TESTING INSTRUMENT VALIDITY FOR LATE IDENTIFICATION BASED ON INEQUALITY MOMENT CONSTRAINTS

Martin Huber and Giovanni Mellace*

Abstract—We derive testable implications of instrument validity in just identified treatment effect models with endogeneity and consider several tests. The identifying assumptions of the local average treatment effect allow us to both point identify and bound the mean potential outcomes of the always takers under treatment and the never takers under nontreatment. The point-identified means must lie within their respective bounds, which provides us with four testable inequality moment constraints. Finally, we adapt our testing framework to the identification of distributional features. A brief simulation study and an application to labor market data are also provided.

I. Introduction

In many economic evaluation problems, causal inference is complicated by endogeneity, implying that the explanatory or treatment variable of interest is correlated with unobserved factors that also affect the outcome. As an example, when estimating the returns to education, the schooling choice is plausibly influenced by unobserved ability (see Card, 1999), which most likely has an impact on the earnings outcome. Due to the endogenous treatment selection (also known as selection on unobservables), the earnings effect of education is confounded with the unobserved terms. In the presence of endogeneity, identification relies on the availability of an instrumental variable (IV) that generates exogenous variation in the treatment. In heterogeneous treatment effect models with a binary treatment (which allow for effect heterogeneity across individuals), an instrument is valid if (a) the potential outcomes are mean independent of the instrument, (b) the potential treatment states are not confounded by the instrument, and (c) the treatment is weakly monotonic in the instrument. In this case, the local average treatment effect (LATE) on those who switch their treatment state as a reaction to a change in the instrument (the so-called compliers) is identified.1 (See Imbens & Angrist, 1994, and Angrist, Imbens, & Rubin, 1996.)

Received for publication December 6, 2011. Revision accepted for publication November 19, 2013. Editor: Mark W. Watson.

*Huber: University of Fribourg; Mellace: University of Southern Denmark.

We benefited from comments by Alberto Abadie, Clément De Chaisemartin, Mario Fiorini, Stefan Hoderlein, Bo Honoré, Guido Imbens, Toru Kitagawa, Michael Lechner, Jeff Smith, Anthony Strittmatter, and Gautam Tripathi; seminar and conference participants in Bludenz (internal research seminar, June 2011), Harvard (IZA Conference on Labor Market Policy Evaluation, October 2011), Zurich (Swiss Society of Economics and Statistics, April 2012), and Chicago (SOLE, May 2012); the editor, Mark Watson; and three anonymous referees.

A supplemental appendix is available online at http://www.mitpressjournals.org/doi/suppl/10.1162/REST_a_00450.

1 For the identification of (local) quantile treatment effects, the mean independence restrictions have to be strengthened to full independence of the instrument and the joint distribution of potential treatments and potential outcomes (see Frölich & Melly, 2008). Note that under the strong restrictions of effect homogeneity and linearity of the outcome equation, an instrument is valid if it is correlated with the treatment and uncorrelated with the error term (monotonicity is imposed by construction in this kind of models). See, for instance, the textbook discussions in Peracchi (2001), Wooldridge (2002), Cameron and Trivedi (2005), and Greene (2008). In this case, the IV estimand can be interpreted as the average treatment effect (ATE), given that the model is correctly specified. Clearly, the weaker IV restrictions (uncorrelation instead of the mean independence restrictions and no assumptions on the first stage) are bought by stronger structural assumptions. Then IV validity cannot be tested in just identified models. In the subsequent discussion, we focus on heterogeneous treatment effect models and show that the LATE assumptions have testable implications for IV validity.

2 Note that under the strong restrictions of effect homogeneity and linearity of the outcome equation, an instrument is valid if it is correlated with the treatment and uncorrelated with the error term (monotonicity is imposed by construction in this kind of models). See, for instance, the textbook discussions in Peracchi (2001), Wooldridge (2002), Cameron and Trivedi (2005), and Greene (2008). In this case, the IV estimand can be interpreted as the average treatment effect (ATE), given that the model is correctly specified. Clearly, the weaker IV restrictions (uncorrelation instead of the mean independence restrictions and no assumptions on the first stage) are bought by stronger structural assumptions. Then IV validity cannot be tested in just identified models. In the subsequent discussion, we focus on heterogeneous treatment effect models and show that the LATE assumptions have testable implications for IV validity.

3 See Bound, Jaeger, and Baker (1995), who contest the validity of quarter of birth instruments and present evidence on seasonal patterns of births that are related to family income, physical and mental health, and school attendance rates (factors that may be correlated with potential wages).

4 IV tests are, however, available for overidentified models where the number of instruments exceeds the number of endogenous regressors (see Sargan, 1958).

5 Also Heckman and Vytlacil (2005) derive a testable constraint (under possibly continuous instruments and outcomes) in their appendix A that is equivalent to the nonnegativity of complier densities under discrete instruments.

in subsets of the outcome distribution and uses a bootstrap method for inference.\(^6\)

The first contribution of this paper is the proposition of an alternative testing approach that is based on mean potential outcomes rather than densities. In the case of a binary instrument, the underlying intuition is as follows. If an instrument is valid (i.e., satisfies conditions a to c outlined in the first paragraph), the mean potential outcome of the always takers under treatment is point identified. It simply corresponds to the observed mean outcome in the treated subpopulation that does not receive the instrument. For the same potential outcome, one can derive upper and lower bounds in the treated subpopulation receiving the instrument, where the width of the bounds depends of the relative shares of compliers and always takers. Clearly the point-identified mean outcome in the absence of the instrument must lie within the parameter bounds in the presence of the instrument.

If this constraint is violated, the instrument is either confounded, or it has a direct effect on the mean potential outcome of the always takers, or the treatment is not monotonic in the instrument, or several problems occur at the same time. An equivalent result holds for the never takers (those never treated irrespective of the instrument) by considering the outcomes of the nontreated receiving the instrument and the nontreated not receiving the instrument. Therefore, the LATE framework provides us with four testable inequality moment constraints based on point identifying and bounding the bounds in the mean potential outcomes of the always takers under treatment and of the never takers under nontreatment. For testing these constraints, we consider three different methods: a simple bootstrap test with Bonferroni adjustment, the minimum p-value test of Bennett (2009), and the smoothed indicator-based method of Chen and Szroeter (2012). As in K08, we test for necessary, albeit not sufficient, conditions for IV validity. The latter requires the mean potential outcomes of the always/never takers to be equal across different instrument states. However, only the inequality moment constraints are testable rather than equality of means. For this reason, more violations of IV validity may be detected as the bounds shrink or, put differently, as the compliers’ share becomes relatively smaller to the fractions of always takers and never takers, respectively.

We therefore also demonstrate how the width of the bounds can be tightened further to increase testing power (in the sense of finding more violations of the IV assumptions) by imposing dominance of the mean potential outcome of one population over another (see also Huber & Mellace, 2010, and Zhang & Rubin, 2003). Testing power is maximized if equality in mean potential outcomes is assumed. Then the bounds collapse to a point and the inequality constraints turn into equality constraints. For example, given that the mean potential outcomes of the always takers and compliers are equal, IV validity implies that the mean outcome of the treated receiving the instrument is equal to that of the treated not receiving the instrument. This can be easily tested by difference-of-means tests. An analogous result holds for the never takers and the compliers under nontreatment.

