HETEROGENEOUS FIRMS OR HETEROGENEOUS WORKERS? IMPLICATIONS FOR EXPORTER PREMIUMS AND THE GAINS FROM TRADE

Alfonso Irarrazabal, Andreas Moxnes, and Karen Helene Ulltveit-Moe*

Abstract—We investigate to what extent worker heterogeneity explains the well-known wage and productivity exporter premiums, employing a matched employer-employee data set for Norwegian manufacturing. The wage premium falls by roughly 50% after controlling for observed and unobserved worker characteristics, while the total factor productivity premium falls by 25% to 40%, suggesting that sorting explains up to half of these premiums. Recent trade models emphasize the role of within-industry reallocation of labor in response to various shocks to the economy. Our findings suggest that aggregate productivity gains due to reallocation may be overstated if not controlling for sorting between firms and workers.

I. Introduction

INTERNATIONALIZED firms are better performers than purely domestic firms. In trade models with heterogeneous firms, trade liberalization gives aggregate productivity gains because the least productive firms are squeezed out of the market and labor is reallocated toward the best-performing firms (see Melitz, 2003). But the unambiguous positive reallocation effect relies on the assumption that exporters’ superior performance reflects intrinsic firm quality. But are we confusing superior firms with superior workers? If the exporter premium relates to differences in firms’ workforce rather than to intrinsic firm quality, the welfare implications of new trade theory with heterogeneous firms need to be revisited and will obviously depend on the sorting between firms and workers.

We already know that exporters perform better than other firms. Their wages are higher, and they are larger and more productive. Differences in capital intensity explain part of the productivity differential, but the exporter productivity premium remains after controlling for capital intensity. Obtaining a better understanding of why exporters do so much better is important. It is important in order to estimate the impact of trade on reallocations and growth and for the design of sound industrial policy. In this paper, we seek to go one step further in opening the black box of the exporter premium and answer the question of whether exporters are intrinsically more efficient or merely employ better workers.

Existing productivity analyses of exporters versus non-exporters are typically based on data sets that contain little information on the workforce. Hence, there is little empirical evidence supporting the commonly shared view that exporters are intrinsically better performers than other firms. Our objective is to try to disentangle superior workers from superior firms. We do this by using a rich and comprehensive matched employer-employee data set that allows us to calculate different measures of labor quality as well as augmented measures of total factor productivity (TFP).

To examine the role of labor quality versus intrinsic firm quality, we match three Norwegian data sets: a firm panel data set with detailed firm-level information covering the entire population of Norwegian manufacturing firms with information on various measures of performance and inputs, a firm panel data set with information on exports and imports (for the use as intermediates), and a worker panel data set covering the entire Norwegian labor force. The last includes detailed information on workers’ education, labor market experience, gender, and tenure and can be matched to each individual firm. The combined insight from these three data sets allows us to calculate improved measures of TFP that controls for observed and unobserved worker characteristics and to assess the relative importance of labor quality in shaping exporters’ wage and productivity premiums.

We calculate simple TFP measures based on the same types of input data that are most commonly used in the empirical literature on trade and heterogeneous firms and augmented TFP measures where we adjust for differences in labor quality. By comparing the results on TFP, we find that 25% to 40% of the exporter productivity premium reflects differences in workforce rather than intrinsic firm quality. Furthermore, we find that roughly half of the exporter wage premium reflects workforce differences, suggesting that sorting between high-productivity workers and high-productivity firms is important.

Our empirical results establish that in order to assess the impact of various shocks on aggregate industry productivity, we need information on the labor dynamics preceding firm exit. Our findings also suggest that the aggregate productivity gains from intra-industry reallocations following trade liberalization are smaller once we account for worker heterogeneity and sorting.

The rest of the paper is organized as follows. In section II, we review related literature. In section III, we provide a brief overview of the data as well as characteristics of the labor force of exporters and non-exporters. Section IV describes the three econometric routes we follow in order to account for differences in labor quality across firms. In section V, we report interim results on different production functions and

Received for publication February 15, 2012.

* Irarrazabal: Norges Bank; Moxnes: Dartmouth College and BI Norwegian Business School; Ulltveit-Moe: University of Oslo and CEPR.

We thank Andrew Bernard, Jonathan Eaton, Marc Melitz, Espen Moen, Dale Mortensen, Steve Redding, and Kjetil Storesletten, as well as seminar participants at various institutions. We gratefully acknowledge financial support from the Research Council of Norway.

A supplemental appendix is available online at http://www.mitpressjournals.org/doi/suppl/10.1162/REST_a_00285.

1 See Bernard et al. (2007) for recent numbers and Wagner (2007) for a cross-country survey.

2 For analysis of U.S. exporter productivity, see, for example, Bernard and Jensen (1999) and Bernard et al. (2007). Analyses of other countries confirm this impression. See Wagner (2007) for a survey and Mayer and Ottaviano (2007) for evidence on European firms.

3 A few studies employ data that contain information on white- and blue-collar workers, for example, Bernard and Jensen (1999) and Pavcnik (2002).
estimate exporter premiums controlling for workforce characteristics. Moreover, we investigate the relationship between exporter premiums and sorting. Section VI concludes.

II. Related literature

There is now a substantial literature, based on data sets from a number of countries, documenting that exporters are more productive than other firms. Their productivity premium remains after accounting for differences in capital intensity and differences in the use of nonproduction versus production workers. But it still remains to be explained why exporters do so much better than nonexporters. The hypothesis we investigate in this paper is whether exporters appear more productive simply because they employ workers who, due to a set of different characteristics, are more productive than those working for nonexporters. To our knowledge, there are no attempts to assess what, if any, part of the exporter total factor productivity premium can be attributed to superior workers rather than to the firm as such. However, there are recent studies on exporters' wage premium that are related to our work.

