses only counties in the Midwest and the South (1,647 observations). Robust standard errors are in parentheses.
industry was about 1.7; by 1997 this ratio increased to almost 4.8 (U.S. Department of Commerce, 2004). By then trucks transported more than 71% of the value of domestic trade in the United States. Thus, the aggregate evidence suggests that the Interstate Highway System facilitated domestic trade by allowing a more extensive use of trucks.

My interpretation of the effect of the Interstate Highway System on economic outcomes assumes that they reduced barriers to trade across counties. In 1997 most of the domestic trade in the United States—about 58%—was conducted across state borders; this is clearly a very low bound on cross-county trade. In fact, almost two-thirds of the value of commodities transported by truck were shipped for at least 50 miles and therefore, most likely, across county borders. These figures are consistent with the view that the highways are important for cross-county trade.

Table 3.—Vehicle Miles Traveled on Rural Interstate Highway, by Vehicle Type

<table>
<thead>
<tr>
<th>Vehicle Miles Traveled (Billions)</th>
<th>Rural Interstate Highways</th>
<th>Other Highways</th>
<th>Fraction</th>
<th>Rural Interstate Highways</th>
<th>Other Highways</th>
<th>Fraction</th>
<th>Rural Interstate Highways</th>
<th>Other Highways</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>8.1</td>
<td>27.0</td>
<td>0.23</td>
<td>21.1</td>
<td>47.6</td>
<td>0.31</td>
<td>30.1</td>
<td>64.2</td>
<td>0.32</td>
</tr>
<tr>
<td>1980</td>
<td>2.0</td>
<td>25.1</td>
<td>0.07</td>
<td>4.0</td>
<td>35.8</td>
<td>0.10</td>
<td>5.7</td>
<td>46.2</td>
<td>0.11</td>
</tr>
<tr>
<td>1990</td>
<td>62.3</td>
<td>857.3</td>
<td>0.07</td>
<td>89.5</td>
<td>1,032.3</td>
<td>0.08</td>
<td>117.5</td>
<td>1,300.3</td>
<td>0.08</td>
</tr>
<tr>
<td>Single-unit trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>7.1</td>
<td>120.7</td>
<td>0.06</td>
<td>20.5</td>
<td>276.5</td>
<td>0.07</td>
<td>46.9</td>
<td>533.4</td>
<td>0.08</td>
</tr>
<tr>
<td>1980</td>
<td>135.1</td>
<td>1,392.2</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>200.2</td>
<td>1,944.2</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger cars and motorcycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>79.5</td>
<td>1,030.2</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>10.0</td>
<td>120.7</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>117.5</td>
<td>1,300.3</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The data are from Highway Statistics (U.S. Department of Transportation, Federal Highway Administration, 1995, 1996, 1998, 2000). The figures include vehicle miles traveled on toll highways incorporated into the Interstate Highway System, since data for those segments are not reported separately.

Figure 7.—LN (Vehicle Miles Traveled), by Vehicle Type (Base Year is 1966)

The coefficient on the indicator for highway counties, highwayc,
population density.
1950 Pop. density from the county centroid to the nearest city, and 1950
modifications control for time-varying effects of region, distance
counties are on average closer to large cities. To check that
identify the differential effect of highways on highway
versely, some trucking activity may have shifted from non-
efited from the highways, although to a lesser extent. Con-
system. It is possible that non-highway counties also ben-
the timing of the construction of the interstate highway
of the increase took place during the 1970s, consistent with
in highway counties relative to non-highway counties. Most
the trucking and warehousing industry. I use these data to estimate specifications
is log earnings in the trucking and warehousing

\[T_{ct} = \psi_c + \rho_t + \alpha_{highway,c} + \varepsilon_{ct}, \tag{13} \]
where \(T_{ct} \) is log earnings in the trucking and warehousing industries per capita in county \(c \) at time \(t \); \(\psi_c \) and \(\rho_t \) are county fixed effects and year effects; \(\alpha_{highway,c} \) is a time-varying coefficient on the indicator for highway counties, \(highway,c \); and \(\varepsilon_{ct} \) is a residual. Recall from table 1 that highway counties are on average closer to large cities. To check that the estimates are not driven by differential trends for counties with different locations or land-abundance, some specifications control for time-varying effects of region, distance from the county centroid to the nearest city, and 1950 population density.