Finally, we extend our testing approach to potential outcome distributions rather than potential means, which requires joint independence of the instrument and the potential treatments and outcomes. Starting with the upper bounds on the potential outcome distributions of the always takers under treatment and the never takers under nontreatment, we derive constraints that are equivalent to K08: that complier densities must not be negative in the mixed populations with compliers and always or never takers. Also the lower bounds provide two testable restrictions saying that under the null, the joint probability of being a complier and having an outcome that falls into a subset of the support must never be larger than the (unconditional) complier share in the population.\(^7\) Similar to the tests based on mean independence, we also demonstrate how testing power can be further increased by imposing stochastic dominance or equality assumptions on the potential outcome distributions of different subpopulations.

The remainder of the paper is organized as follows. Section II discusses the IV assumptions in the LATE framework and the testable implications. Section III proposes tests based on moment inequality constraints. Section IV shows how mean dominance and equality restrictions can be used (on top of the standard assumptions) to detect more violations of IV validity. A generalization of the testable implications derived for the binary instrument case to discrete instruments with multiple values is provided in section V. Section VI discusses testing under the stronger joint independence assumption. Simulation results are presented in section VII. In section VIII, we apply our methods to labor market data from Card (1995). Section IX concludes.

\section{IV Assumptions and Testable Implications}

Suppose that we are interested in the average effect of a binary and endogenous treatment \(D \in \{0,1\}\) (e.g., participation in a training) on an outcome \(Y\) (e.g., earnings) evaluated at some point after the treatment. Under endogeneity, the effect of \(D\) is confounded with some unobserved term \(U\) that is correlated with both the treatment and the outcome. Therefore, identification of treatment effects requires an instrument \((Z)\) that shifts the treatment but does not have a direct effect on the mean outcome (i.e., any mean impact other than through the treatment). Denote by \(D^z\) the potential treatment state for \(Z = z\) and by \(Y_{1,dz}\) the potential outcome for treatment \(D = d\) and \(Z = z\) (see Rubin, 1974, for a discussion of the potential outcome notation). In heterogeneous treatment

\(^6\) In contrast to K08, Angrist and Imbens (1995) consider a multivalued treatment and discuss a different testable implication: One conditional distribution of the treatment given the instrument has to stochastically dominate the other.

\(^7\) Note, however, that the latter restrictions are redundant if nonoverlapping subsets of the outcome distribution that jointly cover the entire outcome support are used for testing as in K08. Then they are implicitly accounted for by the nonnegative complier density constraints of K08 and Balke and Pearl (1997).
effect models, the observed outcome of some individual \(i \) can be written as \(Y_i = \varphi(D_i, Z_i, U_i) \), where \(\varphi \) denotes a general function that might be unknown to the researcher. Likewise, the potential outcome is the value individual \(i \) would receive if the treatment and the instrument were set to particular states, \(Y^{d,z}_i = \varphi(d, z, U_i) \).

For expositional ease, we henceforth assume the instrument to be binary \((Z \in \{0, 1\}) \); section V will generalize the results to bounded nonbinary instruments. As discussed in Angrist et al. (1996), the population can then be categorized into four types (denoted by \(T \)), according to the treatment behavior as a function of the binary instrument. The compliers react on the instrument in the intended way by taking the treatment when \(Z = 1 \) and abstaining from it when \(Z = 0 \). For the remaining three types \(D^T \neq z \) for either \(Z = 1 \) or \(Z = 0 \) or both: the always takers are always treated irrespective of the instrument state, the never takers are never treated, and the defiers take the treatment only when \(Z = 0 \) (see table 1).

We cannot directly infer the type of any individual as either \(D^1 \) or \(D^0 \) is observed but never both. Without further assumptions, neither the share of the different types nor their mean potential outcomes are identified. We therefore impose the following unconfounded type assumption, which implies that the instrument is assigned independent of the potential treatment states:

Assumption 1. \(\Pr(T = t | Z = 1) = \Pr(T = t | Z = 0) \) for \(t \in \{a, c, d, n\} \) (unconfounded type).

Under assumption 1, the share of any type conditional on the instrument is equal to its unconditional proportion in the entire population. Let \(\pi_t \equiv \Pr(T = t), t \in \{a, c, n\} \), represent the (unobserved) probability to belong to type \(T \) in the population and denote by \(P_{Dt} \equiv \Pr(D = d | Z = z) \) the (observed) conditional treatment probability given the instrument. Assumption 1 implies that any of the four conditional treatment probabilities is a combination of two unobserved type proportions (see table 2).

Similarly, each of the four observed conditional means \(E(Y | D = d, Z = z) \) is a mixture or weighted average of the mean potential outcomes of two types conditional on the instrument (denoted by \(E(Y^{d,z} | T = t, Z = z) \)), where the weights depend on the relative proportions:

\[
E(Y | D = 1, Z = 1) = \frac{\pi_a}{\pi_a + \pi_c} \cdot E(Y^{1,1} | T = a, Z = 1) + \frac{\pi_c}{\pi_a + \pi_c} \cdot E(Y^{1,1} | T = c, Z = 1),
\]

\[
E(Y | D = 1, Z = 0) = \frac{\pi_a}{\pi_a + \pi_d} \cdot E(Y^{1,0} | T = a, Z = 0) + \frac{\pi_d}{\pi_a + \pi_d} \cdot E(Y^{1,0} | T = d, Z = 0),
\]

\[
E(Y | D = 0, Z = 0) = \frac{\pi_c}{\pi_c + \pi_n} \cdot E(Y^{0,0} | T = c, Z = 0) + \frac{\pi_n}{\pi_c + \pi_n} \cdot E(Y^{0,0} | T = n, Z = 0),
\]

\[
E(Y | D = 0, Z = 1) = \frac{\pi_d}{\pi_d + \pi_n} \cdot E(Y^{0,1} | T = d, Z = 1) + \frac{\pi_n}{\pi_d + \pi_n} \cdot E(Y^{0,1} | T = n, Z = 1).
\]
Testing Instrument Validity

Assumption 3 states that the potential treatment state of any individual does not decrease in the instrument. This rules out the existence of defiers (type d). We shall refer to Z as a valid instrument if it satisfies assumptions 1 to 3. However, LATE identification in addition requires Z to be a relevant instrument in the sense that the treatment states of (at least) some individuals react to a switch in the instrument. This is implied by assumption 4, which postulates the existence of compliers.

As defiers do not exist, the proportions of the remaining types are identified by $P_{01} = \pi_a$, $P_{10} = \pi_s$, $P_{11} - P_{10} = P_{00} - P_{01} = \pi_r$. Furthermore, the mean potential outcomes of the always takers under treatment and the never takers under nontreatment are point identified. Expression (2) simplifies to $E(Y|D = 1, Z = 0) = E(Y^1|T = a)$ under assumptions 1 to 3, and expression (4) becomes $E(Y|D = 0, Z = 1) = E(Y^0|T = n)$. Plugging $E(Y|D = 1, Z = 0)$ and $E(Y|D = 0, Z = 1)$ into expressions (1) and (3) allows solving the equations for the mean potential outcomes of the compliers under treatment and nontreatment.\footnote{An equivalent result for the potential outcome distributions of the compliers under slightly stronger assumptions has been derived by Imbens and Rubin (1997).} The difference of the latter gives the LATE and simplifies to the well-known probability limit of the Wald estimator, which corresponds to the intention-to-treat effect divided by the share of compliers (see Imbens & Angrist, 1994, and Angrist et al., 1996):

$$E(Y^1 - Y^0|T = c) = \frac{\pi_a}{\pi_a + \pi_r}. \quad (7)$$

Assumptions 1 to 4 not only identify the LATE and the mean potential outcomes of the compliers; they also provide testable implications for IV validity based on deriving bounds on the mean potential outcomes of the always takers and never takers in equations (1) and (3), respectively. In fact, the mean potential outcome of the always takers in equation (1) is bounded by the mean over the upper and lower proportion of outcomes that corresponds to the share of the always takers in this mixed population. It is obvious that $E(Y|D = 1, Z = 0) = E(Y^1|T = a)$ must lie within these bounds; otherwise, either Z has a direct effect on the mean of Y, or the instrument is confounded, or defiers exist in equation (2), or any combination of these violations occurs. An equivalent result applies to the never takers under nontreatment.