In their paper on exporters, jobs, and wages, Bernard, Jensen, and Lawrence (1995) documented that exporters pay higher wages to production as well as to nonproduction workers. Following their paper, there has been an increasing number of studies analyzing whether this wage premium is real, in the sense that it remains after controlling for various worker characteristics. Recent studies conclude that the wage premium still remains (see Schank, Schnabel, & Wagner, 2007; Munch & Skaksen, 2008; Frías, Kaplan, & Verhoogen, 2009).

Related to our work are the productivity analyses that have aimed to account for differences in input quality when estimating the production function. As Griliches (1957) noted, productivity dispersion within individual industries may indeed reflect differences in the quality of inputs rather than intrinsic differences across firms. The most important reason that so many have failed to account for labor quality is probably the lack of data. One recent exception is Fox and Smeets (2011), who use a matched-employer-employee data set for Danish manufacturing. They estimate a production function adding a number of worker characteristics and assess the role of human capital variables in explaining the productivity dispersion within industries. However, they do not address the exporter premium or discuss the impact of heterogeneous inputs on reallocation and aggregate growth.

III. Data and Descriptives

We match data on firms, trade, and employees. The firm data set is Statistics Norway’s Capital database, an unbalanced panel of all nonoil joint stock companies spanning the years 1996 to 2005, with approximately 8,000 firms per year. The panel provides information on value added, employment, and capital. In 2005 the data set covered about 90% of manufacturing output in Norway. Value added is deflated using an industry-specific commodity price index provided at the three-digit NACE level by Statistics Norway.

The Capital database is matched with data on exports and imports at the firm level assembled from customs declarations. These data make up an unbalanced panel of all yearly exports and imports values by firm. The trade data have then been merged with the capital database, based on a unique firm identifier. In line with other studies for a wide range of countries, we find that the majority of firms do not engage in exporting. In 1996, only 28.3% were exporting, while in 2005, this number had risen to 36.3%.

The main source of employment and wage data for the period 1996 to 2005 is the employer’s register (AT), which holds annual records of worked hours and earned wages on the individual level. Statistics Norway links this register with the tax office database (LTO) to create a correspondence between the annual wage reported by the employer and those reported to the tax authorities by the individual. This joint file (ATmLTO) presents a much cleaner data set and is therefore used instead of the AT register. Besides wages by person-firm-year, the database consists of first and last dates of the employment spells within a year, total number of days worked, and an indicator for full-time and part-time employment. The ATmLTO data are also merged with demographics data that contain information about labor market experience, years of education, and gender by person-year.

Matching these three described data sets leaves us with a unique panel covering the population of all mainland joint stock manufacturing firms along with trade and employee data.

A first, brief look at the matched employer-employee data set for Norwegian manufacturing suggests that the labor force of Norwegian exporters differs from that of nonexporters. Figure 1 provides a comparison of average job tenure (years of experience in current firm) of exporters versus nonexporters across industries (see table 1 in the online appendix for the list of industries), while figure 2 provides the same type of comparison for labor market experience and education level. Industries are indicated on the x-axis, while the y-axis shows the percentage difference between exporters and nonexporters within each sector. They illustrate that exporters typically employ workers with longer tenure, more experience, and higher education than the average nonexporter.

4 See Bernard et al. (2007) for an overview of the evidence.
5 Statistics Norway’s capital database is described in Raknerud, Rønningen, and Skjerpfe (2004).
6 http://www.ssb.no/english/subjects/08/02/20/ppi_en.
7 A firm is defined as an exporter if sales abroad exceed NOK 10,000.
8 Mainland Norway consists of all domestic production activity except from the exploration of crude oil and natural gas, services activities incidental to oil and gas, transport via pipelines, and ocean transport. See Statistics Norway www.ssb.no/english/subjects/09/01/terms.
9 Tenure is measured as number of years worked for the firm where the person is currently employed. Education level is measured in terms of number of years of education. Labor market experience is measured as total number of years worked. Labor characteristics are averaged at the industry level by using firm employment as weights.
does. Moreover, the figures show that the labor force differences vary substantially across industries. In some industries, such as chemicals (nace 24) and basic metals (nace 27), the exporter premiums related to tenure, experience, and education are large, while in other industries, such as textiles (nace 17), there is little difference between the exporters’ and nonexporters’ employees.

IV. Production Function and Labor Quality

In this section, we amend the standard production function procedure to account for heterogeneous workers. We discuss three alternative approaches to model and quantify labor quality: Griliches’ human capital approach, using the estimated wage bill as a proxy for quality, and using the average wage bill as a proxy for quality. But before describing these three approaches in more detail, we present the general production function framework.

A. The Production Function

The production function takes the form

\[y_{it} = \beta_0 + \beta_l l^*_{it} + \beta_k k_{it} + \mu_{it} + \eta_{it}, \] (1)

where \(y_{it} \) denotes the real value added of firm \(i \) in period \(t \), \(l^*_{it} \) gives quality-adjusted employment, and \(k \) denotes the real value of capital services (all in logs). \(\beta_l \) and \(\beta_k \) are the input elasticities of labor and capital. \(\mu_{it} \) is unobserved productivity, and \(\eta_{it} \) is i.i.d. noise (either measurement error or a shock to productivity, which is not forecastable during the period in which labor can be adjusted). Although we do not explicitly include subscripts for industry, we let \(\beta_l \) and \(\beta_k \) vary by industry, at the two-digit NACE level.

We follow Olley and Pakes (1996), Ackerberg, Caves, and Frazer (2006), and De Loecker (2010) and estimate the production function using a structural proxy estimator. As is well known, the Olley and Pakes (1996) procedure controls for endogeneity in capital and labor by constructing a proxy for \(\mu_{it} \) from observable variables. Additionally, we allow the possibility of exporting to affect productivity (learning by exporting) by specifying a process for productivity that depends on past export participation, following De Loecker (2010). Moreover, we adjust their techniques to account for labor quality heterogeneity and follow a two-step procedure.

