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Crashworthiness Analysis:
Exploiting Information
of Developed Products
With Control Variates
Assessing vehicle safety is a challenging, yet fundamental task. In the early phase of
development, car manufacturers need to ensure the compliance with strict safety
requirements. An interesting task to automate these early-stage operations is to harness
information from already developed products. Established designs are largely accessible,
with abundant data; novel designs� data are scarce. While established and novel designs are
(by de�nition) different, it is expected nonetheless that there is a degree of correlation
between them. Thus, the established design could be regarded as a low-�delity (LF) model of
the novel design, in the sense that it may provide an approximation of the behavior of the
novel design. In turn, the novel design could be regarded as a high-�delity (HF) model, as it
represents the true product being designed. This bi�delity character of the problem stands at
the basis of this paper. This work explores the application of control variates (CV) to a
crashworthiness analysis scenario. Control variates is a variance reduction technique that
exploits the low-�delity information to improve the accuracy of the response statistics of the
high-�delity model. Such an approach could be most useful for industrial applications.
Therefore, we apply control variates to a crash box example and compare its performance to
its plain Monte Carlo (MC) counterpart. The results of this paper show the bene�ts of this
bi�delity approach, resulting in control variates being a powerful technique to extract
valuable information from limited data sets. Indeed, control variates can serve as an
innovative solution to support car manufacturers in the early phase of vehicle development
and thus improve the performance in crashworthiness scenarios. [DOI: 10.1115/1.4066079]

1 Introduction
The development of a vehicle is a complex task. Car

manufacturers need to satisfy strict safety requirements. When
assessing vehicle safety in an early stage of development, they need
to face the challenge of low data availability.

In the early stage of the vehicle development, indeed, the ultimate
geometrical and material data of the product are not entirely defined,
and the prototype of the vehicle is not yet available. In this context, it
is often more economical for companies to make changes to their
existing products rather than creating new ones from scratch. In
industry, many new products can indeed be seen as modifications or
upgrades of existing ones [1].

A task worthy of pursuit is exploiting the data coming from past
development processes to infer knowledge on future situations. This
problem can be visualized as a bifidelity one. The numerous pieces
of information (e.g., simulations and hardware tests) from the
already developed products can be seen as the low-fidelity (LF) data.
These are inexpensive to access, as they are readily available from
the archives, having been accumulated over years of development;
the few data belonging to the product under current development
take the role of the high-fidelity (HF) counterpart. These data are
scarce and costly to obtain. Each new round of testing, simulation, or

prototyping demands significant organizational, financial, and
computational resources. Moreover, the urgency imposed by project
timelines further escalates the value of these fresh pieces of
information.

The concept of learning from larger amounts of available data that
belong to a different domain with respect to the one of interest is a
topic that has been extensively explored in various fields, e.g.,
structural health monitoring, manufacturing process planning, etc.
In structural health monitoring, information from a population of
structures is transferred to the complete population [2]. In
manufacturing, process parameters are predicted using a combina-
tion of simulations and experimental data [3]. To do this, transfer
learning is used, which is a deep learning algorithm that allows to
relax the need of having big amounts of HF data.

In the context of crashworthiness, the concept of transfer of
knowledge from the LF to the HF data is still relatively unexplored.
Our previous work [4] addresses this problem by applying transfer
learning, using past development processes to enhance predictions
for future designs. A further notable example in the literature related
to crash analysis is the development of geodesic convolutional
neural networks [5] to optimize a crash box component. However, in
the current paper, we propose an alternative approach based on
control variates (CV). Differently from the cited works, CV is not a
deep learning technique, but a statistical one.

Control variates is a framework that allows to estimate the
statistics of the response of a given system [6], particularly useful for
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unimodal distributions. This is achieved by considering an addi-
tional variable that is correlated with the response of interest. In this
way, CV reduces the variance of the estimates of the statistics,
leading to more precise results. The key advantage of this method is
that it allows to aggregate estimates generated using the high- and
low-fidelity models to enhance the estimated statistics of the
response associated with the HF one [7]. The known-to-the-
literature CV applications make use of high- and low-fidelity pieces
of information belonging to the same physical system [7,8]. As an
example, this situation may occur in crash analysis when a system is,
on the one hand, cheaply—from a computational point of view—
simulated in finite element (FE) analysis through a coarser mesh,
and, on the other hand, with a more dense one. This situation is
graphically represented in Fig. 1(a): the same system is evaluated in
a cheap and an expensive FE way.