To formalize the discussion, we introduce some further notation and assume for the moment that the outcome is continuous, while online appendix A.4 shows how the following intuition and the tests discussed in the next section can be adapted to discrete outcomes. Define the qth conditional quantile of the outcome $Y_q \equiv G^{-1}(q)$, with G being the cdf of Y given $Z = 1$ and $D = 1$. Furthermore, let q correspond to the proportion of always takers in equation (1):

$$q = \frac{\pi_a}{\pi_a + \pi_r} = \frac{P_{01}}{P_{11}}. \quad (8)$$

By the results of Horowitz and Manski (1995) (see also the discussion in Huber & Mellace, 2010), $E(Y|D = 1, Z = 1, Y \leq Y_q)$ is the sharp lower bound of the mean potential outcome of the always takers, implying that all of the always takers are concentrated in the lower tail of the distribution that corresponds to their proportion. Similarly, $E(Y|D = 1, Z = 1, Y \geq Y_{1-q})$ is the upper bound by assuming that any always taker occupies a higher rank in the outcome distribution than any complier. Therefore, the IV assumptions imply that

$$E(Y|D = 1, Z = 1, Y \leq Y_q) \leq E(Y|D = 1, Z = 0) \leq E(Y|D = 1, Z = 1, Y \geq Y_{1-q}). \quad (5)$$

Equivalent arguments hold for the mixed-outcome equation of never takers and compliers. Let $y_r \equiv F^{-1}(r)$, with F being the cdf of Y given $D = 0, Z = 0$ and $r = \frac{\pi_a}{\pi_a + \pi_r} = \frac{P_{01}}{P_{11}}$, that is, the proportion of never takers in equation (3). Taking the mean over the lower and upper share of the outcome distribution corresponding to r, we obtain the lower and upper bounds $E(Y|D = 0, Z = 0, Y \leq y_r)$, $E(Y|D = 0, Z = 0, Y \geq y_{1-r})$ on the mean potential outcome of the never takers. The latter is also point-identified by $E(Y|D = 0, Z = 1) = E(Y^0|T = n)$, such that the IV assumptions require that

$$E(Y|D = 0, Z = 0, Y \leq y_r) \leq E(Y|D = 0, Z = 1) \leq E(Y|D = 0, Z = 0, Y \geq y_{1-r}). \quad (6)$$

Note that under one-sided noncompliance, only one of equations (5) and (6) can be tested. Furthermore, monotonicity holds by construction in this case such that a violation of the remaining testable constraint points to a nonsatisfaction of the exclusion restriction. For example, when there are no observations with $Z = 0$ and $D = 1$, always takers do not exist ($\pi_o = 0$) and $E(Y|D = 1, Z = 0)$ is not defined. In addition, the latter case also rules out the existence of defiers. Therefore, monotonicity is satisfied, but equation (6) is still useful to test the exclusion restriction on the never takers.

III. Testing

Expressions (5) and (6) provide us with four testable inequality moment constraints.\footnote{Note that expressions (5) and (6) hold under assumptions 1 to 3 alone; the existence of compliers (assumption 4) is not required. In principle, one could therefore test for IV validity even if the LATE is not identified, which might, however, not be an interesting exercise in applied work.} Under IV validity it must hold that

$$H_0 : \left(\frac{E(Y|D = 1, Z = 1, Y \leq y_q) - E(Y|D = 1, Z = 0)}{E(Y|D = 0, Z = 0) - E(Y|D = 1, Z = 1, Y \geq y_{1-q})} \right) \equiv \left(\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{array} \right) \leq \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right). \quad (7)$$
Under a violation of IV validity, at least one and at most two constraints might be binding. This is the case because violations of the first and second, as well as of the third and fourth, constraints are mutually exclusive, respectively. Furthermore, note that even if no inequality constraint is violated, IV validity may not be satisfied: that is, we detect violations only if they are large enough such that the point-identified mean outcomes of the always takers or never takers, or both, lie outside their respective bounds in the mixed populations. Ideally, we would like to test for the equality of the mean outcomes of the always and never takers become tighter. As compliers’ share decreases, because the bounds on the moments constraints is the best one can get. It is obvious that the group of always or never takers or compliers. Therefore, without further assumptions, testing based on inequality moment constraints is the best one can get. It is obvious that the tests can asymptotically reject more violations of IV validity as compliers’ share decreases, because the bounds on the mean outcomes of the always and never takers become tighter.

We test equation (7) using three different methods: a simple bootstrap test with Bonferroni adjustment, the minimum \(p \)-value test of Bennett (2009), and the smoothed indicator-based method of Chen and Szroeter (2012). Note that the parameters involved in \(\theta \) can be estimated in a standard GMM framework as described in online appendix A.1, which satisfies the regularity conditions required for bootstrapping (see Horowitz, 2001), as well as those in assumption 1 of Bennett (2009). Our testing problem also meets the regularity conditions D1, D3, and D4 in Chen and Szroeter (2012), whereas D2 needs to be verified, as outlined in their appendix C.

Starting with the bootstrap test with Bonferroni adjustment, let \(\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4)^T \) denote the vector of estimates of the respective population parameters \(\theta \) based on an i.i.d. sample containing \(n \) observations. Furthermore, denote by \(\hat{\theta}_b = (\hat{\theta}_{1,b}, \hat{\theta}_{2,b}, \hat{\theta}_{3,b}, \hat{\theta}_{4,b})^T \) \((b \in \{1, 2, ..., B\})\), where \(B \) is the number of bootstrap replications the estimates in a particular bootstrap sample \(b \) containing \(n \) observations that are randomly drawn from the original data with replacement. In each bootstrap sample, the recentered parameter vector \(\hat{\theta}_b \) is computed. The vector of \(p \)-values \(P_\theta \) is estimated as the share of bootstrap replications in which studentized versions of the centered parameters are larger than the studentized estimates in the original sample: \(P_\theta = B^{-1} \times \sum_{b=1}^{B} I \left\{ \frac{\tilde{\theta}_b - \hat{\theta}}{\hat{\sigma}} > \tilde{\sigma} \right\} \), where \(I\{\} \) denotes the indicator function and \(\tilde{\sigma} \) is an estimate of the standard error of \(\hat{\theta} \). Although these \(p \)-values are consistent for assessing each constraint separately, we are interested in the joint satisfaction of these constraints. One approach to test the latter is to use a Bonferroni adjustment (see Mackinnon, 2007) by which one multiplies the minimum \(p \)-value by the number of constraints—in our case, four. Therefore, the \(p \)-value of a bootstrap test with Bonferroni adjustment, denoted by \(\hat{\text{p}}_{\text{bs}} \), is \(\hat{\text{p}}_{\text{bs}} = 4 \times \min(P_\theta) \).