An alternative to a regression approach would have been to use Tornqvist indices that decompose labor’s contribution into quality and quantity effects. Due to the fact that Tornqvist indices provide a second-order local approximation to any continuous function, this would have given us more flexibility to deal with worker characteristics. It would, moreover, have allowed us to relax the assumption of homothetic technologies, which would have been an advantage, with exporters typically being larger firms with different factor mixes from nonexporters. But the Tornqvist technique also has some disadvantages that we regard as relatively more serious than its advantages and made the regression approach our preferred choice. The Tornqvist index is based on the assumption that factor shares equal elasticities of output with respect to inputs.

But with more than one quasi-fixed input, this implies that we ignore adjustment frictions. Moreover, it also implies that we assume competitive factor markets with no rents. As we will see, we find evidence for frictions in the labor market, which makes this assumption problematic.

First, consider a process for productivity where \(\mu_{it} \) is determined by lagged productivity and lagged export status indicator \(e_{it-1} \).

\[\mu_{it} = g(\mu_{it-1}, e_{it-1}) + \xi_{it}, \] (2)

where \(\xi_{it} \) is the news term in the Markov process, uncorrelated with any lagged choice variables of the firm. We follow

10 We describe the deflators used and the construction of the capital measure in the online appendix.

11 Estimating a restricted model without learning does not change any substantive results in this paper.
De Loecker (2010) and include lagged export status in the law of motion, so that exporting potentially can have an impact on future productivity.

Labor is a nondynamic input, but capital is assumed to be a dynamic input subject to an investment process,

\[k_t = \kappa (k_{t-1}, i_{t-1}). \]

(3)

Hence, the capital stock of the firm in period \(t \) was determined in period \(t - 1 \), and \(k_t \) must therefore be uncorrelated with the innovation in the productivity process, \(\xi_{it} \).

The equilibrium investment policy function is then a function of the state variables of the firm, \(i = f_t(\mu_t, k_t, e_t) \), where \(e_t \) is included since the export status of a firm has an impact on future productivity provided that \(f \) is strictly increasing in \(\mu_t, k_t = f^{-1}(i_t, k_t, e_t) \). The production function can then be written as

\[y_t = \phi_i i_t^\zeta + \phi_k (i_t, k_t, e_t) + \eta_t, \]

(4)

where \(\phi_i (i_t, k_t, e_t) = \beta_0 + \beta_k k_t + f^{-1}(i_t, k_t, e_t) \).\(^{12}\)

In the first stage, we estimate equation (4) by OLS or non-linear least squares (NLS) depending on the method by which we account for labor quality differences. We approximate \(\phi_i \) by a third-order polynomial expansion with a full set of interactions. We allow the polynomial to vary over time by including year dummies as well as year dummies interacted with investment and capital. From estimating the first stage, we obtain an estimate of \(\beta_0, \beta_k, \hat{\gamma}_l, \beta_l \), and \(\phi_i \).

In the second stage, given a guess of the capital coefficient \(\beta_k \), we can back out unobserved productivity,

\[\hat{\mu}_t = \hat{\phi}_l - \hat{\beta}_k k_t. \]

(5)

We can then decompose \(\mu_t \) into its conditional expectation at time \(t - 1 \),

\[E \left[\xi_{it} | \mu_{t-1}, i_{t-1} \right] \]

and a deviation from that expectation \(\xi_\kappa \), by estimating by OLS,

\[\hat{\mu}_t = g (\hat{\mu}_{t-1}, e_{t-1}) + \hat{\xi}_t, \]

(6)

where we assume that \(g() \) is linear, \(g() = \gamma + \gamma_k \hat{\mu}_{t-1} + \gamma_e e_{t-1} \).\(^{13}\) We then form the residual \(\hat{\xi}_t = \hat{\mu}_t - g (\hat{\mu}_{t-1}, e_{t-1}) \). By the properties of a conditional expectation, the innovation component of the productivity process satisfies

\[E \left[\xi_{it} k_{t-1} \right] = E \left[\xi_{it} m_{t-1} \right] = 0, \]

(7)

since capital in \(t \) is determined by investment in \(t - 1 \). We also add the following overidentifying restrictions

\[E \left[\xi_{it} k_{t-1} \right] = E \left[\xi_{it} m_{t-1} \right] = 0, \]

where \(M(\beta_k) \) is the 3 \times 1 column vector representing the empirical counterpart of the theoretical moments above.

Our measure of TFP is then \(\text{tfp}_t = y_t - \beta_l^* k_t \). In the subsequent sections, we construct several variations of \(\text{tfp}_t \), depending on the treatment of \(l^* \).

As is well known (Klette & Griliches, 1996; Klette, 1999; De Loecker, 2011; De Loecker & Warzynski, 2012), measures of revenue-based productivity capture both efficiency and markups. Hence, the export productivity premium may also reflect differences in markups across exporters and non-exporters. This bias will occur regardless of whether \(l^*_0 \) or \(l^*_1 \) (unadjusted or adjusted labor) is chosen as the preferred measure of labor in the production function. Since the main objective of this paper is to demonstrate that controlling for labor quality changes the premium (and not necessarily finding its level), we have chosen to abstract from this complication here.

Furthermore, a concern is that our estimate of worker quality \(l^*_0 \) may be biased in the presence of variable markups. For example, if high markups produce an upward bias in \(l^*_0 \), then our methodology will give a downward bias in productivity. We use three different methods to account for labor quality. In the first approach, Griliches’s human capital approach, we estimate labor quality based on observable worker characteristics, so \(l^*_0 \) should be robust to differences in markups. In the second approach, labor quality is simply proxied by average wages. In this case, \(l^*_0 \) may capture differences in markups (for example, due to rent sharing). In the third approach, labor quality is inferred from the worker fixed effects in a Mincer regression with worker and firm fixed effects. In this case, to the extent that high firm-level wages are controlled for by the firm fixed effect, labor quality should be robust to variable markups. Our results show that the adjusted exporter premium is fairly constant across the three methods, suggesting that bias in \(l^*_0 \) is not a major concern.

