THE PROPAGATION OF REGIONAL RECESSIONS

James D. Hamilton and Michael T. Owyang*

Abstract—This paper develops a framework for inferring common Markov-switching components in panel data sets with large cross-section and time series dimensions. We study similarities and differences across U.S. states in the timing of business cycles. We hypothesize that there exists a small number of cluster designations, with individual states in a given cluster sharing certain business cycle characteristics. We find that although oil-producing and agricultural states can sometimes experience a separate recession from the rest of the United States, for the most part, differences across states appear to be a matter of timing, with some states entering recession or recovering before others.

I. Introduction

The formation of the European Monetary Union has sparked a resurgence of interest in regional business cycles in both Europe and in the United States, where longer time series are available. A number of these recent studies have characterized the U.S. national economy as an agglomeration of distinct but interrelated regional economies. While some idiosyncrasies exist, regional business cycles in the United States for the most part bear a reasonable resemblance to the national cycle identified by the NBER using aggregate data. Disparities in regional business cycles have often been attributed to either idiosyncratic shocks or differences in characteristics such as the industrial composition of the regions. Conversely, commonality can be attributed to responses to common aggregate shocks for which the state responses vary but the timing is identical.

Characterizing regional business cycles using a panel data set with large cross-section and time series dimensions raises two separate questions. The first is how to model the comovements that are common across geographic divisions. In Owyang, Piger, and Wall (2005) and Owyang, Piger, Wall, and Wheeler (2008), the unit of analysis is taken to be individual states and cities, respectively. Regional similarities were noted but not modeled explicitly. One alternative for characterizing common elements across geographic divisions is to rely on factor analysis, as in Forni and Reichlin (2001) and Del Negro (2002). Another approach is to use exogenously defined regions such as those adopted by the BEA as either the basic unit of analysis (Kouparitsas, 1999) or an additional observable restriction on the state-level factor structure (Del Negro, 2002). A few studies define regions endogenously. Crone (2005) used k-means cluster analysis of state business cycle movements to define regions. While his regional definitions are similar to those used by the BEA, Crone found some discrepancies (in particular, Arizona, which may be taken as a region unto itself). Partridge and Rickman (2005) used cyclical indices to uncover common currency areas in the United States. Similarly, van Dijk et al. (2007) constructed clusters for regional housing markets in the Netherlands.

A second question concerns the manner in which the business cycle itself is defined. What exactly are we claiming to have measured when we compare the timing of a recession in one state with that observed in another? In a standard factor model, the cyclical component is viewed as a continuous-valued random variable, defined in terms of its ability to capture certain comovements across states. Kouparitsas (1999) and Carlino and DeFina (2004) used bandpass filters to extract the business cycle frequency from disaggregate data. Carlino and Sill (2001) and Partridge and Rickman (2005) relied on trend cycle decompositions.

Hamilton (2005) argued that the defining characteristic of the business cycle as understood, for example, by Burns and Mitchell (1946) is a transition between distinct, discrete phases of expansion and contraction. Owyang et al. (2005, 2008) adopted this perspective in their application of the Markov-switching model of Hamilton (1989) to data for individual states and cities, respectively. The contribution of this paper is to extend that effort to characterize the interactions across states in these shifts. Our paper could alternatively be viewed as an extension of factor or cluster analysis to this kind of nonlinear framework.

We account for the correlation across states by modeling both national and regional recessions. In our setup, following Frühwirth-Schnatter and Kaufmann (2008), we allow the data to define regional groupings (which we designate as “clusters”) on the basis of comovement in state employment growth rates and other observable, fixed state characteristics. In particular, we model the probability of a state’s inclusion in any region as a logistic variable, in which state-level characteristics affect the prior probability of state membership in a region-cluster and observed employment growth comovements inform the posterior inference about those probabilities.

The model is estimated using Bayesian methods, and we report five main findings. First, most state-level business cycle experiences are similar to those of the nation. Second, most idiosyncratic recession experiences amount to differentials in timing around the national recessions. For example, some states enter some recessions before the rest of the nation. Third, a cluster of states, characterized by an important role for oil production in their economies, does enter and exit recessions independently from the nation. Fourth, the regional clusters we find are not exclusive; a state can belong to more than one region. However, the overlapping of states in

Received for publication April 1, 2009. Revision accepted for publication December 21, 2010.

* Hamilton: University of California, San Diego; Owyang: Federal Reserve Bank of St. Louis.

We benefited from conversations with Michael Dukek, Jeremy Piger, and Justin Tobias. Kristie M. Engemann, Charles S. Gascon, and Constanza S. Liborio provided research assistance. The views expressed here do not reflect the official positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

1 Monetary shocks, for example, are aggregate shocks that have common timing but varying effect (see Carlino & DeFina, 1998).
multiple regions is infrequent. Finally, while industrial composition matters for cluster determination, other factors, such as the share of employment coming from small firms, may also be important.

The remainder of this paper is organized as follows. Section II presents our characterization of regional business cycles with particular focus on endogenous region determination. Section III details the estimation technique. Section IV presents the empirical results. Section V concludes.

II. Characterizing Regional Business Cycles

Let \(y_n \) denote the employment growth rate for state \(n \) observed at date \(t \). We group observations for all states at date \(t \) in an \((N \times 1)\) vector \(y_t = (y_{t1}, \ldots, y_{tN})' \), where \(N \) denotes the number of states. Let \(s_t \) be an \((N \times 1)\) vector of date \(t \) recession indicators (so \(s_{tn} = 1 \) when state \(n \) is in recession and \(s_{tn} = 0 \) when state \(n \) is in expansion). Suppose that

\[
y_t = \mu_0 + \mu_1 \odot s_t + \epsilon_t,
\]

where the \(n \)th element of the \((N \times 1)\) vector \(\mu_0 + \mu_1 \) is the average employment growth in state \(n \) during recession, the \(n \)th element of the \((N \times 1)\) vector \(\epsilon_t \) is the average employment growth in state \(n \) during expansion, and \(\odot \) represents the Hadamard product. We assume that \(\epsilon_t \sim i.i.d. N(0, \Omega) \), with \(\epsilon_t \) independent of \(s_t \) for all dates and that \(s_t \) follows a Markov chain.