A disadvantage of the Bonferroni adjustment is that testing power decreases as the number of nonbinding constraints increases, because \(\min(P_\theta) \) is not affected by adding irrelevant constraints, but it will be multiplied by a larger number. To increase finite sample power, several studies suggest computing critical test values and \(p \)-values as a function of the estimated binding constraints in the data (Andrews & Jia, 2008; Andrews & Soares, 2010; Bennett, 2009; Chen & Szroeter, 2012; Hansen, 2005; Donald & Hsu, 2011).\(^{10}\)

We therefore also consider the Bennett (2009) test, which is invariant to studentization and based on approximating the distribution of the minimum \(p \)-value \(\min(P_\theta) \). This is obtained by two sequential bootstraps (where the second resamples from the distribution of the first bootstrap) that are computationally inexpensive compared to using the double (i.e., nested) bootstrap (see Beran, 1988), as suggested in Godfrey (2005). For computing critical values, Bennett (2009) considers both full recentering of all inequality constraints (henceforth B.f) and partial recentering (henceforth B.p) of only the constraints that are (close to being) binding in the data in order to increase power. The test algorithm can be sketched as follows:

1. Estimate the vector of parameters \(\hat{\theta} \) in the original sample.
2. Draw \(B_1 \) bootstrap samples of size \(n \) from the original sample.
3. In each bootstrap sample, compute the fully recentered vector \(\tilde{\theta}_b' \equiv \hat{\theta}_b - \hat{\theta} \) and the partially recentered vector \(\tilde{\theta}_b'' \equiv \hat{\theta}_b - \delta_b \times \hat{\theta} \), where \(\delta_b \) is a sequence such that \(\delta_b \to 0 \) and \(\sqrt{n} \times \delta_b \to \infty \) as \(n \to \infty \).\(^{11}\)
4. Estimate the vector of \(p \)-values under full recentering, denoted by \(P_{\theta}\) :
 \[P_{\theta}' : P_{\theta}' = B_1^{-1} \times \sum_{b=1}^{B_1} I\left\{ \sqrt{n} \times \tilde{\theta}_b' > \sqrt{n} \times \hat{\theta} \right\} \]
5. Compute the minimum \(p \)-values under full recentering:
 \[\hat{\text{p}}_f = \min(P_{\theta}') \]
6. Draw \(B_2 \) values from the distributions of \(\tilde{\theta}_b' \) and \(\tilde{\theta}_b'' \). We denote by \(\tilde{\theta}_b^f \) and \(\tilde{\theta}_b^p \) the resampled observations in the second bootstrap.
7. In each bootstrap sample, compute the minimum \(p \)-values of B.f and B.p, denoted by \(\hat{\text{p}}_{\theta,f,b} \) and \(\hat{\text{p}}_{\theta,p,b} \), where \(\hat{\text{p}}_{\theta,f,b} = \min(P_{\theta,f,b}) \), \(\hat{\text{p}}_{\theta,p,b} = \min(P_{\theta,p,b}) \),
 \[P_{\theta,f,b} = B_1^{-1} \times \sum_{b=1}^{B_1} I\left\{ \sqrt{n} \times \tilde{\theta}_b^f > \sqrt{n} \times \hat{\theta} \right\} \]
 \[P_{\theta,p,b} = B_1^{-1} \times \sum_{b=1}^{B_1} I\left\{ \sqrt{n} \times \tilde{\theta}_b^p > \sqrt{n} \times \hat{\theta} \right\} \]

\(^{11}\) As in Bennett (2009) and Chen and Szroeter (2012), we set \(\delta_b = \sqrt{\frac{\text{min}(\text{sim})}{n}} \) in the simulations and applications further below, which has also been considered in Andrews and Soares (2010) and Chernozhukov et al. (2007). It is, however, not guaranteed that this choice is optimal; see, the discussion in Donald and Hsu (2011).
8. Compute the p-values of the B.f and B.p tests by the share of bootstrapped minimum p-values that are smaller than the respective minimum p-value of the original sample:

$$
\hat{p}_{B.f} = B_2^{-1} \times \sum_{b=1}^{B_2} I(\hat{p}_{f,b} \leq \hat{p}_f),
$$

$$
\hat{p}_{B.p} = B_2^{-1} \times \sum_{b=1}^{B_2} I(\hat{p}_{p,b} \leq \hat{p}_f).
$$

Finally, we consider the Chen and Szroeter (2012) test, which again estimates the binding constraints in the data to increase power. A particularity is that (in the spirit of Horowitz, 1992) the method is based on indicator smoothing (of the functions indicating whether the constraints are binding) at the origin of the elements in θ, where the distribution of the test statistic is discontinuous. After smoothing, standard asymptotic theory applies to the test statistic, such that bootstrapping is not required to approximate its (otherwise unknown) distribution. Furthermore, Chen and Szroeter (2012) show that their test has correct asymptotic size in the uniform sense under certain conditions, which is a desirable property given that the test statistic’s asymptotic distribution is discontinuous. After smoothing, the combination of assumptions 5 and 6 results in the restriction that the mean potential outcomes under treatment of the always takers and compliers are the same, yielding the following equality constraint:

$$
E(Y|D = 1, Z = 1, Y \leq y_q) \leq E(Y|D = 1, Z = 0)
$$

Assumption 5 implies that the mean potential outcome of the compliers under treatment is at least as high as that of the always takers. Therefore, the upper bound of the mean potential outcome of the always takers in equation (1) tightens to the conditional mean $E(Y|D = 1, Z = 1)$. Under assumptions 1 to 5, equation (5) becomes

$$
E(Y|D = 1, Z = 1, Y \leq y_q) \leq E(Y|D = 1, Z = 0)
$$

which tightens the upper bound. Whether this assumption is plausible depends on the empirical application at hand and has to be justified by theory or empirical evidence. In fact, one could also assume the converse: that the mean potential outcome of the compliers cannot be higher than that of the always takers. This is formally stated in assumption 6:

Assumption 6. $E(Y^1|T = c) \leq E(Y^1|T = a)$ (mean dominance of always takers).

In this case, $E(Y|D = 1, Z = 1)$ constitutes the lower bound of the mean potential outcome of the always takers, and the testable implication becomes

$$
E(Y|D = 1, Z = 1) \leq E(Y|D = 1, Z = 0)
$$

Assumption 7. $E(Y^1|T = c) = E(Y^1|T = a)$ (equality of means).
Assumption 2NB. (unconfounded type).

In the setting in the binary case), 1NB to 4NB for and population (in terms of unobservables) of compliers than identify LATEs with respect to any distinct values or sub-values. Frölich (2007) shows that if \(z \) settings, to the case of discrete instruments with multiple points in the support of \(z \). Let \(z', z'' \) denote two different mass points in the support of \(Z \) satisfying \(z_{\text{min}} \leq z' < z'' \leq z_{\text{max}} \).

Note that the definition and share of the complier population and all other types depend on the choice of \(z', z'' \), because in general, the pool of individuals whose treatment states respond to the instrument vary with the IV values considered. For example, assuming an instrument \(Z \in \{0, 1, 2\} \), setting \(z' = 0, z'' = 1 \) generally yields a different proportion and population (in terms of unobservables) of compliers than considering \(z' = 0, z'' = 2 \). For this reason, we define the types as functions of \(z', z'' \): \(T = T(z', z'') \) (with \(T = T(0, 1) \) in the binary case).

Instead of assumptions 1 to 4, we now invoke assumptions 1NB to 4NB for \(z_{\text{min}} \leq z' < z'' \leq z_{\text{max}} \):

Assumption 1NB. \(\Pr(T(z', z'') = t|Z = z) = \Pr(T(z', z'') = t) \forall z \in \text{the support of } Z \text{ and } t \in \{a,c,d,n\} \) (unconfounded type).

Assumption 2NB. \(E(Y^{d_0} | T(z', z'') = t) = E(Y | T(z', z'') = t) \forall z \in \text{the support of } Z, d \in \{0, 1\}, \text{ and } t \in \{a,c,d,n\} \) (mean exclusion restriction).