The results (table 4 and figure 8) indicate that earnings in the trucking and warehousing industry, per capita, increased in highway counties relative to non-highway counties. Most of the increase took place during the 1970s, consistent with the timing of the construction of the Interstate Highway System. It is possible that non-highway counties also benefited from the highways, although to a lesser extent. Conversely, some trucking activity may have shifted from non-highway counties to highway counties. Thus we can only identify the differential effect of highways on highway counties relative to non-highway counties.24

The results in table 4 suggest that highways indeed facilitated the flow of commodities. However, these findings do not rule out the possibility that truckers reside in highway counties and transfer goods used in other counties. To further substantiate the hypothesis that highways increased the flow of commerce in counties they crossed, I estimate their effect on retail sales. Specifically, I regress log retail sales per capita on the same regressors as in equation (13); similar specifications control for other covariates. The results (table 5 and figure 8) show that highway counties experienced a rapid increase in retail sales relative to non-highway counties since the 1970s. The results also indicate that highway and non-highway counties displayed similar trends before and during the highway construction. Given that highways also increased trucking, it appears very likely that the increase in retail sales is due to goods “imported” from outside the county.25

To address the concern that the results may be affected by selection, I also estimate the effect of highways on trucking and retail sales using the instrumental variables described in the previous section. Table 6 presents estimates using specification of the form:

\[Y_{ct} = \psi_c + \rho_t + \beta d_{1975} + \varepsilon_{ct}, \tag{14} \]

where \(Y_{ct} \) is the outcome and \(d_{1975} \) is an indicator for post-1975, when the highway segments in the sample were mostly complete. Another specification substitutes a state-level index of highway completion for the post-1975

24 The available data also do not account for trucks used by firms outside the trucking industry.

25 Highways could increase retail sales per capita for a number of reasons. First, H-O theory predicts that trade will increase income, thereby raising average consumption (see Dornbusch, Fischer, & Samuelson, 1980). Second, if highways facilitate market integration of rural areas, sales may shift to formal establishments, further raising sales of retailers. Finally, it is possible that retailers will make capital investments complementary to the highways, further increasing their sales.
Table 5.—The Effect of Highways on Ln (Retail Sales Per Capita)

<table>
<thead>
<tr>
<th>Year</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td>-0.013</td>
<td>-0.002</td>
<td>-0.010</td>
<td>-0.003</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>1958</td>
<td>-0.031</td>
<td>-0.018</td>
<td>-0.032</td>
<td>-0.016</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>1963</td>
<td>-0.029</td>
<td>-0.011</td>
<td>-0.033</td>
<td>-0.007</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>1967</td>
<td>-0.027</td>
<td>-0.001</td>
<td>-0.019</td>
<td>-0.005</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>1972</td>
<td>0.023</td>
<td>0.042</td>
<td>0.032</td>
<td>0.033</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.015)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>1977</td>
<td>0.034</td>
<td>0.053</td>
<td>0.051</td>
<td>0.045</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.016)</td>
<td>(0.017)</td>
<td>(0.016)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>1982</td>
<td>0.057</td>
<td>0.078</td>
<td>0.078</td>
<td>0.072</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.018)</td>
<td>(0.020)</td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>1987</td>
<td>0.076</td>
<td>0.102</td>
<td>0.107</td>
<td>0.086</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.020)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>1992</td>
<td>0.087</td>
<td>0.110</td>
<td>0.118</td>
<td>0.095</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.021)</td>
<td>(0.022)</td>
<td>(0.020)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>1997</td>
<td>0.101</td>
<td>0.135</td>
<td>0.149</td>
<td>0.123</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.022)</td>
<td>(0.024)</td>
<td>(0.022)</td>
<td>(0.022)</td>
</tr>
</tbody>
</table>

Observations: 21,839
Weights: Yes
Region × year: No
Distance × year: No
1950 Pop. density × year: No

Notes: All estimates are from a panel of the sample counties that includes county and year dummies. Each column reports highway × year interactions from a separate regression, and the omitted interaction is highway × 1948. The weights are 1950 population. Robust standard errors in parentheses are clustered at the county level. Distance in miles is calculated from the county centroid to the nearest large city.