Equation (1) postulates that recessions are the sole source of dynamics in state employment growth. There is no conceptual problem with adding lagged values of \(y_{t-j} \) or \(s_{t-j} \) to this equation, though that would greatly increase the number of parameters and regimes for which one needs to draw an inference. We regard the parsimonious formulation (1) as more robust than more richly parameterized models for purposes of characterizing the broad features of business cycles across states. We also adopt the simplifying assumption that \(\Omega \) is diagonal:

\[
\Omega = \begin{bmatrix}
\sigma_1^2 & 0 & \cdots & 0 \\
0 & \sigma_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_N^2
\end{bmatrix}.
\]

This reduces the number of variance parameters from \(N(N+1)/2 \) down to \(N \) and, unfortunately, is necessary for the particular algorithms we employ to be valid. Our model thus assumes that coincident recessions, or the tendency of a recession in one state to lead to a recession in another, are the only reason that employment growth would be correlated across states. Again, this is a stronger formulation than one might like, though we think nevertheless an interesting one for getting a broad summary of some of the ways that the business cycle may be propagated across regions.

Despite these assumptions, model (1) is numerically intractable without further simplification. If state 1 can be in recession while states 2 and 3 are not, or state 1 and 2 in recession while 3 is not, there are \(2^N \) different possibilities, or \(2.8 \times 10^{14} \) different configurations in the case of the 48 contiguous states. Implementing the algorithm for inference and likelihood evaluation in Hamilton (1994) would require calculating of an \((\eta \times 1)\) vector \(\xi \), and an \((\eta \times \eta)\) matrix \(P \), which is not remotely feasible. Even if it somehow could be implemented, such a formulation is trying to infer much more information from a \((T \times N)\) data set than can be reasonably justified.\(^2\)

Our approach, as in Frühwirth-Schnatter and Kaufmann (2008), is to assume that recession dynamics can be characterized in terms of a small number \(K << 2^N \) of different clusters and by an aggregate indicator \(z_t \in \{1, 2, \ldots, K\} \) signifying which cluster is in recession at date \(t \). We associate with cluster 1 an \((N \times 1)\) vector \(h_1 = (h_{11}, \ldots, h_{1N})' \) whose \(n \)th element is unity when state \(n \) is associated with cluster 1 and 0 if state \(n \) is not associated with the cluster. When \(z_t = 1 \), all the states associated with cluster 1 would be in recession. In general,

\[
y_t | z_t = k \sim N(m_k, \Omega),
\]

where

\[
m_k = \mu_0 + \mu_1 \odot h_k.
\]

Conditional on knowing the values of \(h_1, \ldots, h_K \), this is a standard Markov-switching framework for which inference methods are well known. The new question is how to infer the configurations of \(h_1, \ldots, h_K \) from the data. We impose two of these configurations a priori, stipulating that \(h_K \) is a column of all 1s (so that every state is in expansion when \(z_t = K \)), and \(h_{K-1} \) is a column of all 0s (every state is in recession when \(z_t = K - 1 \)). We will refer to clusters other than those characterized by \(h_{K-1} \) and \(h_K \) as “idiosyncratic” clusters and let \(K = K - 2 \) denote the number of idiosyncratic clusters. Thus, when \(z_t = 1, 2, \ldots, \kappa \), some states are in recession and others are not. The values of \(h_1, \ldots, h_K \) are unobserved variables that influence the probability distribution of the observed data \(\{y_t\}_{t=1}^T \).

We postulate that there is a \((P_K \times 1)\) vector \(x_{nk} \) that influences whether state \(n \) experiences a recession when \(z_t = k \) according to

\[
p(h_{nk}) = \begin{cases}
1 & \text{if } h_{nk} = 0 \\
\frac{1}{1 + \exp(x_{nk} \beta_k)} & \text{if } h_{nk} = 1
\end{cases}
\]

\(^2\)Others have posited alternative methods for estimating large-panel Markov-switching models. See, for example, Sims, Waggoner, and Zha (2008) and Kaufmann (2010).
for \(n = 1, \ldots, N; k = 1, \ldots, \kappa \). Note that state \(n \) could be affiliated with more than one idiosyncratic cluster.\(^3\) Alternatively, state \(n \) would participate only in national recessions if \(h_{nk} = \cdots = h_{nk} = 0 \).

We think of \(h_k \) as a population parameter—that is, prior to the generation of any data, nature generated a value of \(h_{nk} \) according to equation (2). We then draw a Bayesian posterior inference about the population parameter \(h_k \). Following Holmes and Held (2006), it is convenient for purposes of the estimation algorithm to represent this generation of \(h_{nk} \) given \(h_k \) as the outcome of another unobserved pair of latent variables, denoted \(\xi_{nk} \) and \(\psi_{nk} \). The ability to do so comes from the following observation by Andrews and Mallows (1974). Let \(\psi_{nk} \) have the limiting distribution of the Kolmogorov-Smirnov test statistic, whose density Devroye (1986) writes as

\[
p(\psi_{nk}) = 8 \sum_{j=1}^{\infty} (-1)^{j+1} j^2 \psi_{nk} \exp(-2j^2 \psi_{nk}^2).
\]

Andrews and Mallows showed that if \(\psi_{nk} \sim KS \) and \(e_{nk} \sim N(0,1) \), then \(\xi_{nk} = x_{nk}^T h_k + 2\psi_{nk} e_{nk} \) has a logistic distribution with mean \(x_{nk}^T h_k \) and unit scale parameter, for which the cdf is

\[
Pr(\xi_{nk} \leq z) = \frac{1}{1 + \exp(x_{nk}^T h_k - z)}.
\]

Thus, as in Holmes and Held (2006), we have that

\[
Pr(\xi_{nk} > 0) = \frac{\exp(x_{nk}^T h_k)}{1 + \exp(x_{nk}^T h_k)}.
\]

In other words, if we thought of nature as having generated \(\xi_{nk} \) from an \(N(x_{nk}^T h_k, \lambda_{nk}) \) distribution where \(\lambda_{nk} = 4\psi_{nk}^2 \), then selected \(h_{nk} \) to be unity if \(\xi_{nk} > 0 \), that is equivalent to claiming that the value of \(h_{nk} \) was generated according to the probability specified in equation (2).

III. Bayesian Posterior Inference

The task of data analysis is to draw a Bayesian posterior inference about the values of both population parameters and the unobserved latent variables. We divide these unknown objects into several categories. The set \(\Theta = \{\mu_0, \mu_1, \Omega\} \) characterizes the growth rates for each state in recession and expansion and the standard deviation \(\sigma_n \) of employment growth rates for state \(n \) around those means. The \((K \times K)\) matrix \(\mathbf{P} \) contains the transition probabilities for regimes, with row \(i \), column \(j \) element

\[
p_{ij} = p(z_t = j | z_{t-1} = i),
\]

where, as in Hamilton (1994) each column of \(\mathbf{P} \) sums to unity.