Although CV is generally used in situations as the one just
described, in this paper, we attempt to utilize it under different
circumstances. We plan to apply it to a bifidelity industrial problem
similar to the one of Fig. 1(b). High quantities of data coming from
old versions of a crash box will be exploited to gain knowledge on a
new one, characterized by low data availability. The innovative
contribution of this work with respect to the literature consists in
applying CV in a past-to-future configuration, where the past data
are the LF and the current ones are the HF counterpart. In doing so, it
is assumed that both the old and new configurations depend on the
same set of input variables. This implies that, for example, if the
behavior of the old configuration depends on two thicknesses, the
behavior of the new configuration also depends on the same two
thicknesses. However, the range of values associated with the input
variables related to the old and new configurations can be different,
so as to reflect the typical situation of an updated crashworthiness
design.

The goal of this paper is to explore the benefits of CV to harness
information from already developed products, thus enhancing the
prediction on a new product version. Section 2 describes the
investigated crash case scenario, Sec. 3 provides a theoretic
overview on CV, and Sec. 4 explains the application of CV to the
crash box explanatory example. Finally, Sec. 5 provides the
conclusions of the work, with a practical outlook on possible future
utilization of CV for crashworthiness analysis.

2 The Case Study: Crash Box Drop Tower Test
The mechanical problem selected for this paper is a simplified

version of the crash box drop tower test [9]. In the automotive
industry, these experimental impact studies are commonly carried
out and are crucial to study the influence of variations in geometric
shapes or materials on the crashworthiness [10]. Crash boxes indeed
cover two main engineering objectives in automotive industry:
lightweight design and energy absorption. For this reason, the crash
box drop tower test offers an excellent example here.

A crash box is an integral component placed at the front-most
portion of the body-in-white of a car. It ensures the structural

performance of a car by serving as an energy-absorbing member,
together with the bumper beam in case of frontal collisions during
car accidents [11], thereby protecting the subsequent structures from
higher repair costs. The drop tower test is a type of experiment that is
commonly used in mechanical engineering and material science to
study the behavior of a structure or material when subjected to
impact. The test involves suspending a weight or a rigid barrier at the
top of a crash box and then releasing it.

In the field of crashworthiness, the crash box drop tower test is an
essential tool. These experiments are often replicated through the
use of FE simulations [12]. Crash FE simulations have become
essential in recent years for automotive Research and Development.
As they are faster, sufficiently repeatable, and more cost-efficient
than hardware tests, FE simulations currently support the design
process. By enabling the exploration of new concepts and
unconventional designs without the need for physical prototypes,
simulations drive the innovation in the field of crash safety [13].

When it comes to crash analysis and dynamic events, explicit
simulations are generally preferred to implicit ones. Crashes
typically involve large deformations, material nonlinearity, multiple
interacting bodies with complex contact conditions, and possibly
failure. Explicit methods handle these nonlinearities well because
they do not require the solution of large sets of simultaneous
equations at each time-step [14].

In summary, data coming from FE simulations offer a solid
foundation to conduct studies due to the increased accessibility and
repeatability compared to hardware tests. In this section, we describe
the FE model at the basis of our study; later, we introduce the
selected crash box variants.

2.1 Finite Element Model. Figure 2 schematically represents
the FE model of a crash box subjected to a drop tower test. The crash
box is fully constrained at the rear end, and a rigid barrier moves
toward it along the z-axis with an initial velocity of �56 km/h. The
FE model is realized meshing the crash box with Belytschko–Tsay
shell elements and mesh size of 4 mm, while the rigid barrier is
meshed with fully integrated shell elements.

The rigid barrier is considered as a rigid body using the
MAT_RIGID LS-DYNA material model. The material of the crash
boxes is instead a steel modeled through an LS-DYNA MAT24 model
with elastoplastic behavior. The mass of the rigid barrier is set
according to the crash box geometry in order to obtain four folds in

Fig. 1 Representation of two bifidelity problems
Fig. 2 Representation of a FE model of a crash box subjected to
drop tower test

041205-2 / Vol. 10, DECEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/risk/article-pdf/10/4/041205/7366916/risk_010_04_041205.pdf by guest on 05 O

ctober 2024



the fully deformed configuration, resulting in a nicely observable
outcome. In the context of crashworthiness, the term folds refers to
the deformations that occur as a result of the buckling process in the
crash box during the crash event. To provide a visual understanding,
Fig. 3 illustrates the undeformed and deformed configuration of a
crash box with the four folds highlighted.

The results of this simulation are extracted in terms of forces and
displacements: the force is measured on a cross section 10 mm
distant from the constrained end of the crash box; and the
displacement is instead obtained averaging the displacements of
eight equally distant nodes on the unconstrained end of the crash
box. We arbitrarily choose eight measurement points on the external
perimeter of the crash box to ensure that the displacement of all sides
is equally considered. In cases where the crash box has internal ribs,
these ribs are typically welded to the external perimeter. Therefore,
our choice would still provide a representative average displacement
of the upper part of the crash box. Both the cross section and the eight
nodes are represented in Fig. 2.