B. Griliches’ Measure of Human Capital

To account for differences in firms’ labor stock, we first follow Griliches (1957), who argued that mismeasured labor quality is a major explanation for productivity dispersion. Griliches’ approach has more recently been employed by Fox and Smets (2011), Hellerstein and Neumark (2006), and Van Biesbroeck (2007).

For each firm in our data set, we have demographic information on the entire workforce. We assume that workers with different demographic characteristics are perfectly substitutable inputs with potentially different marginal products. The sensitivity of this approach is discussed below.\(^{14}\) For now,

\[E \left[\xi_{it} k_{t-1} \right] = E \left[\xi_{it} m_{t-1} \right] = 0, \]

where \(M(\beta_k) \) is the 3 \times 1 column vector representing the empirical counterpart of the theoretical moments above.
assume that workers are distinguished only by education—high school or college. Then effective labor input is \(L^*_m = z_H H_L + z_C C_W \), where \(C_W \) is the number of college graduates, \(H_L \) the number of high school graduates, and \(z_m \) is the marginal productivity of each type \(m = H,C \). \(L^* \) can be rewritten as

\[
L^*_m = z_H L_H [1 + (\theta_C - 1) x_Cit],
\]

where \(\theta_C \equiv z_C/z_H \) is the marginal productivity of college relative to high school graduates and \(x_Cit \) is the number of college graduates relative to the total workforce. Taking logs and substituting equation (9) into the production function (4) yields

\[
y_{it} = \beta_1 (l_{it} + q_{it}) + \phi_t (z_{it}, x_{it}, e_{it}) + \eta_{it},
\]

where \(q_{it} \equiv \ln Q_{it} = \ln [1 + (\theta_C - 1) x_Cit] \) denotes the quality adjustment. The relative marginal productivity \(\theta_C \) can then be estimated using data on output, capital, number of workers, and the educational composition of the workforce.

In practice, we are not only distinguishing workers by high school diploma or college degree but by a vector of worker characteristics. Including many characteristics expands the dimensionality of the problem since in principle, every combination of relative productivities determines \(L^* \). To reduce the dimensionality, we follow Hellerstein, Neumark, and Troske (1999) and impose two restrictions on the problem. First, we restrict the relative marginal products of two types of workers within one demographic group to be equal to the relative marginal products of those same two types of workers within another demographic group.\(^{15}\) Second, we restrict the proportion of workers in an establishment defined by a demographic group to be constant across all other groups.\(^{16}\)

The worker characteristics available to us are gender, years of labor market experience, years of education, and tenure (years of experience in current firm). To allow for possible nonlinear effects, labor market experience, education, and tenure are constructed as the number of workers in group \(k \) relative to total firm workforce. Workers are split into five groups according to labor market experience: \((X_1) \) under 13 years, \((X_2) \) 13 to 19 years, \((X_3) \) 20 to 25 years, \((X_4) \) 26 to 32 years and \((X_5) \) more than 33 years; to the education groups are \((E_1) \) under 11 years, \((E_2) \) 11 to 12 years, \((E_3) \) 13 to 14 years, \((E_4) \) 15 to 16 years, and \((E_5) \) more than 17 years; and the tenure groups are \((T_1) \) under 1 year, \((T_2) \) 1 to 2 years, \((T_3) \) 2 to 7 years, and \((T_4) \) more than 7 years.\(^{17}\)

With these assumptions, the quality index becomes

\[
Q_{it}^{\text{Griliches}} = \begin{bmatrix}
1 + (\theta_M - 1) x_{Mit}
\end{bmatrix}
\begin{bmatrix}
1 + (\theta_{E2} - 1) x_{E2it} + \ldots + (\theta_{E5} - 1) x_{E5it}
1 + (\theta_{X5} - 1) x_{X5it} + \ldots + (\theta_{X1} - 1) x_{X1it}
1 + (\theta_{T4} - 1) x_{T4it} + \ldots + (\theta_{T1} - 1) x_{T1it}
\end{bmatrix},
\]

where \(M \) denotes share of males in the labor force, and \(E, X, \) and \(T \) denote, respectively, the education, experience, and tenure groups (for example, \(x_{E2it} \) denotes the share of workers with eleven to twelve years education in firm \(i \) at time \(t \)). Note that \(E_1, X_1, \) and \(T_1 \) are the omitted categories, implying that the productivities \(\theta_{E1}, \theta_{X1}, \) and \(\theta_{T1} \) are measured relative to the omitted groups. For example, \(\theta_{E2} \) measures the marginal productivity of workers with eleven to twelve years of education relative to workers with less than eleven years of education. Similarly, \(\theta_M \) measures the marginal productivity of male relative to female workers.

Estimation of equation (10) is carried out with nonlinear least squares since the terms in \(Q_{it} \) enter nonlinearly. Also note that we retrieve estimates of \(\theta_{m} - 1 \), so relative marginal productivities are \(\theta_{m} = \theta_{m} - 1 + 1 \). After estimation of equation (10), the second stage of the production function methodology is performed, according to section IVA, so that all the coefficients of the production function are recovered.

One concern of the Griliches approach is our reliance on the assumption that workers with different demographic characteristics are perfectly substitutable inputs. Although restrictive, this assumption enables us to formulate a tractable estimating equation and obtain an index of quality. In the online appendix, we explore an alternative strategy where we assume a Cobb-Douglas structure that allows a imperfect substitution between labor types. However, the Cobb-Douglas specification suffers from two problems. First, it cannot handle cases where \(x_{mit} = 0 \), which appears relatively frequently in the data. Second, the estimating equation becomes less tractable.

The workforce characteristics in the data set cover important aspects of worker efficiency but are by no means exhaustive. Since there may be a correlation between omitted and observable characteristics, the estimated coefficients may be biased. In the following sections, we describe two alternative methods of backing out worker quality, where we account for both observed and unobserved skills.