There are also two groups of unobserved latent variables. The \((T \times 1)\) vector \(\mathbf{z} = (z_1, \ldots, z_T) \) summarizes which clusters are in recession at each date, while \(h = (h_1, \ldots, h_N) \) summarizes the cluster affiliation of each state where \(h_k = (h_{1k}, \ldots, h_{Nk}) \) denotes the \((N \times 1)\) vector characterizing which states participate in cluster \(k \). There are also three other sets of variables and parameters associated with that realization of \(h \). Let \(\xi_k = (\xi_{1k}, \ldots, \xi_{Nk}) \) and \(\lambda_k = (\lambda_{1k}, \ldots, \lambda_{Nk}) \) denote the associated auxiliary variables (see Tanner & Wong, 1987) that are viewed as having determined \(h_k \) according to:

\[
\begin{align*}
\xi_{nk} &\sim N(h_{nk}^T \beta_k, \lambda_{nk}), \\
\lambda_{nk} &\sim 4\psi_{nk}^2, \\
\psi_{nk} &\sim KS.
\end{align*}
\]

Collect all the latent variables associated with the cluster affiliations in a set \(H = \{h, \xi, \lambda\} \), where \(\xi = \{\xi_1, \ldots, \xi_N\} \) and \(\lambda = \{\lambda_1, \ldots, \lambda_N\} \), while \(\beta = \{\beta_1, \ldots, \beta_\kappa\} \) denotes the set of all the logistic coefficient vectors.

A. Priors

Recall that a positive scalar \(x \) is said to have a \(\Gamma(\alpha, \beta) \) distribution if its density is

\[
p(x) = \begin{cases} \left[\frac{\beta^\alpha}{\Gamma(\alpha)} \right] x^{\alpha-1} e^{-\beta x} & \text{for } x > 0, \\ 0 & \text{otherwise}. \end{cases}
\]

We adopt a \(\Gamma(v/2, \delta/2) \) prior for \(\sigma_n \):

\[
p(\sigma_n^{-2}) \propto \sigma_n^{-v+2} \exp(-\delta \sigma_n^{-2}/2).
\]

We use an \(N(\mathbf{m}, \sigma^2 \mathbf{M}) \) prior for \(\mu_n = (\mu_{n0}, \mu_{n1})' \):

\[
p(\mu_n|\sigma_n) \propto |\sigma_n^2 \mathbf{M}|^{-1/2} \exp\left(-\frac{(\mu_n - \mathbf{m})'(\sigma_n^2 \mathbf{M})^{-1}(\mu_n - \mathbf{m})}{2}\right).
\]

With independent priors across states, we then have

\[
p(\theta) = \prod_{n=1}^N p(\mu_n|\sigma_n)p(\sigma_n^{-2}).
\]

We model transition probabilities using a Dirichlet prior. Recall that for \(\mathbf{w} = (w_1, \ldots, w_m)' \) with \(w_i \in [0,1] \) and \(\sum_{i=1}^m w_i = 1 \), we say that \(\mathbf{w} \) has a Dirichlet distribution with parameter vector \(\alpha \), denoted \(\mathbf{w} \sim D(\alpha) \), if the joint density of \(\{w_1, \ldots, w_{m-1}\} \) is given by

\[
p(w_1, \ldots, w_{m-1}) = \frac{\Gamma(\alpha_1 + \cdots + \alpha_m)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_m)} w_1^{\alpha_1-1} \cdots w_{m-1}^{\alpha_{m-1}-1}.
\]
Table 1.—Priors for Estimation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior Distribution</th>
<th>Hyperparameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\mu_{tc}, \mu_{tc}]$</td>
<td>$N(m, \sigma^2 M)$</td>
<td>$m = [1, -2]; M = 1; \forall n$</td>
</tr>
<tr>
<td>σ^2</td>
<td>$\Gamma(\frac{1}{2}, \frac{1}{2})$</td>
<td>$\nu = 0; \kappa = 0; \forall n$</td>
</tr>
<tr>
<td>\mathbf{P}</td>
<td>$D(\alpha)$</td>
<td>$\alpha_i = 0; \forall i$</td>
</tr>
<tr>
<td>β_k</td>
<td>$N(b, B)$</td>
<td>$b = 0_r, B = \frac{1}{2}I_k; \forall k$</td>
</tr>
</tbody>
</table>

We adopt the diffuse Dirichlet prior ($D(0)$) for each column of \mathbf{P}:

$$p(\mathbf{P}) \propto p_{11}^{-1} \cdots p_{K1}^{-1}.$$

Our prior distribution for β_k is characterized by independent normal distributions,

$$\beta_k \sim N(b_k, B_k)$$ for $k = 1, \ldots, \kappa$,

with $p(\beta)$ the product of equation (9) over $k = 1, \ldots, \kappa$. Then,

$$p(H, \beta) = p(H|\beta)p(\beta),$$

where $p(H|\beta)$ is the product of equations (3) through (5) over $k = 1, \ldots, \kappa$ and $n = 1, \ldots, N$.

Numerical values for the prior parameters are summarized in table 1. Our prior expectation is that the average employment growth rate in an expansion (reported at an annual rate) would be $+1\%$, and likely between -1% and 3%, while average employment growth in a recession would be between -3% and 1%. The prior mean for β_{ij} implies that variable x_{nj} has no effect on whether state n is included in cluster k, and the prior distribution regards the variable as equally likely to increase or decrease the probability of state n’s inclusion in the cluster. The explanatory variables x_n are normalized to have unit mean, so that if the first element of β_k is unity (a high value for its prior range) and others are at 0, a state for which x_n is at the average value for all states would be included in cluster k with probability $e/(1+e) = 0.73$; a low value (-1) would imply an unconditional probability of $e^{-1}/(1+e^{-1}) = 0.27$. Diffuse priors were used for σ_n^{-2} and \mathbf{P}.

B. Joint Distribution

Let \mathbf{Y} denote the $(T \times N)$ matrix consisting of the observed growth rates for all states at all dates, where T is the length of the time series. The joint density distribution for data, parameters, and latent variables for the logistic clustering formulation is given by

$$p(\mathbf{Y}, \theta, \mathbf{P}, \mathbf{z}, H, \beta) = p(\mathbf{Y}|\theta, \mathbf{z}, H, \beta)p(\mathbf{z}|\theta, \mathbf{P}, H, \beta) \times p(\theta|\mathbf{P}, H, \beta)p(H, \beta)$$

for $p(z_{t-1}, z_t)$ the row z_t, column z_{t-1} element of \mathbf{P}. The $t = 1$ aggregate regime is set to expansion a priori:

$$p(z_1) = \begin{cases} 1 & \text{for } z_1 = K \\ 0 & \text{otherwise} \end{cases}.$$

The unconditional probabilities for \mathbf{z} are given by

$$p(\mathbf{z}|\mathbf{P}) = p(z_1) \prod_{t=2}^T p(z_{t-1}, z_t)$$

The algorithm is initialized with empty clusters and aggregate recessions ($z_t = K - 1$) set to match the NBER recession dates. Regimes for all other time periods are randomized.