During the impact phase, the force measured on the rigid barrier
increases rapidly, reaching a peak, and then decreases. The first peak
represents the initial contact between the barrier and the crash box.
The peak force for the first fold is higher than the forces occurring
later because of higher energy and because of predeformations: one
fold triggers the generation of the next fold [15]. Hence, the initial
peak force can be considered as one of the main parameters
influencing both the energy absorption and the load transmission to
the main body of the vehicle. The secondary peaks, which are related
to the subsequent foldings, help to enhance the energy absorption
[16]. This continuous folding mechanism is desired during the entire
crash phenomenon. The reader can refer to Ref. [17] for
representations of the force–displacement behavior of crash box
structures.

2.2 Model Variants. Six crash boxes are selected for the study.
For the sake of simplicity, we refer to these crash boxes as designs A,
B, C, D, E, and F. The length c along the z-direction, see Fig. 2, is the
same for all the crash boxes and equal to 348 mm. An artificial trigger
has been introduced to ensure that when the load is applied, a
progressive deformation takes place in the axial direction. The trigger is
placed in thefirst row ofnodes by shrinking the perimeter lengthby1%.

Looking at their cross sections, crash boxes A, B, and C are single-
cell geometries, while crash box D, E, and F are three-cells ones. In
Fig. 2, the dotted lines show a three-cells crash box design. The crash
box geometries differ from each other in terms of their dimensions in
x- and y-directions, i.e., a and b of Fig. 2, and nominal thickness tn.
Table 1 summarizes the geometrical features of the selected crash
boxes. The last column reports the mass of the rigid wall set for each
specific crash box design.

3 Control Variates
In this paper, we propose a method to apply the bifidelity CV to

different physical domains. In the literature, the term bifidelity

typically refers to the use of models with different levels of accuracy,
e.g., Ref. [18]. The fidelity level usually indicates the degree to
which the model captures the complexity of the real-world system it
represents. In the context of passive safety development, the use of
bifidelity approaches traditionally implies integrating results from
both high- and low-fidelity simulations, e.g., detailed FE models and
simpler analytical models, to predict the performance of a safety
component. However, in this paper, the term LF is being repurposed
as described in Sec. 1: we use it to describe data from previous
versions of a component (Fig. 1(b)), not a less accurate modeling
method (Fig. 1(a)).

In the following, we first explain the basic theory of CV and then
propose a methodology for the use of CV in those cases where the
cheap and expensive data belong to different physical systems.
Finally, we summarize an overview of the whole method.

3.1 Classic Control Variates. Control variates is a technique
that can be used to estimate the first and second order statistics, i.e.,
mean and variance, respectively, of a quantity of interest (QoI), see,
e.g., Refs. [6] and [19]. This technique is of aid when one has a large
amount of cheap-to-evaluate data from a LF model, and a few data
points from a HF model, which are typically more computationally
expensive to obtain. The basic idea behind CV is to aggregate the LF
and HF data to estimate the first and second order statistics of the
QoI. These statistics are particularly useful for describing unimodal
statistical distributions, providing valuable insights into the central
tendency and spread of the response. In the following, the focus is on
presenting CV for estimating the mean of the response. However,
the framework discussed here can be extended toward estimation of
the variance of the response, see, e.g., Ref. [20].

To introduce CV, consider that the responses of the low- and high-
fidelity models are denoted as rLF and rHF, respectively. Both
responses depend on a set of input parameters, h, which are regarded
as uncertain. The uncertainty associated with these input parameters
is described in terms of a joint probability distribution pHðhÞ. It is
assumed that for estimating the mean response of the HF model,
there are n sample evaluations available. That is, the values
rHF hðiÞ

n

� �
, i … 1, …, n are known, where hðiÞ

n denotes the ith sample
of h distributed according to pHðhÞ. Thus, the estimate for the mean
of the response l̂1 rHF, Hnð Þ considering these samples is

l̂1 rHF, Hn
� �

…
1
n

Xn

i…1
rHF h ið Þ

n

� �
(1)

where Hn is the set grouping all samples hðiÞ
n , i … 1, …, n. The above

equation corresponds to the classical Monte Carlo (MC) estimator
for the mean.

As evaluating the HF model is expensive from a numerical
viewpoint, it is assumed that n is a small number, and therefore the
estimate of the mean generated with Eq. (1) may lack precision. This
is illustrated in Fig. 4, where the probability density function
associated with the estimator in Eq. (1) is represented by the curve
with the lowest peak. We observe that this probability density
possesses a large variance.