C. The Wage Bill as a Proxy for Labor Quality

Our second approach is to adjust for labor quality by using the wage bill as a measure of the quality of the workforce. The underlying assumption is that wages reflect marginal products in a competitive labor market. Even if the labor market were not perfectly competitive, we would reckon that wages

\(^{15}\) For example, the relative productivity of male relative to female workers is identical irrespective of experience, education, and the other characteristics.

\(^{16}\) For example, males are equally represented in all education levels, tenure groups, and so forth.

\(^{17}\) The groups are constructed so as to allow for as much variation in the data set as possible. This is achieved by splitting the workforce into groups according to years of labor market experience, tenure, and education so that each group consists of approximately the same number of employees.
are likely to be highly correlated with workers’ efficiency.\footnote{Shaw and Lazear (2008) find that the very steep learning curve in the first eight months on the job is not reflected in equal percentage pay gains. However, the pattern of productivity rising more rapidly than pay reverses after two years of tenure.} As argued by, among others, Fox and Smeets (2011), using the wage bill instead of the number of workers makes the methods of measuring physical capital and human capital more symmetric: physical capital is measured in terms of monetary units to reflect the quality of the machinery employed, while using the wage bill to proxy for labor input also implies measuring labor in terms of its expense in order to reflect its quality.

We model quality-adjusted employment as

\[l_i^* = \ln w_i + \ln L_i, \]

where \(L_i \) still denotes the number of workers and \(w_i \) is the average wage earned in firm \(i \) at time \(t \), and substitute this into the production function in equation (4).

D. Estimated Wage Bill as a Proxy for Labor Quality

Our third approach is to estimate labor quality by using information about wages from every employer-employee spell. As we argued above, even if the labor market is not perfectly competitive, we would reckon that wages are likely to be highly correlated with workers’ efficiency. However, the empirical evidence on the importance of person as well as firm characteristics for wage determination (see Abowd, Kramarz, & Margolis, 1999) suggests that using firm average wages to proxy for labor quality delivers an inaccurate measure of workforce quality. It may also lead to a systematic downward bias of the TFP of exporters.\footnote{In the presence of rent sharing, the wage bill will overstate effective labor input. Also, there is empirical evidence documenting that exporters pay higher wages and that the wage premium remains after controlling for workforce characteristics. Both mechanisms lead to a downward bias in estimated TFP.} Therefore, we proceed by first estimating a wage regression, including person as well as firm effects, and then calculating predicted wages that reflect worker characteristics but not firm effects—that is, the wage that workers would have been paid if they were hired by an average firm. Third, this predicted wage, averaged over all employees within a firm, is used as a proxy for workforce quality when we estimate the production function.

We follow Abowd et al. (1999) and consider the wage regression,

\[\ln w_{jt} = \phi_j + \Psi_{t(j,t)} + x_{jt} \lambda \epsilon_{jt}, \]

where \(w_{jt} \) is the nominal wage for person \(j \) at time \(t \) per unit of time (year), measured in logs and relative to its grand mean, \(\phi_j \) is a person fixed effect, \(\Psi_{t(j,t)} \) is a fixed effect for the firm at which worker \(j \) is employed at date \(t \) (denoted \(I(j,t) \)), \(x_{jt} \) is a vector of time-varying exogenous characteristics of individual \(j \), measured relative to their grand means, and \(\epsilon_{jt} \) is the statistical residual.

Identification of \(\Psi_{t(j,t)} \) relies on workers’ switching between firms and that firms are part of a connected mobility group of establishments (for details, see Abowd, Creecy, & Kramarz, 2002). This requires turnover. By calculating mean tenure for each of the 10 years, we find that average tenure varies between 5.8 and 6.5 years. The fixed effects are estimated under the identifying restrictions that \(\sum_j \phi_j = 0 \) and that the last firm effect is 0 within each mobility group.

Estimating the model by OLS requires that the error term is uncorrelated with the covariates, formally, \(E[\epsilon_{jt} | I(j,t), x_{jt}] = 0 \). Movements in \(\epsilon_{jt} \) (for example, due to time-varying worker productivity) must therefore be uncorrelated with firm effects. This assumption is often referred to as exogenous mobility in the employer-employee literature. Mobility should therefore not be driven by time-varying unobservables.

We estimate the model on the whole population of Norwegian firms and all full-time employees in the years 1996 to 2005.\footnote{Limiting the analysis to manufacturing firms would reduce the number of observations needed to identify worker fixed effects.} The time-varying observables included in the \(x_{jt} \) vector are firm tenure (full-time equivalent years of work in the current workplace), firm tenure squared, years of labor market experience (this variable raised to the power of 2 and 4), and year dummies. The data are described in more detail in section II, as well as in the online appendix.

The normal equations for least squares estimation of both fixed person and firm effects are of very high dimension, and it is not possible to estimate the model by standard methods when the number of firms and persons is high. But as Abowd et al. (2002) show, exact least squares solutions are available by using an iterative conjugate gradient method.

After estimating equation (13), we calculate \(\hat{w}_{jt} = \hat{\phi}_j + x_{jt} \hat{\lambda} \). The estimated person effects \(\hat{\phi}_j \) are estimates of the value of all unobservable time-invariant individual characteristics. \(x_{jt} \hat{\lambda} \) is the value of observed time-varying worker characteristics, so their sum is an estimate of the overall value of skills of individual \(j \) at time \(t \), independent of any firm-specific effects \(\Psi_{t(j,t)} \).

We take the weighted average of this measure for each firm \(i \) in every period \(t \),

\[q_{it}^{Mincer} = \sum_{j: I(j,t) = i} \omega_{jt} \ln \hat{w}_{jt}, \]

where \(\omega_{jt} \) are weights that reflect the individual’s work effort in a given year (the construction of weights as well as other details are delegated to the online appendix). We use this measure as an estimate of the average skill of the workforce for every firm-year. Our measure of the effective labor force \(l_{it}^e \) is then \(l_{it}^e = q_{it}^{Mincer} + l_i \), which we substitute into the production function in equation (4), which in turn is estimated according to the methodology in section IV.A.
HETEROGENEOUS FIRMS OR HETERGENEOUS WORKERS?