C. Drawing Ω Given \mathbf{Y}, μ, \mathbf{P}, \mathbf{z}, H, β

Our general Bayesian inference is via the Gibbs sampler (see Gelfand & Smith, 1990; Casella & George, 1992; Carter & Kohn, 1994), in which we will generate a draw for one block of parameters or latent variables conditional on the others. This section discusses generation of Ω conditional on the data \mathbf{Y} and on the values for μ, \mathbf{P}, \mathbf{z}, H, and β, which were, in turn, generated by the previous step of the iteration.

\[\text{Results randomizing the regimes for all time periods were similar but converged more slowly.}\]
In section III D, we will discuss how to draw μ given $Y, \Omega, P, z, H, \beta$. Both distributions can be derived from

$$ p(\theta|Y, P, z, H, \beta) = \frac{p(\theta, Y, P, z, H, \beta)}{\int p(\theta, Y, P, z, H, \beta) d\theta}, $$

(14)

where the numerator is given by equation (11) and $\int [.] d\theta$ denotes the definite integral over all the possible values for θ. But multiplicative terms not involving θ cancel from the numerator and the denominator of equation (14), so that

$$ p(\theta|Y, P, z, H, \beta) \propto p(Y|\theta, z, h)p(\theta) $$

$$ = \prod_{n=1}^{N} p(Y_n|\theta_n, z, h)p(\theta_n). $$

(15)

Hence, the θ_n given Y, P, z, H, β are independent across n with

$$ p(\theta_n|Y, P, z, H, \beta) \propto p(Y_n|\theta_n, z, h)p(\theta_n) $$

$$ \propto p(\theta_n)\sigma_n^{-2} $$

$$ \times \exp \left[-\sum_{t=1}^{T} \left[y_{m} - \mu_n w(z_t, h) \right]^2/(2\sigma_n^2) \right]. $$

(16)

Substituting equation (7) into equation (16) and dividing by the integral over μ_n, we have

$$ p(\sigma_n^{-2}|Y, \mu, P, z, H) \propto \sigma_n^{-T-2} \exp \left[-(\delta + \delta)\sigma_n^{-2}/2 \right] $$

for $\delta = \sum_{t=1}^{T} [y_{m} - \mu_n w(z_t, h)]^2$. Recalling equation (6), we thus generate σ_n^{-2} from a $\Gamma(\nu + T)/2, (\delta + \delta)/2$ distribution, a standard result as in Kim and Nelson (1999).

D. Drawing μ Given $Y, \Omega, P, z, H, \beta$

Using equation (8) in equation (16) and this time dividing by the integral over σ_n, we again see, as in Kim and Nelson (1999), that

$$ \mu_n|Y, \Omega, P, z, H, \beta \sim N(\mu_n^*, \sigma_n^2 M_n^*) $$

(17)

for

$$ M_n^* = (M^{-1} + C_n)^{-1}, $$

$$ M_n^* = M_n^*(M^{-1}m + c_n), $$

$$ C_n = \left[\sum_{t=1}^{T} w(z_t, h)w(z_t, h)' \right], $$

$$ c_n = \left[\sum_{t=1}^{T} w(z_t, h)y_{m} \right]. $$

E. Drawing P Given Y, θ, z, H, β

Conditional on H and z, this is again a standard inference problem for a K-state Markov switching process, as in Chib (1996). From equation (11),

$$ p(P|Y, \theta, z, H) \propto p(z|P)p(P), $$

allowing us to generate $z_T, z_{T-1}, \ldots, z_1$ sequentially.

G. Generating H

We now define $H_k = \{h_k, \xi_k, \lambda_k\}$ and $H^{[k]} = \{h_j, \xi_j, \lambda_j: j = 1, \ldots, K; j \neq k\}$. Our strategy will be to generate the elements associated with cluster k (denoted H_k) conditional on all the elements of all the other clusters (denoted $H^{[k]}$). We will in turn break down the generation of H_k given $Y, H^{[k]}, \theta, P, z, \beta$ into a series of steps, first generating h_k, then ξ_k conditional on h_k, and finally λ_k conditional on h_k and $\lambda_{k'}$, all conditioning on $H^{[k]}$.

\[\text{(19)} \]
Drawing \(h_n \) given \(Y, H^k, \theta, P, z, \beta \). From equation (12),

\[
p(h_n|Y, H^k, \theta, P, z, \beta) \propto p(Y|\theta, z, h)p(h_n|\beta_k)
\]

\[
= \prod_{n=1}^{N} p(Y_n|h_n, H^k, \theta, z)p(h_n|\beta_k).
\]

In other words, we can generate \(h_n \) for \(n = 1, \ldots, N \) independently across states from

\[
Pr(h_n = 1|Y, h^k, \theta, P, z, \beta) = \frac{p(Y_n|h_n = 1, h^k, \theta, z) Pr(h_n = 1|\beta_k)}{\sum_{j=0}^{1} p(Y_n|h_n = j, h^k, \theta, z) Pr(h_n = j|\beta_k)},
\]

where

\[
Pr(h_n = j|\beta_k) = \begin{cases} \frac{1}{1 + \exp(x_{nk}'\beta_k)} & \text{for } j = 0 \\ \frac{\exp(x_{nk}'\beta_k)}{1 + \exp(x_{nk}'\beta_k)} & \text{for } j = 1 \end{cases}
\]

Drawing \(\xi_k \) given \(Y, h_n, H^k, \theta, P, z, \beta \). Here we have

\[
p(\xi_k|Y, h_n, H^k, \theta, P, z, \beta) = p(\rho, x_k|h_n, \beta_k) = \prod_{n=1}^{N} p(\rho|\xi_k|h_n, \beta_k).
\]