A possibility to improve the estimate in Eq. (1) is to resort to CV
[6,19], which implies to include the information from the LF model

Fig. 3 Undeformed and deformed configuration of a crash box,
with four folds highlighted

Table 1 FE model parameters, with M being the mass of the rigid
wall impacting against the specific crash box

Design a (mm) b (mm) tn (mm) No. of cells M (kg)

A 122.3 62.6 2.4 1 226.1
B 39.5 54.7 2.5 1 182.7
C 44.0 38.0 2.1 1 92.2
D 120.0 63.3 2.2 3 396.0
E 101.0 62.1 2.3 3 408.4
F 120.6 69.2 2.0 3 408.4
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in the estimator. Under the assumption that the set of uncertain input
parameters is the same for both the LF and the HF system, the CV
estimator for the mean is denoted as l̂CV

1 and given by

l̂CV
1 … cl̂1 rLF, Hm

� �
þ l̂1 rHF, Hn

� �
� cl̂1 rLF, Hn

� �� �
(2)

Here, Hm is a set of m samples of the uncertain input parameters, c is
a real number termed as the control parameter to be discussed later,
and l̂1 rLF, Hnð Þ and l̂1 rLF, Hmð Þ are estimates of the mean of the
response associated with the LF model considering n and m samples,
respectively. From Eq. (2), one can observe how the LF and HF data
are aggregated by means of CV. We assume to have significantly
more samples in Hm than Hn, that is, m � n.

We understand the CV estimator in Eq. (2) as the summation of
the following two terms. The first term cl̂1 rLF, Hmð Þ represents the
mean response of the LF model amplified by the control parameter c.
As the number of samples m is large, this estimator is precise. This is
represented schematically in Fig. 4, where the probability density
associated with this estimator corresponds to the blue curve that
possesses a small variance.

The second term l̂1 rHF, Hnð Þ � cl̂1 rLF, Hnð Þ
� �

in Eq. (2)
represents a correction over the previous estimate that forces the
overall estimate to converge to the sought mean value. A
characteristic of the latter term is that both the low- and high-
fidelity models are evaluated considering the same set of samples
Hn, and thus the estimator associated with this second term will
usually possess small variance, provided that there is sufficient
correlation between the low- and high-fidelity models. Therefore,
the CV estimator in Eq. (2) possesses a reduced variance when
compared to its counterpart in Eq. (1), as represented schematically
in Fig. 4 by the probability distribution in green color.

The variance of the estimator in Eq. (2) is given by (see, e.g.,
Ref. [19])

V̂ l̂CV
1

� �
… c2 l̂2 rLF, Hmð Þ

m
þ

l̂2 rHF, Hnð Þ
n

�

� 2c
l̂1,1 rHF, rLF, Hnð Þ

n
þ c2 l̂2 rLF, Hnð Þ

n

	
(3)

where l̂2 is the estimate of the variance of the response (considering
either rLF or rHF), and l̂1,1 is the covariance between rLF and rHF. The
Appendix lists the expressions for calculating both l̂2 and l̂1,1. As
noted from Eq. (3), the variance of the estimator for the mean is a
quadratic function with respect to the control parameter c. Thus, the
control parameter is selected such that this variance is minimized,
leading to

c� …

l̂1,1 rHF, rLF, Hnð Þ
n

l̂2 rLF, Hnð Þ
n

þ
l̂2 rLF, Hmð Þ

m

(4)

where c� denotes the value of the control parameter that minimizes
the variance in Eq. (3) and that should be used when estimating the
mean of the response when applying CV as in Eq. (2). Equation (4)
shows that the computation of the control parameter c� is done
automatically on the base of the LF and HF samples. It is interesting

to note that the control parameter depends directly on the covariance
l̂1,1, which is calculated based on the samples. From this
observation, it is possible to derive two extreme cases. Whenever
this covariance is equal to zero, the control parameter becomes zero,
and thus the estimators of the mean and variance in Eqs. (2) and (3)
rely solely on the simulations available of the HF model. In other
words, given the null covariance, the estimators ignore all
information associated with the LF model, as this is not useful at
all. On the contrary, when the LF model mimics perfectly well the
HF model, the control parameter tends to one, implying that the
information provided by the LF model is deemed as good as the HF
model. In summary, the optimal control parameter can be
interpreted as a means for aggregating the information of the LF
and HF models in an automatic way, giving proper weight to the
information provided by each of them.