V. Results

We estimate the standard and augmented production function and compare the estimates. We demonstrate the importance of correcting for labor quality. In addition, we use our estimates to compute standard and adjusted firm productivity and calculate standard and adjusted exporter premiums. We show that the exporter TFP and wage premiums are significantly reduced after controlling for worker heterogeneity, suggesting that exporter superiority is related not only to intrinsic firm efficiency but also to superior workers. We address the role of sorting and analyze the relationship between sorting and the wage premium.

A. Production and Quality

Table 1 reports production function estimates for the model without quality adjustment (column 1), as well as for the models with quality adjustments using Griliches' approach (column 2), the estimated wage approach (column 3), and the average wage approach (column 4). With Griliches' approach, the coefficients associated with the labor quality characteristics enter nonlinearly and therefore require the use of NLS in the first stage of the production function methodology. The other approaches are based on OLS in the first stage. To simplify the presentation, the results in table 1 are derived from the pooled sample of all manufacturing firms. Note, however, that the subsequent TFP analysis is based on sector-specific estimates (two-digit NACE) of the production function.

All standard errors are bootstrapped. Bootstrapping is performed by drawing N firms with replacement, where N is the total number of firms, and constructing a panel following each firm for every year in existence. The standard errors are based on 250 bootstrap iterations.

21 Ideally, we would want to estimate the production function separately, for example, at the four-digit NACE level. However, due to the large number of covariates in the first-stage regression and the small number of firms in certain NACE four-digit sectors, estimating at the four-digit level is not feasible. Furthermore, with Griliches’ method, the production function is estimated on all manufacturing firms, since lack of variation in human capital variables in a few industries gives very imprecise estimates when estimating per industry.

Table 2.—First Stage Production Function Estimates with Griliches’ Human Capital

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Non-Exporters</th>
<th>Exporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griliches HC</td>
<td>Coefficient</td>
<td>SE</td>
<td>Coefficient</td>
</tr>
<tr>
<td>Employment(β₁)</td>
<td>.678*** (.003)</td>
<td>.679*** (.004)</td>
<td>.683*** (.011)</td>
</tr>
<tr>
<td>Maleshare</td>
<td>.025** (.012)</td>
<td>.023 (.018)</td>
<td>.106*** (.040)</td>
</tr>
<tr>
<td>Tenure1-2</td>
<td>-.144*** (.018)</td>
<td>-.136*** (.027)</td>
<td>-.113*** (.067)</td>
</tr>
<tr>
<td>Tenure2-7</td>
<td>-.010 (.019)</td>
<td>.000 (.030)</td>
<td>.131*** (.080)</td>
</tr>
<tr>
<td>Tenure7+</td>
<td>.001 (.020)</td>
<td>.019 (.031)</td>
<td>.131*** (.081)</td>
</tr>
<tr>
<td>Education1-12</td>
<td>.173*** (.017)</td>
<td>.170*** (.026)</td>
<td>.237*** (.073)</td>
</tr>
<tr>
<td>Education13-14</td>
<td>.387*** (.020)</td>
<td>.333*** (.030)</td>
<td>.693*** (.089)</td>
</tr>
<tr>
<td>Education15-16</td>
<td>.987*** (.045)</td>
<td>.788*** (.066)</td>
<td>.745*** (.185)</td>
</tr>
<tr>
<td>Education17+</td>
<td>1.182*** (.051)</td>
<td>.966*** (.078)</td>
<td>1.316*** (.178)</td>
</tr>
<tr>
<td>Experience13-19</td>
<td>.137*** (.021)</td>
<td>.120*** (.031)</td>
<td>.248*** (.087)</td>
</tr>
<tr>
<td>Experience20-25</td>
<td>.182*** (.021)</td>
<td>.175*** (.033)</td>
<td>.229*** (.086)</td>
</tr>
<tr>
<td>Experience26-32</td>
<td>.223*** (.021)</td>
<td>.218*** (.032)</td>
<td>.343*** (.082)</td>
</tr>
<tr>
<td>Experience33+</td>
<td>.179*** (.022)</td>
<td>.199*** (.036)</td>
<td>.204*** (.086)</td>
</tr>
<tr>
<td>Number of firms-years</td>
<td>54,110</td>
<td>24,259</td>
<td>11,422</td>
</tr>
</tbody>
</table>

Note: Estimates are based on the panel 1996–2005. Female, tenure 0-1, education 0-11, and experience 0-13 are the omitted categories. Exporters (nonexporters) are defined as the set of continuous exporters (nonexporters). Significant at ***1%, **5%, and *10%.

We also report the first stage of the production function estimation with quality adjustments according to Griliches for the pooled sample and nonexporters and exporters separately (see table 2). The first thing to note here is a significant positive monotonic relationship between years of education and marginal productivity. Specifically, the education coefficients rise from 0.17 to 1.18 for the pooled sample, implying that the marginal productivity of workers with eleven or more years of education is between 17 and 118 percent higher than the group of workers with fewer than eleven years of education. Among exporters, the role of education is even more pronounced, with workers with more than eleven years of education being up to 175 percent more productive. This suggests that returns to education are higher among exporters than among nonexporters. This may provide one explanation for why exporters on average employ educated workers who are more educated (see figure 2).

For labor market experience, which by construction is highly correlated with age, our results suggest a nonmonotonic, bell-shaped relationship for the pooled sample as well.
as for nonexporters and exporters. Firm tenure does not appear to affect relative productivities when looking at the complete sample.

In sum, the coefficients for Male, Tenure 2–7 years, Tenure 7+ years, all education groups, and all experience groups except 33+, are significantly (p-value .1 or lower) higher for exporters than for nonexporters.