The figure reports the coefficients on highway × year interactions from column 4 in table 4 and column 4 in table 5. Open points represent coefficients not significant at the 5% level.
Way highways may also affect patterns of commuting, thereby affecting the labor market as a consequence of the removal of trade costs. The benchmark specification assumes that highways affected outcomes only after 1975, when they were essentially complete. In order to relax this assumption, I calculate a state-level index of highway completion using the length of rural interstate highways with four lanes and restricted access control that were open to traffic. Since most of the interstate highways that were open to traffic in 1960 were toll roads incorporated into the system, I exclude them from my analysis. Thus, the state-level index measures whether the mileage of highways in a given year, net of the 1960 mileage, accounts for more than 90% of the difference between the 1975 mileage and the 1960 mileage.

Table 6: The Effect of Highways on Trade and Commuting

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Sample</td>
<td>Midwest and South</td>
</tr>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Highway × (post-1975)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(post-1975)</td>
<td>0.082 (0.013)</td>
<td>0.082 (0.015)</td>
</tr>
<tr>
<td>Observations</td>
<td>15,854</td>
<td>15,854</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th>Midwest and South</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(7) (8) (9)</td>
<td></td>
</tr>
<tr>
<td>Highway × (post-1975)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(post-1975)</td>
<td>0.063 (0.033)</td>
<td>0.054 (0.043)</td>
</tr>
<tr>
<td>Observations</td>
<td>12,220</td>
<td>12,220</td>
</tr>
</tbody>
</table>

Notes: All estimates are from a panel of the sample counties that includes county and year dummies. Robust standard errors in parentheses are clustered by county. Each cell reports the coefficient on highway × (post-1975) interaction from a separate regression. Columns 2–9 control for post-1975 indicators. Columns 5–9 control for (distance to nearest city)/H11003 (post-1975) interaction from a separate regression. Columns 2–9 control for region-specific year effects. All regressions are weighted using the 1950 population, except column 3 which is unweighted. Column 4 limits the sample to the regions where the first stage is significant for the direction instrument (the Midwest and the South).

26 Finally, I also estimate this equation using IV, where \(z_{c,t}d_{1975} \) or \(z_{c,t}d_{1975} \) serve as instruments for highway × (post-1975).

27 Interestingly, there is no indication that the effect of highways on earnings in trucking per capita was larger in counties where railroad income per capita was below median in 1969.

changing the geographic skill distribution of employment. Figure 7, however, suggests that rural interstate highways had little aggregate effect on passenger traffic. The final outcome in table 6 is the fraction of workers who commute to work outside their county of residence. The results show that commuting did not significantly increase in rural highway counties, compared with other rural counties.

A related concern is that migration patterns may be correlated with highway location for reasons other than a change in labor demand. My estimates suggest that highway counties experienced a faster rate of population growth both before and after the highways were constructed, with no evidence of a change in trend (results not shown). In the next section I discuss the possibility that highways changed the relative supply of skill, rather than the relative demand.