An examination of Eqs. (2)–(4) reveals that for the application
of the CV framework, all what is required is the set of samples of
the response of the low- and the high-fidelity model, that is,
rLF hðiÞ

n

� �
, i … 1, …, n, rLF hðjÞ

m

� �
, j … 1, …, m, a n d rHF hðiÞ

n

� �
,

i … 1, …, n, respectively. However, if the samples of the response
associated with the low- and high-fidelity models are used to compute
both the optimal control parameter in Eq. (4) as well as the mean in
Eq. (2), the estimator for the mean becomes biased, as documented in,
e.g., Ref. [6]. Fortunately, this issue can be solved by applying a
splitting scheme, as proposed in Ref. [21]. The splitting scheme
consists, in a nutshell, of estimating both the optimal control
parameter and the mean of the response considering subsets of the
samples already available. To explain this strategy in detail, consider
that each of the sets of samples Hm and Hn are split into three subsets,
that is, Hm� ,k and Hn� ,k, where k … 1, 2, 3 and m� … m=3 and
n� … n=3. In addition, for each subset k, one defines a so-called
subset controller sðkÞ, which is an integer defined according to
Table 2.

Considering the above definitions, the expressions for estimating
the mean response and the optimal control parameters by means of
CV and splitting are the following:

l̂CVS
1 …

1
3

X3

k…1
c�

s kð Þl̂1 rLF, Hm� ,k
� ��

þ l̂1 rHF, Hn� ,k
� �

� c�
s kð Þl̂1 rLF, Hn� ,k

� �� ��
(5)

c�
s kð Þ …

l̂1,1 rHF, rLF, Hn� ,s kð Þ
� �

n
l̂2 rLF, Hn� ,s kð Þ
� �

n� þ
l̂2 rLF, Hm� ,s kð Þ
� �

m�

k … 1, 2, 3 (6)

In the above equations, l̂CVS
1 denotes the estimator of the mean

considering CV and splitting, while c�
sðkÞ denotes the optimal control

parameter associated with the subset of samples sðkÞ.
It is noted from Eq. (5) that when considering the kth subset of

samples for calculating the mean responses of the low- and high-
fidelity models, the control parameter is calculated with respect to
the samples contained in the subset sðkÞ. In other words, when the
mean is calculated with a certain subset of samples, there is a
different subset of samples involved in the calculation of the optimal

Fig. 4 Schematic representation of control variates estimate

Table 2 Subsets and subset controllers for imple-
menting splitting scheme

Subset k Subset controller sðkÞ

1 2
2 3
3 1
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control parameter. Such a strategy ensures that the estimate l̂CVS
1 is

unbiased, as discussed in detail in Ref. [21].

3.2 Control Variates for Different Domains. Section 3.1
assumes that both the low- and high-fidelity models possess the same
input h. However, this may not be necessarily the case when
considering an already developed product versus one which is being
currently developed. For example, consider the thickness of a crash
box as described in Sec. 2. The assumption of uncertainty associated
with this parameter is plausible due to unavoidable manufacturing
variability. However, the thicknesses associated with an existing
crash box and one under development may possess completely
different ranges of variability. For this reason, we propose in this
section an approach to handle LF and HF systems that have different
nominal values of design parameters and, consequently, different
design spaces. This might influence the computation of the
correlation between the LF and HF data, as well as the CV
implementation itself. To overcome this challenge, we propose to
generate samples within the parameter space of each system and
then compare these samples in a sequential manner. Generally, the
LF data are assumed to be available from past studies. However, if
the computational resources for the collection of the LF data are not
limited as for the HF ones, one could also think to generate the LF
dataset from scratch. The method that we propose would still hold.

For representational purposes, let us consider the simple situation
of Fig. 5, with two design variables dim1 and dim2 and different
design spaces for the low- and high-fidelity systems. Here, low
discrepancy sampling sequence was used to reduce variance on
estimators. We used Sobol sampling [22] because proven to be
effective in low-to-moderate dimensional spaces. However, the
choice of the sampling technique does not influence the success of
the proposed method. The minimum and maximum values for both
the LF and HF design variables are supposed to be known, see the
following equations:

dimj,LF 2 ‰minj,LF; maxj,LF� (7a)

dimj,HF 2 ‰minj,HF; maxj,HF� (7b)

where j represents the number of design variables involved in the
study, j 2 1, 2. We propose to compute the corresponding points for
the HF system with respect to the available LF ones following the
formula in Eq. (8). In particular, with val1,HF referring to the HF
dashed-blue value in Fig. 5 and val1,LF the LF counterpart squared in

a blue solid line, the formula allows to compute the first with respect
to the second. Equation (8) ensures that the HF value corresponding
to the LF one is appropriately adjusted to its specific range

valj,HF … maxj,HF þ
valj,LF � minj,LFð Þ maxj,HF � minj,HFð Þ

maxj,LF � minj,LFð Þ
(8)

After the collection of the data for the HF system, we propose
using an ordinal criterion. We exploit the sequential nature of the
collected data to compute the correlation between the LF and HF
data. This means that the first data point of the LF model has to be
associated with the first HF one and so on. This approach can be
extended to cases with multidimensional inputs and can help to
overcome the challenge of comparing models with different ranges
of design variables.