Note that if we had conditioned on \(\lambda_n \), then \(\xi_n \) would have a normal distribution. However, without that conditioning, we are back to the logistic distribution that motivates the parameterization in terms of \(\lambda_n, \xi_n \). Holmes and Held (2006) argued that generating \(\xi_n \) from the unconditional distribution and then generating \(\lambda_n \) conditional on \(\xi_n \) will give the algorithm better convergence properties. For the posterior distribution given \(h_n \), we know that \(\xi_n \) is logistic with mean \(x_{nk}'\beta_k \) and truncated by \(\xi_n \geq 0 \) if \(h_n = 1 \) and \(\xi_n < 0 \) if \(h_n = 0 \). Recall that if \(u \sim U[0, 1] \), then \(\xi = A - \log(u - 1) \) has a logistic distribution with mean \(E(\xi) = A \). This claim may be verified directly as follows:

\[
Pr(\xi \leq z) = Pr[A - \log(u - 1) \leq z] = Pr[\log(u - 1) \geq A - z] = Pr[u^{-1} \geq 1 + \exp(A - z)]
\]

\[
= Pr \left[u \leq \frac{1}{1 + \exp(A - z)} \right] = \frac{1}{1 + \exp(A - z)}
\]

which will be recognized as the cdf of a logistic variable with mean \(A \). Furthermore, \(\xi \geq 0 \) iff \(u \geq 1/(1 + \exp(A)) \). In other words, we want to generate \(u \) from a uniform distribution over the interval \([0, 1/(1 + \exp(A))] \) when \(h_n = 0 \) and \(u \sim U[1/(1 + \exp(A)), 1] \) when \(h_n = 1 \). Note finally that if \(u^* \sim U[0, 1] \), then \(a + (b - a)u^* \sim U[a, b] \). Thus, we generate \(u_n^* \sim U[0, 1] \) and define

\[
u_n = \begin{cases} \frac{1}{1 + \exp(x_{nk}'\beta_k)} & \text{if } h_n = 0 \\ \frac{1}{1 + \exp(x_{nk}'\beta_k)} + \frac{\exp(x_{nk}'\beta_k)}{1 + \exp(x_{nk}'\beta_k)}u_n^* & \text{if } h_n = 1 \end{cases}
\]

Then, \(\xi_n = x_{nk}'\beta_k - \log(u_n^* - 1) \).

Drawing \(\lambda_k \) given \(Y, \xi_k, h_n, H^k, \theta, P, z, \beta \). Now,

\[
p(\lambda_k|Y, \xi_k, h_n, H^k, \theta, P, z, \beta) = p(\lambda_k|\xi_k, \beta_k) \propto p(\xi_k|\lambda_k, \beta_k) p(\lambda_k)
\]

\[
= \prod_{n=1}^{N} p(\xi_n|\lambda_k, \beta_k) p(\lambda_k).
\]

Again, as in Holmes and Held (2006), we set \(r_{nk}^2 = (\xi_n - x_{nk}'\beta_k)^2 \) and use as a proposal density a generalized inverse gaussian density,

\[
\hat{\lambda}_{nk} \sim GIG(1/2, 1, r^2),
\]

for which a draw can be generated as follows. Generate \(w_{nk} \) the square of a standard normal and set

\[
v_{nk} = 1 + \frac{w_{nk} - \sqrt{w_{nk}(4r + 1)}}{2r}
\]

Generate a separate \(\tilde{u}_{nk} \sim U[0, 1] \), and set

\[
\hat{\lambda}_{nk} = \begin{cases} \frac{r}{v_{nk}} & \text{if } \tilde{u}_{nk} \leq 1/(1 + v_{nk}) \\ rv_{nk} & \text{otherwise} \end{cases}
\]

We then decide to accept \(\hat{\lambda}_{nk} \) (or repeat the above steps) using the algorithm described by Holmes and Held (2006).

H. Drawing \(\beta \) Given \(Y, \theta, P, z, H \)

Notice

\[
p(\beta|Y, \theta, P, z, H) = \prod_{k=1}^{K} p(\beta_k|\xi_k, \lambda_k),
\]

which is just a standard normal regression model for each \(\beta_k \) of the form

\[
\xi_k = X_k\beta_k + \epsilon_k,
\]

\[
X_k = \begin{bmatrix} x_{1k}' \\ \vdots \\ x_{nk}' \end{bmatrix},
\]

\[
\epsilon_k \sim N(0, W_k),
\]

\[
W_k = diag[\lambda_{1k}, \ldots, \lambda_{nk}].
\]
Thus,
\[\beta_k | Y, \theta, P, z, H \sim N(b^*_k, B^*_k), \]
where
\[b^*_k = (B_k^{-1} + X_h^t W_k^{-1} X_h)^{-1} (B_k^{-1} b_k + X_h^t W_k^{-1} z_h) \]
and
\[B^*_k = (B_k^{-1} + X_h^t W_k^{-1} X_h)^{-1}. \]

1. Label Switching

The model described above is unidentified in two respects. First, if we were to switch the values of \(\mu_0 \) with \(\mu_1 \), and correspondingly switch the last two columns and then the last two rows of \(P \), the likelihood function would be unchanged. Likewise, if we were to switch the definition of clusters (e.g., swapping \(h_1 \) with \(h_2 \) and switching the first two columns and first two rows of \(P \), the likelihood function would be unchanged.

The first is a familiar issue in the literature, and we deal with it in a typical way by normalizing \(\mu_n \) so that \(n \leq 0 \). We implement this by rejecting any generated \(\mu_n \) that does not satisfy the restriction and redrawing from equation (17) until obtaining a draw that satisfies the normalization restriction.

The second issue is unique to our clustering approach. We mitigate this in part by imposing the restriction that the process cannot transition from one idsynergistic regime to another, that is, imposing \(p_{ij} = 0 \) if \(i \) and \(j \) are both less than \(K - 1 \) and if \(i \neq j \). We are thus ruling out transitions in which recession for a subset of states is followed by those states going out of recession and a different set of states going into recession. We find that once these restrictions are imposed, the posterior distribution for this data set is sufficiently tightly concentrated in the vicinity of a given representation that a given Monte Carlo Markov chain does not jump across to an alternative representation. However, different starting values can converge to different representations of the same system.

J. Cross-Validation

Our next objective is to choose the number of clusters. For this, we use cross-validation (see Picard & Cook, 1984; Gelfand, Dey, & Chang, 1992; Shao, 1993; Bernard & Smith, 1994), which computes a quasi-out-of-sample score by estimating the model with a subset of data and validating with the omitted data and has been adapted for similar econometric models (Geweke & Keane, 2007). We described above an algorithm to generate a draw for \(\{Z_T, \theta, P, h\} \) conditional on the full data set \(Y_T \). We now partition the data \(Y_T \) into \(R \) blocks.\(^6\)

\[
Y_T = \{ Y_1 \ Y_2 \ \cdots \ Y_k \}
\]

\(^6\)The method used here is sometimes described as \(R \)-fold cross-validation, where \(R \) is the number of subsamples over which validation is computed.

for
\[
\mathcal{Y}_r = [y_0 \ y_r+1 \ \cdots \ y_{r+1-1}],
\]
and let \(\mathcal{Y}^{(r)} \) denote the full set of observations with block \(\mathcal{Y}_r \) deleted:
\[
\mathcal{Y}^{(r)} = \{ \mathcal{Y}_1 \ \cdots \ \mathcal{Y}_{r-1}, \ \mathcal{Y}_{r+1} \ \cdots \ \mathcal{Y}_R \}.
\]