Assumption 3NB. \(\Pr(D^{z''} \geq D^{z'}) = 1 \) (monotonicity).

Assumption 4NB. \(\Pr(D^{z''} > D^{z'}) > 0 \) (existence of compliers).

Then the LATE among compliers \((T(z', z'') = c) \) is identified by \(E(Y^{1} - Y^{0} | T(z', z'') = c) = \frac{E(Y|Z=c,E(Y|Z=z') - E(Y|Z=c,E(Y|Z=z''))}{E(D|Z=c,E(Y|Z=z') - E(D|Z=z'')} \).

1This is the case because compliers under \(z = 0, z'' = 2 \) are those individuals with \(D^0 = 0 \) and \(D^1 = 1 \) and may also include some individuals who would be never takers if considering \(z = 0, z'' = 1 \) (\(D^0 = 0 \) and \(D^1 = 0 \)).

Theorem 8 in Frölich (2007) shows that the LATE on the largest complier population possible is identified by choosing \(z' = z_{\text{min}} \) and \(z'' = z_{\text{max}} \). Therefore, if assumption 4NB is not satisfied for \(z_{\text{min}}, z_{\text{max}} \) (such that the largest share of compliers possible is 0), it cannot hold for any other pair \(z', z'' \) either. But, if assumption 4NB holds for \(z' = z_{\text{min}} \) and \(z'' = z_{\text{max}} \), this does not automatically mean that it also holds for all or any other \(z', z'' \). As monotonicity of the binary treatment implies that each individual switches its treatment status as a reaction to the instrument at most once under the null, the complier share may be small or even 0 for some pairs \(z', z'' \). While small or 0 complier shares are undesirable for LATE estimation, the contrary holds for testing, as the absence of compliers maximizes the asymptotic power to find violations of IV validity.

To generalize the testable implications to the case of discrete instruments with multiple values, we somewhat redefine \(z' \), \(z'' \). The latter may now either refer to particular mass points of \(Z \) as before (e.g., \(z' = 0 \) and \(z'' = 1 \)) or, alternatively, to nonoverlapping subsets of the support of \(Z \) that satisfy the restriction that the largest value in \(z' \) is strictly smaller than the smallest in \(z'' \) (e.g., \(z' = \{0, 1\} \) and \(z'' = \{2, 3\} \)). Furthermore, define \(\tilde{Z} \) as

\[
\tilde{Z} = \begin{cases}
0 & \text{if } Z \in z' \\
1 & \text{if } Z \in z''
\end{cases}
\]

Under assumptions 1NB to 4NB, the results of sections II and III must also hold when replacing \(Z \) by \(\tilde{Z} \). This implies that for any \(Z \), we obtain four inequality constraints:

\[
\begin{align*}
E(Y|\tilde{Z} = 1, D = 1, Y \leq y) & - E(Y|\tilde{Z} = 0, D = 1), \\
E(Y|\tilde{Z} = 0, D = 1) - E(Y|\tilde{Z} = 1, D = 1, Y \geq y_{1-q}), \\
E(Y|\tilde{Z} = 0, D = 0, Y \leq y_{1-q}) - E(Y|\tilde{Z} = 1, D = 0), \\
E(Y|\tilde{Z} = 1, D = 0) - E(Y|\tilde{Z} = 0, D = 0, Y \geq y_{1-q}) & \leq 0.
\end{align*}
\]

Let \(n_2 \) be the number of possible choices of \(\tilde{Z} \) with neighboring mass points or nonoverlapping subsets of the support of \(Z \). Testing IV validity amounts to applying the test procedures outlined in section III, where the number of inequality constraints is now \(4 \times n_2 \) instead of 4. To give an example, consider the case that \(\tilde{Z} \) may take the values 0, 1, or 2. The number of possible definitions of \(\tilde{Z} \) with neighboring \(z', z'' \) is 4:

\[
\begin{align*}
z' &= 0 & z'' &= 1, \\
z' &= 1 & z'' &= 2, \\
z' &= 0 & z'' &= \{1, 2\}, \\
z' &= \{0, 1\} & z'' &= 2.
\end{align*}
\]

This implies that we have \(4 \times 4 = 16 \) testable inequality constraints based on neighboring pairs. Notice that also considering the nonneighboring pair \(z' = 0, z'' = 2 \) does
not increase finite sample power or asymptotic power: a test base on the nonneighboring pair is weakly dominated by using \(z' = \{0, 1\}, z'' = 2 \) and \(z' = 0, z'' = \{1, 2\} \) in terms of the sample size and, thus, finite sample power and entails a weakly higher complier share than any other nonneighboring pair (and, thus, weakly lower asymptotic power). In large samples, defining the neighboring \(z', z'' \) as mass points or, rather, small subsets of the support appears preferable because this increases asymptotic power by minimizing the complier share in each pair and maximizing the number of pairs to be tested. However, in small samples, we face a trade-off between asymptotic power and finite sample power due to few observations per pair when defining \(z', z'' \) as mass points or small subsets.

VI. Testing Under Joint Independence

Even though stronger than necessary for LATE identification, the literature commonly imposes the following joint independence assumption instead of assumptions 1 and 2 (see Imbens & Angrist, 1994):

Assumption 1J. \(Yd = Yd \) and \(Z \perp (Yd, D') \) \(\forall d \in \{0, 1\} \) and \(Z \) in the support of \(Z \) (joint independence), where \(\perp \) denotes statistical independence.

Assumption 1J states that the potential outcome is a function of treatment but not of the instrument (such that the exclusion restriction holds for any moment) and that the instrument is independent of the joint distribution of the potential treatment states and the potential outcomes. It is sufficient for the identification of local quantile treatment effects (see Frölich & Melly, 2008) or other distributional features.

One plausible reason for the popularity of this assumption in LATE estimation is that in many empirical setups, it does not seem too unlikely that when mean independence holds, the stronger joint independence is also satisfied. For example, if one is willing to assume that an instrument is mean independent of the outcome variable hourly wage it might appear reasonable to assume that it is mean independent of the log of hourly wage, too. As the latter is a (one-to-one) non-linear transformation of the original outcome variable, this also implies independence with regard to higher moments. From this perspective, strengthening mean independence to joint independence may often only come with few costs in terms of credibility.\(^{14}\) The subsequent review of the K08 test and the adaptation of our method to joint independence make it obvious that assumption 1J allows constructing asymptotically more powerful tests based on probability measures (such as density functions) rather than means only. However, it is not yet clear how to optimally define these probability measures in finite samples. From a practical point of view, the mean-based tests may therefore appear useful even under joint independence due to their ease of implementation.

Henceforth assuming a binary instrument, the testing approach proposed in K08 exploits the fact that under IV validity (now relying on assumption 1J instead of assumptions 1 and 2) and for any subset \(V \) of the support of \(Y \), \(\Pr(Y \in V, D = d|Z = d) - \Pr(Y \in V, D = d|Z = 1 - d) \) can be shown to be equal to \(\Pr(Y \in V|D = d) \times \pi_d \), and thus cannot be negative for \(d \in \{0, 1\} \). The underlying intuition is that negative densities of complier outcomes must not occur in either treatment state (see section I). This is formally stated in proposition 1 of K08:\(^{15}\)

\[
\Pr(Y \in V, D = 1|Z = 0) \leq \Pr(Y \in V, D = 1|Z = 1),
\]

\[
\forall V \text{ in the support of } Y.
\]

For testing, K08 makes use of a two-sample Kolmogorov-Smirnov-type statistic on the supremum of \(\Pr(Y \in V, D = 1|Z = 0) - \Pr(Y \in V, D = 1|Z = 1) \) and \(\Pr(Y \in V, D = 0|Z = 1) - \Pr(Y \in V, D = 0|Z = 0) \), respectively, across a predefined collection of subsets \(V \), henceforth denoted as \(V \). Because the test statistic does not converge to any known distribution, the author proposes a bootstrap (or permutation) method, analogous to Abadie (2002), to compute critical values. An open question of the K08 test is the choice of \(V \)—the definition and number of subsets \(V \). While a large number of subsets increases the chance to detect a violation and, thus, asymptotic power, it may entail a high variance in finite samples—that is, there exists a trade-off between the richness of \(V \) and the finite sample power.