The theoretical framework also predicts that where costless trade is possible, commodity prices (though not necessarily factor prices) will be equal. The Interstate Highway System appears to have significantly reduced the cost of trade in commodities. While I have no direct evidence on price changes in rural areas, Parsley and Wei (1996) use data from 1975 to 1992 and find rapid convergence of commodity prices across U.S. cities. This finding is consistent with the theory, since all major U.S. cities are connected to the Interstate Highway System. Bernard, Redding, and Schott (2005) find that wage differences persist across geographically disparate labor markets in the United States; this suggests that factor-endowment differences may have prevented factor-price equalization.
Highway System was constructed, as a measure of a county’s sons 25 years and older in 1950, before the Interstate
the fraction of high school–educated workers among per-
ences in human capital endowment. As explained in section
28 As table 1 shows, the sample counties are on average less skill-
ers in manufacturing as proxies for high- and low-skilled labor,
respectively.30
In order to examine this prediction I estimate a regression
of the form:
III. The Effect of Highways on the Relative Demand for
Skilled Labor
This section examines the effect of opening to trade on the
relative demand for skilled labor. The H-O model predicts that by facilitating trade, highways increase the
relative wage-bill of nonproduction workers in counties with a highly skilled workforce and decrease it in counties
with a less educated workforce.28 To test this prediction I
interact the exogenous reduction in the cost of trade caused
by the Interstate Highway System with preexisting differ-
ences in human capital endowment. As explained in section
IV, there are no microdata that identify individuals’ county
of residence during the relevant time period. I therefore use
the fraction of high school–educated workers among persons
25 years and older in 1950, before the Interstate Highway System was constructed, as a measure of a county’s
skill endowment.29 I use nonproduction and production work-
ners in manufacturing as proxies for high- and low-skilled labor, respectively.30

to instrument for terms that include the highway dummy,

\[
\ln \left(\frac{w^t_{c}}{w^t_{ct}} \right) = \psi_t + \rho_t + \beta_t \text{highway}_c + \gamma \text{highway}_c \text{hs}_{1950} + \delta \text{highway}_c \text{hs}_{1975} + \varepsilon_t,
\]

where \(\ln \left(S^t_{ct} \right) = \ln \left(w^t_{c} h^t_{ct} \right) = \ln \left(\frac{w^t_{ct}}{L^t_{ct}} \right) - \ln \left(H^t_{ct} / L^t_{ct} \right) \) denotes the wage-bill of nonproduction workers in manu-
facturing, relative to production workers. The fraction of
high school graduates among persons 25 years and older in
1950 is \(s_{c,1950} \), and \(d_{1975} \) is a dummy for post-1975.31 Other

Census data for 1960 and 1980 indicate that nonproduction workers in
manufacturing industries had about two to three more years of education
than production workers. For further discussion of the differences between
production and nonproduction workers see Berman, Bound, and Griliches (1994).

31 These regressions are weighted by 1950 population, since data for low
production counties are less precise.

Notes: All estimates use data for 1967–1982, and include 1950 population weights. Robust standard errors in
parentheses are clustered by county. Columns 1–3 use the full sample, and columns 4–7 use a fixed sample size across panels. Columns 3–7 control for regi
on spatial fixed effects. Observations: all columns, 5,795; 4,456 (1950 high school); 2,339 (1975 high school).