Likewise define \(\mathcal{Z}^{(r)} \) to be a matrix of realizations for \(Z_T \) with block \(r \) deleted:
\[
\mathcal{Z}^{(r)} = [Z_1 \ \cdots \ Z_{r-1} \ Z_{r+1} \ \cdots \ Z_R].
\]

We propose using the principle of cross-validation to see how well a particular model that was based on data \(\mathcal{Y}^{(r)} \) predicts the observed value of \(\mathcal{Y}_r \) using an entropy-based loss function. Specifically, we first generate a series of draws for \(\{Z^{(r)}, \theta, P, h\} \) from the posterior distribution conditional on only \(\mathcal{Y}^{(r)} \) implemented by running our basic procedure on the subset of data that omits block \(r \) as if the only data available were those contained in \(\mathcal{Y}^{(r)} \). Let \(\{Z^{[r,m]}, \theta^{[r,m]}, P^{[r,m]}, h^{[r,m]}\} \) denote a particular draw from this posterior distribution. We then generate a draw from the distribution of \(\{Z_r\} \) conditional on \(\{Z^{[r,m]}, \theta^{[r,m]}, P^{[r,m]}, h^{[r,m]}\}, \mathcal{Y}^{(r)} \). Let \(Z^{[r,m]} \) denote the value so generated for observation \(t \), which implies a forecast \(m_{zt}^{[r,m]} \) for the value of \(y_t \). We will judge a model to be superior when

\[
M^{-1} \sum_{m=1}^M \sum_{r=1}^R \sum_{t=1}^{t_{r+1} - 1} \{ \log |\Omega^{[r,m]}| \\
+ (y_t - m_{zt}^{[r,m]}) (\Omega^{[r,m]})^{-1} (y_t - m_{zt}^{[r,m]}) \} \quad (20)
\]
is smaller.

The necessary step for this process is to generate values for \(z_{m^{[r,m]}} \). Note first that the values for \(Z^{[r,m]} \) and \(P^{[r,m]} \) are the only relevant conditioning information:

\[
p(Z_r | Z^{[r,m]}, \theta^{[r,m]}, P^{[r,m]}, h^{[r,m]}, \mathcal{Y}^{(r)}) = p(Z_r | Z^{[r,m]}, P^{[r,m]}),
\]

Consider the first generation for the last block (\(r = R \)). From the Markov chain property of \(z_t \), this is trivially accomplished by setting \(z_{t}^{[r,m]} = k \) with probability \(p^{[r,m]}_{k} \) sequentially for \(t = t_R, t_{R+1}, \ldots, T \), where \(p^{[r,m]}_k \) denotes the transition probability for a transition from \(z_{t-1} = i \) to \(z_t = j \) associated with the draw \(m \) from the posterior distribution given \(\mathcal{Y}^{(r)} \) and \(z_{t-1}^{[r,m]} \) denotes the previously generated value. This iteration begins for \(t = t_R \) by setting \(z_{t}^{[r,m]} \) to the draw \(r, m \) value for \(z_{t_R} \).

Consider the next generation for the first block (\(r = 1 \)). Here we make use of the reverse transition probabilities:

\[
q_{ij}^{[r,m]} = \Pr(z_t = i | z_{t+1} = j, P^{[r,m]}),
\]
which can be calculated from the following considerations:

\[
\Pr(z_t = i | z_{t+1} = j) = \frac{\Pr(z_t = i, z_{t+1} = j)}{\Pr(z_{t+1} = j)} = \frac{\Pr(z_t = i) \Pr(z_{t+1} = j | z_t = i)}{\Pr(z_{t+1} = j)} = \frac{\pi_i \pi_j}{\pi_j}
\]

for \(p_j \) the forward transition probabilities and \(\pi_j \) the ergodic probabilities. The latter can be calculated as in Hamilton (1994, eq. 22.2.26):

\[
\begin{bmatrix}
\pi_1 \\
\vdots \\
\pi_K
\end{bmatrix} = (A'A)^{-1}A'e_{K+1}
\]

\[
A = \begin{bmatrix}
I_K - P \\
1'
\end{bmatrix}
\]

for \(1 \) a \((K \times 1)\) vector of 1s and \(e_{K+1} \) a \((K + 1) \times 1\) vector whose \(K + 1 \) element is unity and others are all 0. Thus,

\[
d_{[r,m]}^{(t+1),[r,m]} = \frac{\pi_i^{[r,m]} p_j^{[r,m]}}{\pi_j^{[r,m]}}.
\]

We thus generate \(z_{t+1}^{[r,m]} = k \) with probability \(d_{[r,m]}^{(t+1),[r,m]} \) sequentially backward for \(t = t_2 - 1, t_2 - 2, \ldots, 1 \).

We can generate zs for the middle blocks \(r = 2, \ldots, R - 1 \) adapting the approach in Hamilton (1994). For \(t = t_r, t_r + 1, \ldots, t_{r+1} \), let

\[
p_{[r,m]}^{(t+1),[r,m]} = \Pr(z_t = k | Z_{1}^{[r,m]}, \ldots, Z_{t-r}^{[r,m]}, P^{[r,m]})
\]

and collect these scalars in the vector \(\xi_{[r,m]}^{(t+1),[r,m]} = (p_{[r,m]}^{(1),[r,m]}, p_{[r,m]}^{(2),[r,m]}, \ldots, p_{[r,m]}^{(t_{r+1}),[r,m]})' \). This can be calculated recursively from

\[
\xi_{[r,m]}^{[r,m]} = P^{[r,m]} \xi_{[r,m-1]}
\]

for \(t = t_r, t_r + 1, \ldots, t_{r+1} \) starting from \(\xi_{[r,m]}^{[r,m]} \) the \((K \times 1)\) vector whose element in position \(z_{t-r-1} \) is unity and all other elements are 0, and where \(P^{[r,m]} \) is the matrix of transition probabilities (arranged so that columns sum to unity). Let \(S^{[r,m]} = \{Z_{0}^{[r,m]}, \ldots, Z_{t-r-1}^{[r,m]}, P^{[r,m]} \} \), and notice next that for any \(t \in \{t_r, \ldots, t_{r+1} - 1\} \),

\[
\Pr(z_t = j | z_{t+1} = i, S^{[r,m]}) = \frac{\Pr(z_t = j, z_{t+1} = i | S^{[r,m]})}{\Pr(z_{t+1} = i | S^{[r,m]})} = \frac{\pi_j p_{[r,m]}^{(t+1),[r,m]}}{\pi_i p_{[r,m]}^{(t+1),[r,m]}}
\]

from which

\[
\Pr(z_t = j | Z_{1}^{[r,m]}, \ldots, Z_{t-r}^{[r,m]}, Z_{t-r+1}^{[r,m]}, \ldots, Z_{R}^{[r,m]}, P^{[r,m]}) = \frac{\pi_j p_{[r,m]}^{(t+1),[r,m]}}{\pi_i p_{[r,m]}^{(t+1),[r,m]}}.
\]

We can thus generate a value for \(z^{[r,m]}_{t-r-1} \) from the above equation for \(t = t_r + 1 \) given the known value \(z^{[r,m]}_{t_r+1} \) and can generate the values for \(t = t_r - 2, t_r - 3, \ldots, t_r \) recursively by iterating on the equation backward.