Table 3 reports interim results from the two-way fixed effects wage model (Mincer).23 Again, firm tenure has little explanatory power, while experience is clearly important for wage determination. Plotting the experience polynomial using the estimated coefficients reveals that the wage schedule is bell shaped, mirroring the results from Griliches’ approach.

We compare the quality indices produced by the two methods—those of Griliches and Mincer. A simple indicator is the correlation between \(q_{Griliches} \) and \(q_{Mincer} \) obtained from equations (11) and (14). Using all firms in the sample, we find that the correlation is 0.18.24 Truncating the sample by dropping firms with fewer than twenty employees eliminates even more noise and increases the correlation to 0.41.25 The fact that the correlation is less than 1 partly reflects that the functions are precisely estimated, and increases the correlation to .001.

The estimates in table 3 are based on firms in the manufacturing sector. Significant at ***1%, **5%, and *10%.

\[\text{Wage Regression with Person and Firm Effects, 1996–2005} \]

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenure</td>
<td>-0.01***</td>
<td>.00</td>
</tr>
<tr>
<td>Tenure^2/100</td>
<td>.00***</td>
<td>.001</td>
</tr>
<tr>
<td>Experience</td>
<td>.01***</td>
<td>.003</td>
</tr>
<tr>
<td>Experience^2/100</td>
<td>.009</td>
<td>.003</td>
</tr>
<tr>
<td>Experience^3/1,000</td>
<td>.003</td>
<td>.003</td>
</tr>
<tr>
<td>Experience^4/10,000</td>
<td>-0.02***</td>
<td>.000</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Yes</td>
<td>.68</td>
</tr>
<tr>
<td>R^2</td>
<td>.68</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>2.8 million</td>
<td></td>
</tr>
<tr>
<td>std((\Psi_{it}))</td>
<td>.62</td>
<td></td>
</tr>
<tr>
<td>std((\Psi_{it}, \theta_i))</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>corr((\Psi_{it}, \theta_i))</td>
<td>.03</td>
<td></td>
</tr>
</tbody>
</table>

Finally, we use sector-specific estimates of the production function to calculate TFP residuals. Total factor productivity is calculated as

\[tfp_{it} = y_{it} - \hat{\beta}_{it}^{\nu} - \hat{\gamma}_{it} k_{it}, \]

where the superscript \(\nu \) denotes the chosen production function specification, the subscript \(i \) still denotes the firm, and \(t \) is the year. TFPs are calculated using no quality adjustment, the Griliches’ approach, the estimated wage approach, and using average wages.

B. Exporter Premiums

We follow Bernard and Jensen (1999) and calculate exporter premiums for wages, TFP, and other firm variables, controlling for differences in size as well as industry:

\[z_{it} = \beta_k + \alpha_t + \rho E_{it} + \gamma L_{it} + \varepsilon_{it}, \]

where \(z_{it} \) is \(\text{tfp}_{it} \nu \) as well as other firm characteristics, \(E_{it} \) is an exporter dummy, \(\beta_k \) denotes industry fixed effects, and \(\alpha_t \) denotes year dummies. Industry fixed effects are based on four-digit NACE industries. Hence, \(\exp (\rho) \) measures the exporter premium in percent within the same industry-year and for same firm size. The premiums we consider in table 4 are labor productivity, TFP (unadjusted and quality adjusted), wages, capital stock (total and split into structures and machinery), profits, average tenure, education level, labor market experience, and quality indices \(q_{it}^{Mincer} \) and \(q_{it}^{Griliches} \).

When pooling the sample over all years, we cluster standard errors by firm. The two last columns show results for the 1996 and 2005 cross-section.

Productivity. In line with previous studies we find that exporters are more productive. The unadjusted TFP premium is somewhat lower than what has been found in the United States (see Bernard & Jensen, 1999). Once we adjust for differences in labor quality using Griliches’ approach, the average wage bill, or the estimated wage bill (Mincer), the exporter premium is reduced. Hence, the exporter premium reflects not only intrinsic firm differences but also differences in the labor force.

Based on the pooled sample (across years and industries), the mean reduction in the exporter premium is 24% in the Griliches case and more than 40% when we adjust for labor quality using average or predicted wages. We can reject the hypothesis that the adjusted premiums are identical to the unadjusted one at the 0.01 significance level. To check the robustness of our results, we reestimated TFP using the alternative model of Griliches’ human capital with imperfect substitution between labor types and calculated the
associated exporter premium.\(^{26}\) Our exporter premium results also appeared robust to alternative assumptions about labor substitutability. Looking at the different cross-sections separately, we continue to find that the TFP premium is reduced after correcting for labor quality differences, and that the reduction in most cases is statistically significant.\(^{27}\)

Other premiums. Table 4 summarizes the different exporter premiums. In line with previous studies, we find that exporters have higher profits, are more capital intensive, and pay higher wages. But our matched employee-employer data set also reveals that exporters have a labor force that differs from other firms. Their workers are more experienced and have higher education and longer tenure. The difference in workforce skills between exporters and nonexporters is also reflected by Griliches’ measure of human capital (\(q_{\text{Griliches}}\)) and the quality measure developed on the basis of the Mincer regression (\(q_{\text{Mincer}}\)).

Complementarities. The difference between exporters and nonexporters is more substantial with respect to machinery than with respect to structures. This suggests that exporters are both more skill intensive and have a higher degree of automation.

C. Wages and Sorting

The results so far highlight that exporters are more productive and more profitable and pay higher wages. In this section, we first ask how much of the exporter wage premium is due to sorting (compositional effects) versus how much is due to exporters’ paying more for the same type of labor (due to frictions in the labor market such as search frictions, bargaining, or rent sharing). Second, given that sorting explains less than 100% of the wage premium, we ask whether certain labor groups (such as those with PhDs) are relatively better paid among exporters than nonexporters.

