Irish university. Findings from a recent systematic review were used to inform research and interview questions.\[1\] Sampling was purposive and included lecturers from the disciplines of clinical pharmacy and pharmaceutics. Interviews were conducted, either in person or virtually, then transcribed and anonymised. Reflexive thematic analysis (TA) was chosen as the method of analysis, \[2\] conducted by the first author with input from the wider research team. Within the reflexive piece of this work was the drive to be informed by the lived experience of participants. In alignment with the principles of reflexive TA, an iterative approach was taken to data collection and analysis. \[2\] This approach informed a sample size which facilitated in-depth exploration of the topic.

Results:
Seven interviews were conducted, and six key themes were derived from the analysis. These are presented in Table 1 along with the identified subthemes.

Conclusion:
This study demonstrates gaps relating to HF/PS teaching in undergraduate pharmacy education in the Irish context. Findings of this study indicate that much PS learning is implicit and occurs while students are on clinical placement. Lack of synergy between the academic and clinical settings was identified as a gap. Interprofessional education was identified as a platform which may help bridge this gap. In agreement with previously published literature, there is a need for robust competency frameworks to underpin safety content.\[1\] These findings will inform future initiatives to develop HF and PS competency in undergraduate healthcare education.

A limitation of this research is that all data were collected at a single university. A strength is that this study captures the lived experience of PS education from the perspective of academic staff at an Irish school of pharmacy which in 2015 made the transition to a new MPharm programme.

References

Abstract citation ID: riae013.016

Carbon Reduction Impact from Synchronising PrescriptionS (CRISPS): A pilot study

T. Cork1,2, S. White2

1 Community Pharmacy Staffordshire and Stoke-on-Trent, UK, 2 School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK

Introduction: Synchronising the dates of patients’ repeat prescriptions can reduce monthly community pharmacy visits or home deliveries, which may improve patients’ adherence to medicines.\[1\] It should also reduce carbon dioxide (CO\textsubscript{2}) emissions associated with avoidable travel, but previous research does not appear to have determined the potential size of this reduction. This pilot study therefore attempted to do so using routinely collected data.
Aim: To estimate potential carbon savings from synchronising repeat medicines for a sample of patients from one community pharmacy.

Methods: All patients who had prescriptions dispensed four times per month or more from a single medium-sized (approximately 2,500 items dispensed per month) urban community pharmacy in England were identified from the pharmacy’s home delivery application. The threshold of four deliveries per month was selected to increase the likelihood of this frequency being due to asynchronised prescriptions. Data were collected (August 2023) for deliveries in June 2023 as there were no public holidays or events to affect prescription ordering. Data included patients’ postcode, delivery dates, and using the Patient Medication Record, the pharmacist collecting the data determined acute or one-off prescription items, that neither the patients nor the repeat medicines were new, and where deliveries were made to supply medicines owing. The pharmacy was selected because it efficiently managed stock to minimise items owing. The distance that would have been travelled was calculated as if the medicines had been collected from the pharmacy as a dedicated journey to and from the patient’s home address instead of being delivered. The saving in miles and CO₂ emitted for different vehicle types was modelled by assuming that for each patient, all deliveries that were not for acute items or medicines owing could have been reduced to a single delivery if prescriptions had been synchronised. UK Government conversion factors were used to calculate CO₂ emissions.[2]

Results: Data were collected for 59 patients, of whom 7 patients had 8 deliveries, 4 had 7 deliveries, 6 had 6 deliveries, 16 had 5 deliveries and 26 had 4 deliveries. The total number of deliveries to these patients was 269 but would have been 80 deliveries if the repeat prescriptions had been synchronised (70% reduction). The distance travelled would have been reduced from 842 miles to 241 miles (71% reduction). This would have resulted in a 71% reduction in CO₂ emissions, although the reduction in volume in kilograms of CO₂ emitted would have varied (by an estimated 137 Kg CO₂ or 51%) depending on whether e.g., a small diesel car was used or a large petrol car (reduction of 133kg versus 270 kg CO₂). An average diesel car was estimated to have reduced CO₂ emissions by 163 kg.

Conclusion: The findings demonstrate that potential carbon savings from medicines synchronisation can be modelled from routinely collected data, but with limited accuracy, especially as patients receiving home deliveries may not be representative of all pharmacy users. Challenges remain in how to measure actual carbon savings of prescription synchronisation and overcoming barriers to widespread implementation of clinically appropriate synchronisation.

References