IV. Empirical Results

The data used to measure state-level business cycles are the seasonally adjusted, annualized quarter-to-quarter growth rates of payroll employment. The sample period is 1956:Q2 to 2007:Q4; Alaska and Hawaii are excluded. These data were obtained from the BLS.

In addition to the time series data, the model in the preceding section requires a set of state-level covariates characterizing the ex ante likelihood of membership in a given cluster. We report results for a specification with \(p_4 = 4 \) covariates used to explain the cluster affiliations of each state, with the same vector of explanatory variables used for each cluster \((x_{ok} = x_k \text{ for } k = 1, \ldots, \kappa) \). The vector \(x_k \) includes barrels of oil produced per 1008 of state GDP, manufacturing employment share, financial activities employment share, and the share of total state employment accounted for by small firms. We normalize each variable by dividing by the sample mean. Values for these explanatory variables are displayed in figure 1.

We report results for some of the parameters and unobserved latent variables of interest based on the five pooled runs of 25,000 Gibbs sampler iterations, having discarded an initial burn-in of 250,000 iterations each. Table 2 displays the cross-validation results using \(R = 10 \) subsamples for various values of \(k \), the number of idiosynchratic clusters. Cross-validation chooses \(\kappa = 3 \) idiosynchratic clusters with \(\kappa = 4 \) being the second closest alternative. We also

7The measure most synonymous with GDP at the state level is gross state product (GSP). Unfortunately, GSP is available only at an annual frequency and at a two-year lag, making it nonviable for a study of business cycles.

8Even at the quarterly frequency, the growth rate in state-level employment can experience large swings caused by idiosynchratic state experiences (e.g., mining strikes in West Virginia). To focus on the estimation of the business cycle, we check for outliers defined as observations more than 3 standard deviations from each series’ mean. We then set these values at 2 standard deviations from the series mean.

9The oil share was calculated as 100 times the number of barrels of crude oil produced in the state in 1984 (from the Energy Information Administration, http://tonto.eia.doc.gov/dnav/pet/pet_crdf_crpdfd_adc_mibbl_m.htm) divided by 1984 state personal income (from the Census Bureau, http://www.census.gov/compendia/statab/tables/08s068.xls). The manufacturing and financial activities shares of employment by state were calculated as the average of the annual industry (NAICS) shares of total payroll employment from 1990 to 2006 and also from the BLS. The share of small firms was computed as an average of the share of total employment in firms with fewer than 100 employees and was taken from the Statistics of U. S. Businesses data set.

Downloaded from http://www.mitpressjournals.org/doi/pdfplus/10.1162/REST_a_00197 by guest on 18 March 2021
Figure 1.—Values of Explanatory Variables for Logistic Probabilities across states

Top left: The oil share was calculated as 100 times the number of barrels of crude oil produced in the state in 1984. Top right and bottom left: The manufacturing and financial activities shares of employment by state were calculated as the average of the annual industry (NAICS) shares of total payroll employment from 1990 to 2006, also from the BLS. Bottom right: The share of small firms was computed as an average of the share of total employment in firms with fewer than 100 employees and was taken from the Statistics of U.S. Businesses data set.

Table 2.—Cross-Validation Results

<table>
<thead>
<tr>
<th>Number of Clusters</th>
<th>Score(^a)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Markov(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2,122.4</td>
<td>2,056.3</td>
<td>2,071.5</td>
<td>2,160.2</td>
<td>2,146.3</td>
<td>2,167.6</td>
<td>2,179.1</td>
<td></td>
</tr>
</tbody>
</table>

Cross-validation uses ten subsample splits.

\(^a\) Score = \(M^{-1} \sum_{t=1}^{M} \sum_{r=1}^{R} \{ \log |\Omega_{gr}^{r}| + (y_{t} - \mathbf{m}_{g,r})' (\mathbf{y}_{t} - \mathbf{m}_{g,r}) \}.\)

\(^b\) Markov is the model with independent Markov-switching states (e.g., Owyang et al., 2005).

calculated the comparable cross-validation measure when a single-equation Markov-switching model is estimated separately for each state.\(^9\) Note that the latter specification estimates 96 separate regime transition probabilities (\(p_{n,11}\) and \(p_{n,22}\) for \(n = 1, 2, \ldots, 48\)), whereas the cluster specification requires only \(4\kappa + 2\) transition probabilities—for example, fourteen parameters for our favored case of \(\kappa = 3\).

Although the cluster specification is much less richly parameterized, its substantially better fit reflects the feature in the data that knowing whether state \(n\) is in recession at date \(t\) is extremely helpful for predicting whether state \(\ell\) will be in recession at date \(t + 1\).

Table 3 shows the posterior medians and means for the model parameters \(\mu_0\), \(\mu_1\), and \(\sigma^2\) for each state. Table 4 gives the posterior means of the logistic coefficients \(\beta_k\) associated with each of the idiosyncratic clusters \((k = 1, \ldots, 3)\), with a bold entry signifying that 68% of the posterior draws were on the same side of 0 as the reported posterior mean. We also translate these coefficients into discrete derivatives (denoted \(\delta_k\)). The \(i\)th element of \(\delta_k\) has the following interpretation.

Let \(\bar{x}_i = N^{-1} \sum_{n=1}^{N} x_{in}\) denote the average value for the \(i\)th explanatory variable. Suppose we compare two states, each of which has \(x_{jn} = x_j\) for all \(j \neq i\), but in the first state, characteristic \(i\) is 1 standard deviation below the average \(\bar{x}_i\), and in the other state, characteristic \(i\) is 1 standard deviation above the average. How would the probability of inclusion in cluster \(k\), as calculated from equation (2), differ between the two states? The value for this magnitude implied by the posterior mean for \(\beta_k\) is reported as the \(i\)th element of the vector \(\delta_k\) in table 4. For example, a state that was average in all respects but 1 standard deviation below average in the importance of oil production would be rather unlikely to be included in cluster 1, whereas a state 1 standard deviation above the average would be quite likely to be included. An important role for manufacturing or finance makes a state less likely to be part of this cluster. States with an important role for finance were less likely to be part of cluster 2 and more likely to be included in cluster 3.