Table 7.—The Effect of Highways on the Demand for Skill in Manufacturing

<table>
<thead>
<tr>
<th>IV</th>
<th>Instrument</th>
<th>Direction to City</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944 Plan</td>
<td>(6)</td>
<td>(7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A. Dependent Variable: ln (Relative Wage-Bill of Nonproduction Workers)</th>
<th>OLS</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Post-1975) × highway</td>
<td>0.006</td>
<td>−0.149</td>
<td>−0.168</td>
<td>−0.151</td>
<td>−0.101</td>
<td>−0.223</td>
<td>−1.370</td>
<td></td>
</tr>
<tr>
<td>(0.024)</td>
<td>(0.069)</td>
<td>(0.068)</td>
<td>(0.077)</td>
<td>(0.069)</td>
<td>(0.094)</td>
<td>(2.049)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Post-1975) × highway × (1950 hs)</td>
<td>0.249</td>
<td>0.241</td>
<td>0.262</td>
<td>0.247</td>
<td>0.312</td>
<td>5.960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.148)</td>
<td>(0.213)</td>
<td>(0.255)</td>
<td>(0.093)</td>
<td>(0.271)</td>
<td>(1.683)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Post-1975) × (1950 high school)</td>
<td>−0.443</td>
<td>−0.323</td>
<td>−0.208</td>
<td>−0.077</td>
<td>−0.278</td>
<td>−1.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.148)</td>
<td>(0.213)</td>
<td>(0.255)</td>
<td>(0.093)</td>
<td>(0.271)</td>
<td>(1.683)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>5,795</td>
<td>5,795</td>
<td>5,793</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Dependent Variable: ln (Relative Wage-Bill of Nonproduction Workers)</th>
<th>OLS</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Post-1975) × highway</td>
<td>−0.051</td>
<td>−0.129</td>
<td>−0.113</td>
<td>−0.113</td>
<td>−0.069</td>
<td>−0.136</td>
<td>−1.259</td>
<td></td>
</tr>
<tr>
<td>(0.020)</td>
<td>(0.059)</td>
<td>(0.059)</td>
<td>(0.059)</td>
<td>(0.058)</td>
<td>(0.077)</td>
<td>(1.573)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Post-1975) × highway × (1950 hs)</td>
<td>0.313</td>
<td>0.274</td>
<td>0.274</td>
<td>0.130</td>
<td>0.312</td>
<td>3.098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.202)</td>
<td>(0.206)</td>
<td>(0.206)</td>
<td>(0.207)</td>
<td>(0.262)</td>
<td>(4.563)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Post-1975) × (1950 high school)</td>
<td>−0.251</td>
<td>−0.479</td>
<td>−0.479</td>
<td>0.022</td>
<td>−0.484</td>
<td>−1.145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.134)</td>
<td>(0.220)</td>
<td>(0.220)</td>
<td>(0.085)</td>
<td>(0.230)</td>
<td>(1.285)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4,456</td>
<td>4,456</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Dependent Variable: ln (Relative Employment of Nonproduction Workers)</th>
<th>OLS</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Post-1975) × highway</td>
<td>0.063</td>
<td>−0.004</td>
<td>−0.037</td>
<td>−0.038</td>
<td>−0.032</td>
<td>−0.087</td>
<td>−0.111</td>
<td></td>
</tr>
<tr>
<td>(0.027)</td>
<td>(0.081)</td>
<td>(0.079)</td>
<td>(0.079)</td>
<td>(0.075)</td>
<td>(0.096)</td>
<td>(1.646)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Post-1975) × highway × (1950 hs)</td>
<td>0.264</td>
<td>0.289</td>
<td>0.290</td>
<td>0.326</td>
<td>0.490</td>
<td>1.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.278)</td>
<td>(0.267)</td>
<td>(0.267)</td>
<td>(0.268)</td>
<td>(0.320)</td>
<td>(4.808)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Post-1975) × (1950 high school)</td>
<td>−0.134</td>
<td>0.276</td>
<td>0.272</td>
<td>−0.099</td>
<td>0.206</td>
<td>−0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.179)</td>
<td>(0.257)</td>
<td>(0.258)</td>
<td>(0.103)</td>
<td>(0.276)</td>
<td>(1.373)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4,461</td>
<td>4,461</td>
<td>4,460</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
<td>4,455</td>
</tr>
</tbody>
</table>
The first column of panel A in table 7 presents estimates of this equation under the constraint that $\gamma = \delta = 0$. The results show that on average, highways did not increase the relative wage-bill of skilled workers. Subsequent columns relax this constraint, and test the prediction that highways have a negative effect on the relative wage-bill of high-skilled workers in counties that are skill scarce ($\beta < 0$) and that their effect becomes increasingly positive with counties’ skill abundance ($\gamma > 0$). These results do suggest that highways significantly increased the relative demand for nonproduction workers in counties that had a highly skilled labor force and reduced it elsewhere. The results are robust to controlling for the contemporaneous fraction of high school graduates in the labor force and for time-varying coefficients on region dummies, distance from the county to the nearest city, and 1950 population density. The IV estimates using the 1944 plan are somewhat larger estimates than the OLS estimates, while the direction instrument is not precise enough to identify the effect of highways on labor demand.\[^{32}\]