In what follows, we adapt our testing framework to probability measures (including the pdf and cdf) rather than means and compare the resulting constraints to K08. Analogous to equations (5) and (6) for the mean potential outcomes, the equations (5) and (6) for the mean potential outcomes, the adaptation of our method to joint independence make it obvious that assumption 1J allows constructing asymptotically more powerful tests based on probability measures (such as density functions) rather than means only. However, it is not yet clear how to optimally define these probability measures in finite samples. From a practical point of view, the mean-based tests may therefore appear useful even under joint independence due to their ease of implementation.

\(^{14}\) We thank Toru Kitagawa for a fruitful discussion on this topic.

\(^{15}\) Equation (7) in Balke and Pearl (1997) and equations (12) and (13) in Richardson, Evans, and Robins (2011) provide the same constraints for the special case that \(Y \) is binary.
V|D = 0, Z = 1) and therefore,

\[
\Pr(Y \in V|D = 1, Z = 1) - (1 - q)q
\leq \Pr(Y \in V|D = 1, Z = 0) - (1 - q)q
\leq \Pr(Y \in V|D = 0, Z = 1)
\leq \frac{\Pr(Y \in V|D = 0, Z = 0) - (1 - r)r}{r}.
\]

We obtain the following inequality constraints:

\[
H_0 : \begin{cases}
\frac{\Pr(Y \in V|D = 1, Z = 1) - (1 - q)q}{q} - \Pr(Y \in V|D = 1, Z = 0) \\
\frac{\Pr(Y \in V|D = 0, Z = 0) - (1 - r)r}{r} - \Pr(Y \in V|D = 0, Z = 1) \\
\Pr(Y \in V|D = 0, Z = 1) - \Pr(Y \in V|D = 0, Z = 0)
\end{cases} \leq \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{pmatrix} \leq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.
\] (17)

Equation (17) allows us to construct tests with multiple constraints, depending on the definition of V (with the number of constraints being four times the number of V).

To see how our inequality constraints compare to K08, we use simple algebra (see online appendix A.2) to rewrite equation (16) as

\[
\Pr(Y \in V, D = 1|Z = 1) - (P_{1|1} - P_{1|0})
\leq \Pr(Y \in V, D = 1|Z = 0)
\leq \Pr(Y \in V, D = 1|Z = 1),
\]

\[
\Pr(Y \in V, D = 0|Z = 0) - (P_{1|1} - P_{1|0})
\leq \Pr(Y \in V, D = 0|Z = 1)
\leq \Pr(Y \in V, D = 0|Z = 0),
\]

which must hold for all V in the support of Y. It is easy to see that equation (18) includes the constraints (14) of K08, and in addition,

\[
\Pr(Y \in V, D = 1|Z = 1) - \Pr(Y \in V, D = 1|Z = 0)
\leq (P_{1|1} - P_{1|0}),
\]

\[
\Pr(Y \in V, D = 0|Z = 0) - \Pr(Y \in V, D = 0|Z = 1)
\leq (P_{1|1} - P_{1|0}).
\] (19)

The interpretation of this result is that the joint probability of being a complier and having an outcome that lies in subset V cannot be larger than the (unconditional) complier share in the population. To see this, consider any V with nonoverlapping subsets V that jointly cover the entire support of Y. By the law of total probability, for instance, the first line of equation (19) must hold because

\[
P_{1|1} - P_{1|0} = \sum_{V \in \mathcal{V}} [\Pr(Y \in V, D = 1|Z = 1)
- \Pr(Y \in V, D = 1|Z = 0)].
\] (20)

It is worth noting that if V is defined in the way just described (nonoverlapping V that jointly cover the entire support of Y), the constraints (19) are already taken into account by equation (14) and thus redundant. The prevalence of some Pr(Y \in V, D = 1|Z = 1) - Pr(Y \in V, D = 1|Z = 0) > (P_{1|1} - P_{1|0}) then necessarily implies the existence of at least one distinct subset V for which Pr(Y \in V', D = 1|Z = 1) - Pr(Y \in V', D = 1|Z = 0) < 0 so that equation (14) is violated too; otherwise equation (20) cannot be satisfied.\(^{16}\) Power gains based on equation (19) might possibly be realized only if V contains overlapping V (so that negative densities may be averaged out) or does not cover the entire support of Y. As an illustration, a hypothetical example for such a case is provided in online appendix A.5.

In the simulations and the application, we use the methods of Bennett (2009) and Chen and Szroeter (2012) to test equation (17). These differ in two important ways from the K08 procedure. First, the latter derives the critical value of the test statistic under the least favorable condition for which the null is rejected with the highest probability (Pr(Y \in V, D = 1|Z = 0) = Pr(Y \in V, D = 1|Z = 1) and Pr(Y \in V, D = 0|Z = 1) = Pr(Y \in V, D = 0|Z = 0)). In contrast, in the partial centering approach of Bennett (2009) and in Chen and Szroeter (2012), the asymptotic null distribution of the respective test statistic is based on pre-estimating for which V the moment inequalities are binding, which may increase finite sample power if V is confined to a finite class of subsets. On the other hand, these tests cannot deal with an infinite number of inequality constraints, while the K08 test can allow V to have an infinite number of subsets and therefore may asymptotically screen out more alternatives.\(^{17}\)

We conclude this section by pointing out that dominance or equality constraints that are in the spirit of the mean restrictions discussed in section IV may analogously be imposed with regard to the probabilities that the potential outcomes of different subpopulations are situated in some subset V. This allows detecting more violations of IV validity and is discussed in online appendix A.3.

\section*{VII. Simulations}

We investigate the finite sample properties of the bootstrap tests based on inequality moment constraints by simulating IV models with both continuous and binary outcomes. For the continuous case, the data-generating process (DGP) is

\(^{16}\) We are indebted to Toru Kitagawa for his helpful comments on this issue.

\(^{17}\) We are grateful to an anonymous referee for pointing this out.
the following:

\[Y = D + \beta Z + U, \]
\[D = I(\alpha Z + \varepsilon > 0), \]
\[(U, \varepsilon) \sim N(0, 1), \quad \text{Cov}(U, \varepsilon) = 0.5, \]
\[Z \sim \text{Bernoulli}(0.5), \text{ independent of } (U, \varepsilon). \]

The treatment variable \(D \) is endogenous due to the correlation of the errors \(U \) and \(\varepsilon \) in the structural and the first-stage equations, respectively. The first-stage coefficient \(\alpha \) determines the share of compliers in the population and thus the width of the bounds. We therefore expect the power to reject violations of IV validity to decrease in the coefficient. In the simulations, \(\alpha \) is set to 0.2 and 0.6, which corresponds to shares of roughly 8\% and 23\%, respectively.\(^\text{18}\) These figures are well in the range of complier proportions found in empirical applications; see, for instance, the example presented in section VIII. Note that in our model, the unconfounded type restrictions (assumption 1) holds by construction because \(\varepsilon \) and \(Z \) are independent. Furthermore, monotonicity (assumption 3) is satisfied because \(\alpha Z \) and \(\varepsilon \) are linearly separable and \(\alpha \) is constant (i.e., the same for everyone).\(^\text{19}\) The simulations are therefore focused on the validity of the exclusion restriction (which has traditionally received most attention). The latter is satisfied for \(\beta = 0 \) and violated for any \(\beta \neq 0 \), implying a direct effect of \(Z \) on \(Y \) and therefore a violation of assumption 2. For this reason, we suspect the power to reject violations of IV validity to increase in the absolute value of \(\beta \), as the probability that \(E(Y|D = 1, Z = 0) \) and \(E(Y|D = 0, Z = 1) \) fall outside the parameter bounds in the mixed populations increases in the magnitude of the direct effect. In the simulations, we set \(\beta \) to 0 and 1.