We take the sample from the first row of the LF model and
compare it with the first sample from the HF model, regardless the
respective design spaces; then, we take the second sample from each
and compare those, and so on. This comparison would be straight
forward in the commonly known bifidelity case, as the LF and HF
samples would be direct equivalents of each other. One has to
remember, however, that in the case under investigation, the
assumption of knowing the design variables ranges covers a role of
great importance.

The challenge that this sequential approach tries to tackle is
ensuring that the comparison between LF and HF is meaningful,
although the systems have different design spaces. As a further note,
to make a proper comparison, it is also needed to map the output
values from each system on a common scale, i.e., scaling the HF data
onto the LF scale. In particular, first we scale the LF output data to
have zero mean and a unit standard deviation. Namely

y0
LF …

yLF � avgLF
stdLF

(9)

where yLF is the original output vector, avgLF is the mean of that
output vector, and stdLF is its standard deviation. Consequently, we
scale the HF output data using the scale of the LF. Scaling the HF
data with respect to the LF ones reflects the assumption that the
entire range of the HF data is unknown at the beginning of the study,
as these data belong to a domain for which only a limited amount of
information is available. The formula, with yHF being the original
output HF vector, clarifies the technique

y0
HF …

yHF � avgLF
stdLF

(10)

Once the paired samples are set, and the output data are scaled, we
can implement the CV technique described in Sec. 3.1.

3.3 Overview of the Method. Our proposed method can be
summarized in six steps: (i) defining the LF and HF systems; (ii)
collecting the data from both systems, assuming that it is cheaper to
obtain the information for the LF system than for the HF one; and
(iii) scaling the data. Finally, (iv) applying CV to reduce the variance
in the estimation for the selected metric, and (v) evaluating the
results, comparing them to those obtained from plain MC.

When evaluating the CV results, one can focus on various aspects
depending on the specific assumptions of the problem at hand. In our
study, we are interested in investigating the impact of the number of
HF samples n on the quality of the prediction. Given the challenges
associated with collecting the HF data, i.e., data from the component
under current development, we aim to observe how the prediction
changes when the availability of HF samples is limited, while a large
number of LF samples m is readily available. To achieve this, the
results are plotted by keeping m fixed and high, while varying n in a
specified vector.

For each value of n, the mean and variance of the selected QoI are
calculated using CV and MC. While CV exploits both the low- and
high-fidelity data, Eq. (6), MC only relies on the n HF samples,

Fig. 5 Design space with three samples for a bidimensional case
with variables dim1 and dim2. This situation refers to Fig. 1(b),
where the design space of the variables dim1 and dim2 change as
the HF system is different from the LF one.
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Eq. (1). These n HF samples are randomly selected each time from
the original pool of simulation data. To eliminate the effect of
random sampling, the results are averaged over ten independent
runs.

4 Application
With the application of CV to a crash box drop tower test, we

achieve two goals. First, we use CV on data coming from different
mechanical systems with distinct design spaces. This implies
employing the approach proposed in Sec. 3.2; second, we explore
the effectiveness of CV in the industrial context of crashworthiness.

Although the original use of CV provides the opportunity to
incorporate data of different fidelities, in this paper we uniquely
refer to data generated through FE simulations. With the mechanical
system under investigation in place as described in Sec. 2, we run the
simulations using the R9.3.0 version of the LS-DYNA solver. To this
aim, we select the inputs and output of the study. We are interested in
predicting the maximum value Fmax of the force–displacement
curve measured during the test. The input variables chosen for the
study are the thickness t of the crash box, the overlap in x-direction X
between the crash box and the rigid barrier, and the bending angle a
of the rigid barrier, see Fig. 6. For proper nomenclature, t is a design
variable, and X and a are load case parameters.

Aiming to generate a good space filling, we arbitrarily chose to
use the Sobol sequences as sampling technique to apply variations to
the parameters. As explained in Sec. 3.2, the accuracy of the results
is not influenced by the choice of the sampling technique. The ranges
defined in the scheme of Table 3 were also arbitrarily chosen to
purely illustrate the applicability of our methodology. An increased t
is expected to increase the Fmax; with values of X closer to 0, Fmax
increases; with higher a, Fmax decreases. In total, we perform 500 FE
simulations for each crash box of Table 1, varying the values of t, X,

and a within their defined ranges. The results of these simulations
form a comprehensive pool of data, serving as the repository from
which the data are drawn for the application of CV.