The results in panels B and C of table 7 suggest that highways increased both the relative wages and the employment share of nonproduction workers in high-skill counties, although most estimates are not precise. Similarly, highways appear to have reduced the wages and employment of nonproduction workers where skill was relatively scarce. These results are consistent with the H-O prediction, that trade shifts the relative demand curve for skilled labor. The change in wages and employment shares may reflect a movement along the relative supply curve for skilled workers. The positive and finite elasticity of the relative supply of skill may reflect endogenous cross-county migration as well as changes that took place within counties, such as occupational transition and entry or exit of workers from the market.\[^{33}\]

I use the results in table 7 to evaluate the possibility that the effect of highways on the wage-bill are due to changes in relative supply correlated with highway location, rather than a change in relative demand. Assume that the aggregate elasticity of substitution between high- and low-skilled workers is locally a constant, γ; then the elasticity of the relative wage-bill of skilled workers with respect to their wages is

$$\frac{\partial \ln (w_{c,1950})}{\partial [\ln (L_{c,1950})]} = - \frac{1}{\gamma}.$$ \hspace{1cm} (16)

There is a consensus in the literature that γ is higher than 1 (for example, Freeman, 1986; Katz & Murphy, 1992; and the elasticity implied in Angrist, 1995). Using these estimates, the effect of highways (and highways interacted with 1950 schooling) on relative employment should have been bigger in magnitude than their effect on relative wages, and opposite in sign. Therefore, although I cannot rule out some shift of the relative supply of skill, the estimates in table 7 suggest that highways changed the relative demand for skill in a way consistent with the predictions of the H-O model.

As a further check, I test whether highway counties experienced changes in the wage-bill of nonproduction workers, relative to production workers, before the highways were completed or after they were already in place. By time-differencing equation (15) (post-1975 minus pre-1975) we get an expression for the change in the relative wage-bill of nonproduction workers:

$$\Delta \ln (S_{c,1950}) = \rho + \beta_{\text{highway}} + \gamma_{\text{highway}} s_{c,1950} + \delta_{c,1950} + \epsilon_c.$$ \hspace{1cm} (17)

I estimate this equation using OLS (with and without county-level controls) and IV, instrumenting highway and highway $s_{c,1950}$ using $z_{i,c}$ and $z_{i,c} s_{c,1950}$, where $i = 1, 2$. Since data are not available for all counties and all years, I restrict myself to a fixed subsample of counties, for which I have data in 1947, 1967, 1982, and 1992. The results (table 8) show that before the construction of highways was complete (1947–1967) the changes in the relative demand for skill did not vary significantly between highway and nonhighway counties. This is true for both the OLS estimates (with and without county-level controls) and the IV estimates using the 1944 plan. As before, the direction instrument is not powerful enough to give precise results. The estimates for 1967–1982 are similar in magnitude to those found in table 7. The estimate of the main effect of highways, γ, is statistically significant only in the IV estimate, while the estimate of δ is significant in all specifications. Finally, the changes that took place from 1982 to 1992 do not vary significantly across highway and nonhighway counties. These results lend support to the hypothesis the Interstate Highway System was indeed the cause of the changes in the relative demand for skilled labor.

To assess the magnitude of the effect of trade I compare my estimates with those of Borjas, Freeman, and Katz (1997). Borjas et al. use a factor-content approach to measuring the effect of trade on wage inequality. They find that imports to the United States from less-developed countries as a fraction of GDP increased by about 1.6 percentage

\[^{32}\] To test the hypothesis that the effect of highways on the relative wage-bill of skilled manufacturing workers varies by land endowment, I add the interaction (1950 population density) \times (post-1975) \times highway to the specification in table 7, panel A, column 3. This changes β from -0.168 (0.068) to -0.177 (0.070) and γ from 0.609 (0.241) to 0.605 (0.244). The coefficient on the interaction of 1950 population density, post-1975, and highway is very imprecisely estimated (t-stat = 0.31), suggesting that land endowment had little effect on the outcome of interest. Taking the same baseline specification and controlling for a county-level index of skill intensity in manufacturing in 1967 (described in section VII) interacted with year dummies yields estimates of -0.153 (0.074) and 0.462 (0.253) for β and γ, indicating that these results are also not driven by differential time effects on counties with different industry compositions. The results are also robust when I restrict the sample to counties that are farther than 50 kilometers from the nearest city.