Table 5 reports posterior means of the regime transition probabilities \(p_{ij}\). Starting with the first column, suppose that \(z_{t} = 1\) in quarter \(t\), which would mean that only those states that are included in cluster 1 would be in recession. We have...
rulled out a priori the possibility that these states go out of recession and a new subset of states begins a recession at $t + 1$ (i.e., we imposed $p_{12} = p_{13} = 0$). Although we did not impose $p_{14} = 0$, the posterior mean of p_{14} in fact turns out to be quite close to 0. Thus, if the states in cluster 1 go into recession, a national recession is unlikely. Moreover, the cluster 1 recession is relatively persistent, lasting an average of 3.2 quarters. By contrast, if the states in cluster 2 are in recession (i.e., $z_t = 2$), we see a national recession eventually arrive, usually within two and a half quarters ($p_{24} = 0.40, p_{25} = 0$). Similarly, the regime $z_t = 3$ would be characterized as the subset of states that have extended recessions. The regime $z_t = 3$ can be entered through either expansion or recession and typically signals a forthcoming national recession.

Figure 2 plots the posterior means for the regime probabilities given the data. The top panel is calculated as the fraction out of the 125,000 simulations for which z_t for the indicated quarter is equal to 4—that is, it shows the posterior probability of a national recession. These correspond fairly closely to the traditional NBER dates, which are indicated by shaded regions in the top panel, with the exception of a few short downturns (no longer than one quarter) based on state employment data that are not characterized by the NBER as a national recession. Also, our framework would date both the 1990–1991 and 2001 recessions as substantially longer based on state employment growth than the traditional NBER dates specify. Interestingly, the recession that the NBER dates as 2007–Q4–2009:Q2 was recognized by this algorithm as beginning in 2007:Q2, and this assessment was made using data only through 2007:Q4. The approach thus provided an earlier signal of the most recent downturn than was provided by most other approaches at the time.

The shaded regions in the bottom three panels of figure 2 are based on the $z_t = 4$ dates [when $Pr(z_t = 4) > 0.99$] rather than the NBER dates, to clarify the nature of the estimated dynamics. The cluster 1 states experienced a uniquely idiosyncratic recession during the oil price collapse in the mid-1980s, as well as several briefer episodes in the 1950s and 1960s. The recession of 1957–1958 was preceded by a downturn in the cluster 2 states, and there is also some possibility that the recessions of 1980 and 2001 began in these states. By contrast, a downturn in cluster 3 states preceded the national downturns in 1973–1975, 1990–1991, and 10

10 This result is consistent with the so-called jobless recovery periods (see Koenders & Rogerson, 2005, for a survey).
2007–2009, suggesting a possible role of financial factors in precipitating those recessions. Cluster 3 was also slow to recover from the 1990–1991 recession.

Figure 3 indicates which states are affected by the respective idiosyncratic regimes and conveys some idea of the role played by the exogenous state characteristics x_n and observed employment growth rates Y in associating states with particular clusters. The left column of figure 3 summarizes the inference we would draw if we knew nothing about the state other than the state characteristics x_n and the likely values for β_k as inferred from the employment data; that is, it reports for each state n and cluster k the value of

$$\int \frac{\exp (x_n' \beta_k)}{1 + \exp (x_n' \beta_k)} f(\beta_k | Y).$$

The right column of figure 3 reports the posterior probability of cluster designations given all the observed data:

$$p(h_{nk} = 1 | Y).$$

The information based on state characteristics alone—specifically, the importance of oil for the state—gives a fairly sharp designation for the states included in cluster 1 (see row 1, column 1 of Figure 3). The first and second columns of the first row of figure 3 have much in common. However, this appears to be because the particular pattern for the employment behavior of states in this cluster is so closely aligned with the importance of oil production for the state. A cluster designation similar to what we see in the first row of figure 3 has emerged from virtually all of the specifications we have studied. Specifically, we also estimated a version of the model with no explanatory variables at all and found a
similar grouping of states that experienced their own separate recession in the mid-1980s. For that matter, we found the same pattern when we estimated models separately for each state in isolation. The conclusion that the oil-producing states experienced their own recession at the time of the oil price collapse appears to be fairly robust.

For cluster 2, the information content in the prior based on the state characteristics is not as sharp. A priori, states belonging to cluster 2 appear to be those not belonging to the oil-producing cluster. The observed employment growth rates refine and sharpen these designations considerably (row 2, column 2). Based on information from both the prior and the state-level employment data, the cluster appears to include primarily the manufacturing states in the Southeast, Indiana, Michigan, and a few scattered states around the Pacific Northwest and Maine.

Based on state-level characteristics, cluster 3 appears a priori likely to consist of states with a higher employment share in financial industries but without a high component of oil production (row 3, column 1). Again, the business cycle data refine these designations. The posterior cluster probabilities for cluster 3 place a high likelihood on including a number of states on the East Coast, with the addition of California and Arizona.

Results for $\kappa = 4$ clusters have a similar character, with one cluster capturing the mid-1980s recession in the
oil-producing states and the other three clusters characterized by groups of states that go into recession a little earlier or come out of recession a little later than other states. It is interesting that this feature (i.e., that recessions tend to be a national phenomenon, with idiosyncrasies manifest in the timing of when they start or stop in each state) is a broad finding from different specifications of our approach. This suggests that although different recessions may have different original causes, the key defining characteristic may be their breadth. What makes an episode a recession is the fact that everybody is experiencing problems at about the same time.

V. Conclusion

Two broad conclusions emerge from our results. First, we have found substantial heterogeneity across recessions. Different recessions seemed to begin in different ways. In distinct episodes, different parts of the country could have manifested the first signs of a downturn, and the oil and agricultural states have on occasion experienced a recession while the rest of the country appears to be doing fine. Based on the geographic patterns, recessions are not all alike; they appear to differ in their causes and propagation.

Nevertheless, we were surprised that despite this clear heterogeneity, there appears to be a strong national component to most recessions. Although our framework allowed the possibility of groups of states at times moving in complete isolation of the rest of the nation, we find such behavior to be the exception rather than the rule. The primary differences we find across states come down to timing—when the recession began and ended for that state—and not whether the state was able to avoid a national downturn altogether. This suggests to us that although recessions are different in terms of their causes, there is something similar about the event itself. We would propose that a salient characteristic of a recession is the comovement across states and the eventual tendency for the entire nation, or at least a very large region, to experience contraction at the same time.

REFERENCES