Table 3 reports the rejection frequencies of the various tests at the 5\% level of significance for sample sizes \(n = 250 \) and 1,000 simulations. The first and second columns indicate the level of \(\alpha \) and \(\beta \), respectively. The third column (st.dist1) gives \(\max(\theta_1, \theta_2)/\text{st.dev.}(Y) \), that is, the maximum distance between the estimate \(E(Y|D = 1, Z = 0) \) and the bounds in the mixed population, standardized by the standard deviation of \(Y \). A positive value implies that the point estimate of the always-takers’ mean potential outcome falls outside the bounds (i.e., is either smaller than the lower bound or higher than the upper bound). The fourth column (st.dist0) provides the distance parameter for the never-takers: \(\max(\theta_3, \theta_4)/\text{st.dev.}(Y) \). Column 5 reports the bias of the LATE estimator, which is heavily biased whenever \(\beta \neq 0 \). But even under the null with \(n = 250 \) and \(\alpha = 0.2 \), the estimator performs poorly, suggesting that we should be cautious when using IV estimation in small samples when the instrument is weak.

Columns 6 to 9 display the rejection frequencies for the tests based on the constraints under mean independence in equation (7), namely, the bootstrap test with Bonferroni adjustment (bs), the Bennett (2009) test with partial (B.p) and full (B.f) recentering, and the Chen and Szroeter (2012) test (CS) using \(\Psi(\cdot) = \Phi(\cdot) \) as the smoothing function.\(^\text{20}\) The results for testing the probability constraints (17) (under the stronger IV assumptions of section VI) using the methods of Bennett (2009) and Chen and Szroeter (2012) are reported in columns 10 to 15. B.p(2), B.f(2), and CS(2) are based on two subsets \(V \) by cutting the distribution of \(Y \) in each simulation into two at the value that corresponds to half the difference of the maximum and minimum of the simulated outcome ((\(\max(Y) - \min(Y) \))/2). B.p(4), B.f(4), and CS(4) use four subsets based on the following partition: \(V_1 = (-\infty, -1), V_2 = [-1, 0), V_3 = [0, 1), V_4 = [1, \infty) \). For all tests, the number of bootstrap draws is set to 499. Furthermore, note that the bootstrap test with Bonferroni adjustment and the method of Chen and Szroeter (2012) are based on studentized \(\tilde{\theta} \), while the Bennett (2009) tests use the original moment constraints (as the results are invariant to studentization).

Under IV validity, the rejection frequencies of any method are quite low and clearly smaller than 5\%. The reason is that in our simulations with \(\beta = 0, \theta \) lies in the interior of possible parameter values for which the moment inequalities are satisfied, but not at the boundaries (where the asymptotic size is exactly 5\%). As expected, the empirical size decreases in \(\alpha \) because the bounds become wider due to a higher share of compliers, and in the sample size, which makes the estimation of \(\tilde{\theta} \) more precise. Under a violation of IV validity (\(\beta = 1 \)), all tests gain power as the sample size grows and lose power as the share of compliers becomes larger. Overall, the partially recentered Bennett (2009) test with two subsets (B.p(2)) is most powerful in the given scenario. Whenever the null is violated, it either has the highest rejection frequencies or comes very close to the best-performing test. Also CS(2) has comparably high power. Interestingly, the probability-based tests based on four subsets are generally less powerful than those based on two subsets, which demonstrates that the choice of \(V \) may importantly affect the properties of the tests.

Table 4 presents the rejection frequencies for binary outcomes, where the DGP is identical to the previous one with the exception that \(Y = I(D + \beta Z + U > 0) \). Therefore, the true treatment effect depends on the parameter \(\alpha \) and is 0.386 for \(\alpha = 0.2 \) and 0.403 for \(\alpha = 0.6 \). Concerning testing, note that the mean tests need to be modified in an innocuous way to be appropriate for binary outcomes (see online appendix A.4). Furthermore, probability-based tests with four subsets

\(^{18}\) The share of compliers is given by \(\Phi(\alpha) - \Phi(0) = \Phi(\alpha) - 0.5 \), where \(\Phi(\cdot) \) is the cdf of the standard normal distribution.

\(^{19}\) Nonmonotonicity could be introduced, for instance, by considering a random (rather than a constant) first-stage coefficient that takes both positive and negative values. Then the instrument weakly increases the treatment for some units while it weakly decreases it for others, such that both compliers and defiers may be present (depending on the distribution of the random coefficient and \(\varepsilon \)).

\(^{20}\) In our simulations, we also considered \(\Psi(\cdot) = I(\cdot \geq -1) \) and \(\Psi(\cdot) = \exp(\cdot)/(1 + \exp(\cdot))^{-1} \) as smoothing functions for the Chen and Szroeter (2012) tests. Because either choice reduced testing power compared to \(\Psi(\cdot) = \Phi(\cdot) \), the results are not reported.
Table 3.—Simulations—Continuous Outcome

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>st.dist1</th>
<th>st.dist0</th>
<th>b.LATE</th>
<th>Rejection Frequencies Mean-Based Tests</th>
<th>bs</th>
<th>B.p</th>
<th>B.f</th>
<th>CS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>n = 250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>-0.090</td>
<td>-0.103</td>
<td>-1.440</td>
<td>0.011, 0.017, 0.007, 0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.0</td>
<td>-0.223</td>
<td>-0.313</td>
<td>-0.110</td>
<td>0.000, 0.000, 0.000, 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>1.0</td>
<td>0.494</td>
<td>0.458</td>
<td>27.841</td>
<td>0.943, 0.960, 0.916, 0.983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1.0</td>
<td>0.259</td>
<td>0.096</td>
<td>4.825</td>
<td>0.404, 0.506, 0.373, 0.450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>-0.118</td>
<td>-0.138</td>
<td>-0.282</td>
<td>0.003, 0.003, 0.001, 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.0</td>
<td>-0.243</td>
<td>-0.357</td>
<td>-0.009</td>
<td>0.000, 0.000, 0.000, 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>1.0</td>
<td>0.505</td>
<td>0.482</td>
<td>17.121</td>
<td>1.000, 1.000, 1.000, 1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1.0</td>
<td>0.249</td>
<td>0.094</td>
<td>4.491</td>
<td>0.931, 0.965, 0.928, 0.939</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rejection frequencies at the 5% level. Tests are based on 499 bootstrap draws.