The exporter premium for the Mincer quality index \(q_{\text{Mincer}}\) provides a measure of the wage premium after firm fixed effects have been removed. Hence, it follows from table 4 that the wage premium is reduced from 5.42% to 2.43% after removing firm fixed effects. In other words, 45% (2.43/5.42) of the wage premium can be ascribed to worker characteristics (sorting) rather than firm characteristics. Alternatively, we can calculate the wage premium that is due to firm characteristics exclusively. Within our framework, this is done by calculating the exporter premium for the firm wage fixed effect from the Mincer estimation (\(\Psi_{\text{firm}}\)) (see equation [13]). We find that the exporter premium for the firm fixed effect is 2.2%. This suggests that roughly 60% (1 - 2.2/5.42) of the wage premium is due to sorting, roughly in line with the results above.

We also use the estimated firm and worker fixed effects from the Mincer approach to calculate the sorting measure proposed by Lopes de Melo (2009). Lopes de Melo argues that the method used by Abowd et al. (2002) provides a downwind-biased measure of sorting and suggests an improved measure of sorting based on the same fixed-effect methodology by calculating the correlation between a worker fixed effect and the average worker fixed effects of his coworkers, \(\text{corr}(\varphi_j, \varphi_{j'}^{\text{other}})\), where \(\varphi_j^{\text{other}}\) is the average worker fixed effect for \(j\)'s coworkers. We find that the Lopes De Melo correlation is about 0.4, close to findings from Brazil and Denmark reported by Lopes de Melo. All in all, this suggests that sorting plays a major role also in the Norwegian labor market.

\(^{26}\) The model is presented in detail in the online appendix. Results are available on request.

\(^{27}\) Estimating the TFP premium separately for every year in the sample yields a significant reduction in the unadjusted to Mincer adjusted premium in seven out of ten years (p-value 0.1 or lower).
Second, we proceed by decomposing the wage premium among different labor groups. We follow Hellerstein et al. (1999) and write total firm-level log wages as

\[
\ln W_{it} = a + \ln L_{it} + \ln \left[1 + \left(\lambda_M - 1 \right) x_{Mit} \right] + \left[1 + \left(\lambda_{E2} - 1 \right) x_{E2it} + \ldots + \left(\lambda_{Ex} - 1 \right) x_{Exit} \right] + \left[1 + \left(\lambda_{T2} - 1 \right) x_{T2it} + \ldots + \left(\lambda_{T4} - 1 \right) x_{T4it} \right] + \epsilon_{it},
\]

(17)

where \(a \) is the log wage of the reference group, which is simply a constant. The interpretation of the coefficients is similar to the productivity case; for example, \(\lambda_{E2} \) captures the wage among the most highly educated relative to the reference group. We estimate, equation (17) for exporters and nonexporters separately and report the results in table 5. For all groups except Education 11-12 years, \(\lambda \) is higher among exporters than nonexporters. The difference is especially large for high education. This suggests that after controlling for sorting, the aggregate exporter wage premium is partly explained by higher wages to the most highly skilled workers.

VI. Conclusion

Previous research has shown that internationalized firms are better performers than purely domestic firms. Hence, in trade models with heterogeneous firms, trade liberalization gives aggregate productivity gains because labor is reallocated toward the best-performing firms. But the unambiguous positive reallocation effect relies on the assumption that exporters’ superior performance is due to only intrinsic firm quality.

In order to assess the relative importance of input quality versus intrinsic firm quality as sources of exporters’ productivity and wage premiums, we use a unique data set of firms, worker characteristics, and trade. This allows us to calculate improved measures of TFP that controls for the presence of worker heterogeneity.

The data reveal that dispersion in average worker characteristics across firms is large. Employees in exporting firms have higher earnings, and they are more tenured, educated, and experienced—controlling for firm size and sector. Exporters are at the same time more productive and pay higher wages, consistent with models of firm heterogeneity and input quality such as Verhoogen (2008).

We find that both the wage and productivity premiums fall after controlling for workforce characteristics. The wage premium falls by roughly 50%, and the exporter TFP premium falls by between 25% to 40%, depending on the method used, suggesting that sorting is an important mechanism in the Norwegian manufacturing sector. Furthermore, this tells us that the gains from trade due to the exit of the less productive firms may be overstated if the heterogeneity in inputs is not properly accounted for. Hence, in order to assess the impact of fiercer international competition and firm exit on aggregate productivity, further research is needed to help us understand the labor market dynamics and reallocations of resources following firm exit.

REFERENCES

Table 5.—Relative Wages for Different Groups: Exporters and Nonexporters

<table>
<thead>
<tr>
<th>Relative Wages ((\lambda))</th>
<th>Exporters</th>
<th>Nonexporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maleshare</td>
<td>0.46***</td>
<td>0.28***</td>
</tr>
<tr>
<td>Tenure1–2</td>
<td>–0.03</td>
<td>–0.04***</td>
</tr>
<tr>
<td>Tenure7–12</td>
<td>0.06**</td>
<td>0.02</td>
</tr>
<tr>
<td>Tenure13–14</td>
<td>0.03*</td>
<td>0.09**</td>
</tr>
<tr>
<td>Educ11–12</td>
<td>0.50***</td>
<td>0.32**</td>
</tr>
<tr>
<td>Educ15–16</td>
<td>0.99***</td>
<td>0.62***</td>
</tr>
<tr>
<td>Educ17+</td>
<td>1.24***</td>
<td>0.71***</td>
</tr>
<tr>
<td>Exper 13–19</td>
<td>0.39***</td>
<td>0.25***</td>
</tr>
<tr>
<td>Exper 20–25</td>
<td>0.62***</td>
<td>0.32**</td>
</tr>
<tr>
<td>Exper 26–32</td>
<td>0.37***</td>
<td>0.28**</td>
</tr>
<tr>
<td>Exper 33+</td>
<td>0.59***</td>
<td>0.42**</td>
</tr>
<tr>
<td>Observations</td>
<td>13,829</td>
<td>35,432</td>
</tr>
</tbody>
</table>

Estimates are based on the panel 1996–2005. Significant at ***1%, **5%, and *10%.