\[^{33}\] Since I have no county-level microdata, I cannot rule out that my results may be affected by changes in the relative quality of skilled workers in highway counties.
The estimated skill premium for a county that is one standard deviation above the mean level of education is close to 1.35 The estimates of the skill premium are somewhat smaller in magnitude and less precise.

The assumptions used in this paper are quite different from those used in the factor-content analysis of Borjas et al. (1997).36 However, despite the differences in assumptions and sources of variation, the magnitude of our estimates appears quite comparable. My results therefore support the view that while trade may contribute to changes in labor market inequality, its effects are limited in magnitude.

VII. The Effect of Highways on the Industrial Composition

The H-O framework also predicts that trade changes the industry composition of employment. Specifically, it predicts that trade causes a skill-abundant economy to shift its production toward more skill-intensive goods and vice versa for an economy where skill is scarce. To test this prediction I construct a measure of the skill intensity of each industry. I match the two-digit SIC codes to the 1950 classification of manufacturing industries in the household census and compute the fraction of nonproduction workers in each industry’s labor force. Using the County Business Patterns data I compute an index of the skill intensity of the manufacturing workforce: $I_{it} = \sum_{i} n_{i,1960} \epsilon_{t}$, where $n_{i,1960}$ is the fraction of nonproduction workers employed in industry i in 1960 and I_{it} is the fraction (or estimated fraction) of the manufacturing employees in county c employed in industry i at time t.37

To test whether trade changed the industrial composition of employment in manufacturing, I estimate regressions of the following form:

$$I_{it} = \psi + \beta d_{1975} \text{highway}_{it} + \gamma d_{1975} \text{highway}_{it} \text{nonproduction}_{i,1950} + \delta d_{1975} \text{highway}_{it} \text{high}_{i,1950} + \epsilon_{it}$$

I estimate the equation using OLS and IV, instrumenting the various interactions of the highway dummy with corresponding interactions of the two instruments. The estimated coefficients of interest, β and γ, are of the expected sign, but they are not statistically significant in any of the specifications (detailed results are in the working-paper version; see Michaels, 2007). Thus we cannot reject the hypothesis that

This figure reflects the change in wages of college graduates relative to high school graduates and of high school graduates compared with high school dropouts.

<table>
<thead>
<tr>
<th>Highway</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway × (1950 high school)</td>
<td>(0.120)</td>
<td>(0.119)</td>
<td>(0.159)</td>
<td>(1.385)</td>
</tr>
<tr>
<td>(1950 high school)</td>
<td>(0.415)</td>
<td>(0.414)</td>
<td>(0.524)</td>
<td>(4.200)</td>
</tr>
<tr>
<td>(1950 high school)</td>
<td>(0.248)</td>
<td>(0.381)</td>
<td>(0.394)</td>
<td>(1.178)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highway</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway × (1950 high school)</td>
<td>(0.309)</td>
<td>(0.309)</td>
<td>(0.360)</td>
<td>(3.920)</td>
</tr>
<tr>
<td>(1950 high school)</td>
<td>(0.199)</td>
<td>(0.280)</td>
<td>(0.298)</td>
<td>(1.091)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highway</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway</td>
<td>(0.089)</td>
<td>(0.089)</td>
<td>(0.106)</td>
<td>(1.307)</td>
</tr>
<tr>
<td>Highway × (1950 high school)</td>
<td>(0.275)</td>
<td>(0.261)</td>
<td>(0.344)</td>
<td>(3.464)</td>
</tr>
<tr>
<td>(1950 high school)</td>
<td>(0.169)</td>
<td>(0.241)</td>
<td>(0.245)</td>
<td>(0.932)</td>
</tr>
</tbody>
</table>

34 This figure reflects the change in wages of college graduates relative to high school graduates and of high school graduates compared with high school dropouts.