Table 4.—Simulations—Binary Outcome

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>Rejection Frequencies Probability-Based Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean-Based Tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 250</td>
<td></td>
<td>Joanarif</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>-0.017</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0</td>
<td>-0.082</td>
</tr>
<tr>
<td>0.2</td>
<td>1.0</td>
<td>0.132</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0</td>
<td>0.123</td>
</tr>
<tr>
<td>n = 1,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
<td>-0.040</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0</td>
<td>-0.110</td>
</tr>
<tr>
<td>0.2</td>
<td>1.0</td>
<td>0.131</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0</td>
<td>0.121</td>
</tr>
</tbody>
</table>

Rejection frequencies at the 5% level. Tests are based on 499 bootstrap draws.

are not considered because the outcome can take only two values. As before, all tests are quite conservative when \(\beta = 0 \) and even more so for the larger share of compliers or sample size. Under \(\beta = 1 \), the CS (mean) test has the highest power overall, but B.p and B.p(2) also perform decently.

VIII. Application

This section presents an application to labor market data from Card (1995), who evaluates the returns to college education based on the 1966 and 1976 waves of the U.S. National Longitudinal Survey of Young Men (NLSYM) (3,010 observations). Among others, he uses a dummy for proximity to a four-year college in 1966 as an instrument for the potentially endogenous decision of going to college. Proximity should induce some individuals (in particular, those from low-income families) to strive for a college degree who would otherwise not, for instance, due to costs associated with not living at home. However, the instrument may well be correlated with factors like local labor market conditions or family background (e.g., parents’ education, which could shape preferences for particular residential areas), which
might be related to the outcome (log of weekly earnings in 1976). This has been acknowledged by Card (1995), himself, who for this reason includes a range of control variables in his estimations. For testing, we follow K08 (who also considers this data set) and define the educational level as binary treatment (i.e., 16 years or more such that it roughly corresponds to a four-year college degree. We test IV validity in the full sample (i.e., unconditionally) and in four subsamples (consisting of white individuals not living in the South) in order to control for covariates that are potentially correlated with both the instrument and the outcome. The subsamples differ in terms of father’s education (twelve or more years or less than twelve years), and living in an urban or rural area.

Table 5 presents the results. The first column gives the estimated complier proportion, which is crucial for the tests’ power to detect violations of IV validity; the second and third columns report the standardized maximum distances \(\max(\theta_1, \theta_2)/\text{st.dev.}(Y) \), \(\max(\theta_1, \theta_2)/\text{st.dev.}(Y) \). The remaining columns contain the \(p \)-values of the bootstrap test with Bonferroni adjustment (bs) as well as the Bennett (2009) and Chen and Szroeter (2012) tests (using the smoothing function for the mean constraints (B,p, B,f, CS) and the probability constraints (B,p(2), B,f(2), B,p(4), B,f(4), CS(2), CS(4)) with 2 and 4 subsets \(V \). The latter are defined by an equidistant grid over the support of \(Y \). In the full sample, the point estimate of the mean potential outcome of the never takers falls well outside its bounds, and all tests reject the null at the 1% level. In contrast, none of the mean constraints is binding in any of the subsamples, and with the exception of B,p(4) and B,f(4) in the third subsample, all tests yield rather large \(p \)-values. This leads us to conclude that while college proximity is most likely not an unconditionally valid instrument, IV validity conditional on covariates is generally not refuted.\(^{21}\)

\(^{21}\) As IV validity is required to hold in any subpopulation defined on the covariates, testing should ideally include all possible combinations of covariates to maximize asymptotic power. However, this may be infeasible in empirical applications due to small samples problems. A method specifically designed for testing conditional on covariates is yet to be developed.

Finally, we test the mean equality constraints (10) and (11) using two sample \(t \)-tests. Table 6 reports the sample analogues of \(E(Y|D=d, Z=z) \) (where \(z, d \in \{0, 1\} \), denoted by \(\tilde{Y}_{D=d, Z=z} \)), the differences (diff) \(\tilde{Y}_{D=1, Z=1} - \tilde{Y}_{D=0, Z=1} \) and the respective (asymptotic) \(p \)-values (p-val). Not surprisingly, the tests yield low \(p \)-values for the full sample of Card (1995), which did not even satisfy the weaker inequality constraints. In contrast, all subsamples pass the stricter difference of means tests at the 5% level of significance. This suggests that IV validity and homogeneity of the mean potential outcomes of compliers and always takers under treatment and of compliers and never takers under nontreatment are likely to hold given the covariates considered.

IX. Conclusion

The LATE framework of Angrist (1994) and Angrist et al. (1996) implies that the mean potential outcome of the always takers under treatment and that of the never takers under non-treatment can be both point-identified and bounded. As the

<table>
<thead>
<tr>
<th>Sample</th>
<th>compl.</th>
<th>st.dist1</th>
<th>st.dist0</th>
<th>bs</th>
<th>B.p</th>
<th>B.f</th>
<th>CS(2)</th>
<th>CS(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full sample</td>
<td>6.9%</td>
<td>−0.203</td>
<td>0.224</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>w.non.S.f.edu≥12,u</td>
<td>13.2%</td>
<td>−0.419</td>
<td>−0.302</td>
<td>1.000</td>
<td>0.787</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>w.non.S.f.edu<12,u</td>
<td>3.6%</td>
<td>−0.051</td>
<td>−0.016</td>
<td>1.000</td>
<td>0.665</td>
<td>0.866</td>
<td>0.919</td>
<td></td>
</tr>
<tr>
<td>w.non.S.f.edu≥12,r</td>
<td>16.3%</td>
<td>−0.061</td>
<td>−0.396</td>
<td>1.000</td>
<td>0.602</td>
<td>0.936</td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>w.non.S.f.edu<12,r</td>
<td>6.7%</td>
<td>−0.092</td>
<td>−0.164</td>
<td>1.000</td>
<td>0.777</td>
<td>0.976</td>
<td>0.989</td>
<td></td>
</tr>
</tbody>
</table>

\(w = \) white, \(\text{non-S} = \) non-South, \(\text{f.edu} = \) father’s education, \(u = \) urban, \(r = \) rural.
points must lie within their respective bounds, this provides four testable implications for IV validity, which can be formulated as inequality moment constraints. We consider various methods for testing the latter: a simple bootstrap test with Bonferroni adjustment, the minimum p-value-based test of Bennett (2009), and the Chen and Szroeter (2012) test using indicator smoothing. Furthermore, we point out that power against violations of IV validity may be increased by imposing restrictions on the order of the mean potential outcomes across subpopulations. If one is even willing to assume equality in mean potential outcomes across subpopulations, simple difference of means tests can be used for testing. We also relate our work to Kitagawa (2008), who tests for the non-negativity of complier outcomes’ densities in subsets of the outcome support to verify IV validity. By adapting our framework to probability measures rather than means of potential outcomes, we obtain testable implications that are equivalent to those in Kitagawa (2008), given that the probability measures used for testing are defined by nonoverlapping subsets that jointly cover the entire outcome support. Finally, we briefly investigate the finite sample properties of our tests and consider an empirical application to labor market data from Card (1995).

The testing problem discussed in this paper raises the question of what can be done about identification if instrument validity is rejected. Obviously, the most appropriate solution would be to search for better instruments, but this may not always be feasible in practice. As an alternative, one could relax some of the IV assumptions. Then, point identification is lost, but the LATE might still be partially identified within reasonable bounds in the spirit of Manski (1989). Flores and Flores-Lagunes (2010), for example, derive bounds on the LATE when the exclusion restriction is violated, but monotonicity of the treatment in the instrument holds, while Huber and Mellace (2010) consider the violation of monotonicity but maintain the exclusion restriction.

REFERENCES

Cameron, Adrian Colin, and Pravin Trivedi, Microeconometrics (Cambridge: Cambridge University Press, 2005).
MacKinnon, James, “Bootstrap Hypothesis Testing,” Queen’s University, Department of Economics working paper 1127 (2007).