To apply CV to the six crash box designs that we have selected,
i.e., A–F of Table 1, we create pairs of crash box designs to compare
each one against all the others. So, we pair A with B, then A with C,
and so on until A with F. After that, we pair B with A, then B with C,
up to B with F. We continue this process for all designs, creating 30
different pairing combinations. Each time, one design acts as the LF
and the other as the HF version. The LF output data are scaled to have
zero mean and a unit standard deviation following Eq. (9), and the
HF output data are scaled with respect to the LF range by means of
Eq. (10).

For each of the 30 combinations investigated, we compute the
Pearson’s correlation coefficient between the LF and the HF crash
box following the sequential method of Sec. 3.2. Table 4 contains the
correlation coefficients computed for each LF/HF case. The
symmetry of Table 4 indicates that the correlation coefficients
remain consistent regardless of whether the same crash box
combination is considered as LF/HF or HF/LF.

Control variates is applied for each LF/HF crash box combina-
tion. The amount of HF samples n assumes the values contained in
the set n 2 9, 12, 15, 18, 21, 24, 27, 30, 33, 36f g, while the LF
samples m are fixed at 200. For each n value and each LF/HF
combination, the computation is repeated for ten times. Each time,
for a given HF crash box design, a new randomly selected set of n HF
samples is chosen from the original pool of 500 FE simulations. This
is meant to minimize the impact of sampling-related chance effects.
The computation provides the predicted values of mean and
variance of Fmax with CV and MC. The results from the ten
repetitions are collected in boxplots. Within the boxplot, the median
and the interquartile range (IQR) are the two parameters that we use
to draw the conclusions of this study. In addition, we use the CV and
MC methods to compute the mean value of the QoI for each LF/HF
combination utilizing a high amount of HF samples, i.e., n … 200.
This allows us to assess the convergence of the methods in the long
horizon.

The median value of the boxplots represents the central tendency
of the data. The boxplots’ IQR spans from the 25th percentile to the
75th percentile of the results and provides valuable information
about the dispersion of the results across the ten repetitions. As
similar results hold for all the 30 LF/HF crash box combinations, we
decide to show only some representative results. Specifically, those
referred to C/B and F/B. Figures 7 and 8 represent the variation of the
median and the IQR of the mean value of Fmax along the different n
values.

In the context of our study, the median value of the boxplots
represents the average value of the predicted mean of Fmax. The IQR
indicates how the results are spread out, suggesting a higher level of
consistency among the repetitions with a smaller IQR. Figure 7
shows how fast the methods, i.e., CV and MC, reach convergence
with increasing n. Moreover, with n … 200 HF samples, the mean of
Fmax computed, respectively, with CV and MC is 4.885 and 4.907
for the C/B LF/HF combination, and �1.466 and �1.462 for the F/B
LF/HF combination. This confirms that with high n, both methods

Fig. 6 Schematic representation of the input variables: the
designvariable thickness t, and the load case parameters overlap
X and angle a

Table 3 Design space settings

Parameter Distribution

t (mm) N [tn � 0:05tn; tn þ 0:05tn]
X (mm) U [ �ð3=10Þa; þ ð3=10Þa]
a (deg) U [0; 5]

The thickness t varies with a (truncated) Gaussian N distribution with mean
l … tn and standard deviation r … 0:074tn; the overlap X and the angle a vary
with a uniform U distribution. The distributions are defined with a
minimum–maximum range.

Table 4 Correlation matrix that contains the Pearson’s correla-
tion coefficients for each specific LF/HF crash box analyzed
combination

A B C D E F

A 1.00 0.79 0.83 0.89 0.88 0.89
B 0.79 1.00 0.92 0.75 0.76 0.68
C 0.83 0.92 1.00 0.81 0.78 0.76
D 0.89 0.75 0.81 1.00 0.88 0.90
E 0.88 0.76 0.78 0.88 1.00 0.89
F 0.89 0.68 0.76 0.90 0.89 1.00

The element at location i, j in the matrix represents the correlation between
the LF crash box i and the HF crash box j.
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converge to the exact mean value. Figure 8 indicates the consistency
of the methods among the random repetitions.

For each LF/HF crash box combination, the HF data have always
been scaled with respect to the LF data. This explains the different
scales of the subplots of Figs. 7 and 8 and suggests to read them
separately. Focus has to be given to the individual comparison
between the CV and MC lines, not to the one between their absolute
values in the different subplots. When comparing the CV and MC
median value of the Fmax mean value predictions, Fig. 7 shows that
CV outperforms MC. The CV prediction, shown with blue circles,
reaches convergence faster than MC, in red squares. In other words,
for lower n values, the CV median is closer to the exact Fmax mean
value than the MC one. In the figure, one can observe that this result
holds for the two different crash box LF/HF combinations.