35 Similar calculations yield estimates that are close to 0 for a county with the mean level of education and about −1.3 for a county that is one standard deviation below the mean level of education.

36 Factor-content analysis typically assumes the absence of noncompeting imports, no endogenous response of factor supplies to trade, and identical elasticities of substitution across all production functions and the utility function (Panagariya, 2000).

37 See appendix C in the working-paper version (Michaels, 2007) for a discussion of these data.
trade has no effect on the industrial composition of employment.

There are two possible ways to interpret the absence of significant effects of removing trade barriers on industrial composition. One approach is to interpret these results as evidence that the theoretical framework outlined in section II may be incomplete. For example, there may be frictions that restrict the mobility of labor across industries, or some counties may have been undiversified even before the construction of the highways. My findings may also suggest that endogenous migration may have played only a limited role, since migration is likely to have reinforced the effects of trade on industrial composition. In related work, Goldberg and Pavcnik (2004) survey a number of recent studies that find very little effect of tariff reductions on industry composition in developing countries. These studies attribute their findings to imperfections of product markets or labor markets.

Alternatively, it is possible that my estimation strategy is not precise enough to estimate such effects. For example, it may be that changes in labor demand have taken place at lower levels of industry aggregation or even within product classes (Schott, 2004). Moreover, the absence of accurate employment data in many county-industry cells requires a process of imputation that may have resulted in nonnegligible measurement error (see appendix in working-paper version, Michaels, 2007). Further research may be needed to determine the extent to which the removal of trade barriers affects the industrial composition.

VIII. Concluding Remarks

The literature on international trade suggests that trade may affect the demand for skill, but it has proved difficult to identify this effect, since identification requires exogenous variation in the barriers to trade. In this paper I use the advent of the U.S. Interstate Highway System as a source of exogenous variation in trade barriers. The Interstate Highway System was built to better connect large cities, to serve national defense, and to connect with major routes in Canada and Mexico. As an unintended consequence of meeting these objectives, the highways crossed many rural counties. I find that the rural interstate highways were particularly important for the flow of large trucks. These highways increased trucking activity and retail sales by about 7–10 percentage points per capita in rural counties they crossed, relative to other rural counties.

Using the Interstate Highway System as a source of variation in trade, I test whether trade affected the demand for skill in rural areas. I find that on average, highways had no effect on the demand for high-skilled workers relative to low-skilled workers in manufacturing. However, highways increased the wage-bill of high-skilled workers relative to low-skilled workers in counties where skill was abundant, and reduced it where skill was scarce. This finding is consistent with the Heckscher-Ohlin view that trade increases the relative demand for the abundant factor. However, the magnitude of the effect is quite small: in a county that exceeds the mean level of education by one standard deviation, the elasticity of the wage-bill of nonproduction workers relative to production workers in manufacturing with respect to the ratio of domestic trade to local GDP is roughly equal to 1. In addition, I find no evidence for the prediction of the Heckscher-Ohlin model that trade significantly shifts the industrial composition of employment toward industries intensive in the abundant factor. This result suggests that changes in skill composition in response to reduced trade barriers may have taken place within industries or product classes, or that trade may have increased the demand for skill in skill-abundant counties through other channels.

My findings suggest that the ongoing expansion of trade between economies that differ in their skill endowment, such as trade between the developed world and the less-developed world, may continue to contribute to changes in labor market inequality. However, my results also indicate that opening to trade is not likely to explain a great deal of the variation in the demand for skill experienced by many countries in recent years.

REFERENCES

Gey, Fredric, County Business Patterns Data for 1967 and 1972 (Berkeley: UC DATA Survey Research Center, 2004).

Leonardi, Marco, “Product Demand Shifts and Wage Inequality,” IZA discussion paper no. 908 (October 2003).