Figure 8 shows that CV not only better predicts the first order
statistics with respect to MC; it is also more repeatable for limited
HF datasets. The IQR for CV reaches zero faster than for MC. This
means that, for lower n, i.e., for fewer HF samples, CV gives less
spread predictions of the first order statistics of Fmax over multiple
random repetitions. As with the previous finding, this is again true
for both the crash boxes combinations considered in the figures. As a
further note to the reader, the results obtained for the predicted
variance of Fmax in terms of the boxplots’ median and IQR are
consistent with those of the mean and are therefore not reported here.

The results also confirm the state-of-the-art knowledge about CV.
Specifically, CV is shown to reach better results than MC where the
correlation between the LF and the HF data is higher. To prove this
concept, we focus on the fact that the two situations represented in
Fig. 8 correspond to the highest and lowest Pearson’s correlation
coefficients computed over all the crash box combinations: C/B has
a correlation of 0.92, while F/B has 0.68, see Table 4. The left
subplot of Fig. 8 shows a stronger prevail of CV over MC than the
one visible in the right one. The vertical distance between the CV

and the MC lines in the left subplot is larger than the one in the right
since the data from crash box C are more correlated to those of crash
box B than the ones of crash box F. For this reason, using CV is more
efficient in the first case than in the second. Overall, the results
demonstrate that the estimation of the control parameter remains
reliable even with a very low amount of HF points.

5 Conclusions
This paper has presented the application of CV to crash analysis.

In the automotive industry, when assessing the crash safety early on
in the development, the final characteristics of a product are not yet
entirely defined. However, it frequently happens that plenty of past
data are stored from previous products and remain unexploited. This
paper has shown that CV can be of aid to improve the prediction of
the first and second order statistics of a crash performance
parameter, exploiting data from past systems’ designs.

Through a methodical approach that generates samples within
each system’s parameter space and compares them in a sequential
manner, we have illustrated the use of CV in an industrial scenario.
Here, the LF and HF data belong to different physical system, i.e.,
old and new ones. The addressed study case focuses on a crash box
subjected to drop tower test.

The results of the study suggest that CV outperforms plain MC in
the prediction of the mean of the maximum crashing force for a
limited amount of HF data. Wherever a high correlation is observed
between the LF and HF data, CV is shown to more effectively
converge to the exact mean value of the quantity of interest. CV also
produces more stable solutions with respect to MC over a set of
random repetitions.

Despite the promising results of the proposed method, some
limitations should be acknowledged. Our method is useful for
unimodal distribution, as it estimates the first and second order
statistics. It does not suffice for multimodal distributions. In
addition, our method is limited to LF and HF systems with the
same set of input variables. In more complex cases, however, new
versions of the same product may introduce uncertain parameters
that were not present in the older versions. To overcome these
limitations, alternative approaches need to be considered, e.g., deep
learning techniques. Overall, the proposed method is promising but
is still in its early stages. In terms of practical application, the
translation of our method into industry requires further validations
with diverse datasets and the development of integration protocols.
Challenges to this aim include ensuring robustness across varied
scenarios and properly training the engineers.

The application of CV in crashworthiness analysis provides the
opportunity to combine data from different design stages of a
component, thereby enhancing the efficiency of crash simulations.
Moreover, with CV, it becomes possible in the future to incorporate
data from different sources, including FE simulations and hardware
tests. This approach allows for a more comprehensive understanding of
the crash behavior of structures in the very early phase of the
development, leading to improved vehicle safety and occupant
protection.
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Nomenclature
a … dimension of the crash box in x-direction
b … dimension of the crash box in y-direction

Fig. 7 Median of the predicted mean of Fmax over ten random
repetitions for different methodologies, i.e., CV and MC, and for
different values of HF dataset size n. The exact values for the C/B
and F/B LF/HF combinations are 4.892 and 21.464, respectively.

Fig. 8 IQR of the predicted mean of Fmax over ten random
repetitions for different methodologies, i.e., CV and MC, and for
different values of HF dataset size n
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CV … control variates
Fmax … maximum value of the force–displacement curve

HF … high fidelity
IQR … interquartile range
LF … low fidelity
m … number of LF samples
M … mass of the rigid wall

MC … Monte Carlo
n … number of HF samples

QoI … quantity of interest
tn … nominal thickness of the crash box
a … bending angle of the rigid barrier
X … overlap between the crash box and the rigid barrier

Appendix: Calculation of Variance and Covariance
An unbiased estimator for the variance of the response l̂2 is given

by (see, e.g., Ref. [23])
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where r is either the LF response rLF or the HF response rHF; and Hl
is a sample set that represents either Hm or Hn. The covariance l̂1,1
of the response between the LF and HF models is given by (see, e.g.,
Ref. [23])
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