Mindfulness-based stress reduction to improve depression, pain and high patient global assessment in controlled rheumatoid arthritis

Isabelle Gaboury¹, Patricia L Dobkin², Françoise Gendron³, Pasquale Roberge¹, Marie-Claude Beaulieu¹, Nathalie Carrier³, Pierre Dagenais³, Sophie Roux³,⁴, Gilles Boire³,⁴

¹ Department of Family Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
² Whole Person Programme, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
³ Centre intégré universitaire de santé et de services sociaux de l’Estrie – Centre hospitalier universitaire de Sherbrooke (CIUSSSE-CHUS), Sherbrooke, Canada
⁴ Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada

CORRESPONDING AUTHOR

Gilles Boire, MD MSc,
CIUSSSE-CHUS, Hôpital Fleurimont
Division of Rheumatology
3001, 12th Avenue North, Room 3853
Sherbrooke (Québec) CANADA
Gilles.boire@usherbrooke.ca

© The Author(s) 2022. Published by Oxford University Press on behalf of the British Society for Rheumatology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
ABSTRACT

Objective: To improve distressing patient-reported outcomes (PROs) that persisted in rheumatoid arthritis patients with clinically controlled inflammation (controlled RA).

Methods: In a pragmatic pilot study, we offered Mindfulness-Based Stress Reduction (MBSR), a group intervention to controlled RA patients who had high (≥16) Centre for Evaluation Studies – Depression (CES-D) scores and/or Patient General Assessment of disease activity (PGA) at least 2/10 larger than Evaluator General Assessment (EGA) (PGA-EGA: Delta). Evaluations before, 6, and 12 months after MBSR included CES-D, PGA, Modified-HAQ, SDAI, anxiety (General Anxiety Disorder 7; GAD-7), coping strategies (Coping with Health Injuries and Problems; CHIP), sleep disturbance, and pain. Facilitators and obstacles of recruitment and participation were identified. A subset of patients was interviewed for qualitative analysis of their experience.

Results: Out of 306 screened patients, 65 were referred, 39 (60%) agreed, and 28 (43%) completed MBSR. Anticipated burden, timing, and frequency of group meetings, commuting issues, age extremes, and comorbidities were barriers to participation. Up to 12 months after MBSR, anxiety, depression, emotion-oriented coping, sleep, and function significantly improved. Yet, no significant impact was observed on pain, PGA, Delta, or SDAI. The interviews revealed that benefits including integration of effective coping strategies were maintained.

Conclusion: We addressed MBSR feasibility issues and selection of outcomes in controlled RA patients with distressing PROs. For patients who chose to participate in MBSR lasting benefits were evident for anxiety, depression, sleep, and function. Larger studies are required to evaluate weaker impact of MBSR on RA-related pain and PGA.
KEYWORDS
RHEUMATOID ARTHRITIS; PGA; DEPRESSION; MBSR; FUNCTION; REMISSION; COPING; PAIN; MINDFULNESS

KEY MESSAGES
1- We explored feasibility issues of mindfulness-based stress reduction (MBSR) to address negative patient reported outcome measures in controlled RA patients.
2- Improvements in depression, anxiety, sleep, and emotion-oriented coping were found post-MBSR.
3- MBSR may improve function more so than PGA or pain in patients with controlled RA.
Lay summary

What does this mean for patients?

Current treatments of rheumatoid arthritis (RA) aim to reduce inflammation. Physicians assume that control of inflammation will improve patient well-being. While this is often the case, up to 1 in 5 patients with controlled inflammation still report high levels of pain, depressive and anxious symptoms, functional limitations, sleep problems, and disease severity. We offered at no cost to these patients a standardized 8-session group Mindfulness-Based Stress Reduction (MBSR) program when they presented for regular follow up. Out of 65 eligible patients, 39 consented, and 28 participated. Anticipated burden, especially frequency and timing of group meetings, commuting issues, age, and comorbidities were the most frequent barriers to participation. Up to 12 months after MBSR completion, anxiety, depression, sleep, and function significantly improved. Patient interviews revealed that the previously mentioned benefits were maintained by the integration of effective coping strategies. However, pain levels and patient perception of disease activity were not changed. Patients with controlled RA need be informed that MBSR can induce lasting improvements in persistent distressing symptoms associated with disease. Knowing about the durable positive effects of MBSR might influence patients to overcome barriers to participation. Additional interventions may be needed to lower pain levels and perceived disease activity.
INTRODUCTION

Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease. When inflammation is present (active RA), treat-to-target pharmacological interventions improve all 5 parameters measured by Simple Disease Activity Index (SDAI), as well as function and patient mood [1,2]. Fulfilling ACR/EULAR remission criteria averts, or at least limits, both structural damage and functional limitations [3]. Of the SDAI variables, PGA remains the most refractory to attain remission range [4], yielding a positive PGA-EGA difference (Delta) despite apparently optimal control of joint and systemic inflammation (controlled RA). Large positive Deltas (+2 to +3/10) [5] are often associated with poor patient-reported outcomes (PROs), including sleep disturbances, fatigue, depression, anxiety, and chronic pain [6,7]. Due to known correlations, we hypothesized that improved depression would reduce PGA, Deltas, and disability [8].

Reviews of Mindfulness-Based Stress Reduction (MBSR) in RA provide evidence for improvements in psychosocial factors, and possibly for pain [9,10]. No study of MBSR to date specifically targeted patients with controlled RA who experience distressing PROs. In this pragmatic pilot study, first we assessed feasibility of a RCT of MBSR in such patients and then examined whether reducing psychological distress would increase function, as well as decrease pain and the perceived impact of RA (PGA).

METHODS

Design and Recruitment

The Research Ethics Board of Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS) approved the study (MP-31-2017-1558), originally designed as a pilot RCT with allocation to immediate MBSR or to a 6-month waitlist (ClinicalTrials...
NCT03514355). However, due to recruitment obstacles, randomization was not performed.

Before the start of MBSR groups, charts from RA patients scheduled for follow-up were assessed by research assistants using inclusion and exclusion criteria. After clinical assessment, physicians referred potential patients to research assistants, who confirmed eligibility and obtained written informed consent.

Inclusion and Exclusion criteria

Adult patients meeting 1987/2010 ACR RA criteria with Swollen Joint Counts (SJC) ≤2/66 and C-Reactive Protein (CRP) ≤8 mg/L under stable antirheumatic treatment for at least 3 months, were included if they also had Center for Epidemiologic Studies Depression Scale (CES-D) score ≥16 and/or Delta ≥2/10. Patients unable to consent or to participate in groups at pre-specified times or with severe psychiatric disease were excluded.

Standardized MBSR intervention

The group MBSR intervention was delivered in 2.5-hour sessions for 8 consecutive weeks, including a 6-hour retreat between classes 6 and 7 [11]. The latter involved guided meditations, mindful movement, and mindful eating all to encourage continuity in practice. Except for the first session, each opened with a particular meditation practice such as the body scan, sitting with awareness, or mindful movement (i.e., yoga and walking meditation). Sessions included didactic exercises (e.g., identifying thoughts, emotions, and body sensations associated with illness, stress management). Relevant home practices (using a workbook and recorded guided meditations) were assigned and discussed in subsequent sessions. The curriculum themes and content reflected mind-body connection principles (Supplementary Table S1, available at Rheumatology...
To support participation, logistics were considered i.e., time, location, as well as transportation, parking reimbursements for each MBSR session, as well as baseline, 6 and 12-month clinical visits.

The trained MBSR facilitator is a family physician (FG) under PLD’s supervision to ensure treatment integrity. CDs/MP3s for practice and home practice manuals were provided to participants.

Outcomes

Evaluations were conducted at baseline, 6 and 12 months from the start of the sessions; Group 4 had baseline and 6-month evaluation only. Sociodemographic and clinical data were collected, including visual analogue scales (VAS) to measure sleep disturbances, PGA, and pain. At each visit, rheumatologists contributed EGA, SJC and Tender Joint Counts, and CRP was measured. Validated and reliable questionnaires included CES-D [12], Generalized Anxiety Disorder (GAD-7) [13], Modified Health Assessment Questionnaire (M-HAQ) [14], Coping with Health Injuries and Problems (CHIP) [15], and Five Facet Mindfulness Questionnaire (FFMQ) [16].

Individual semi-structured interviews were carried out between 1 to 4 months following the end of the intervention using maximum variation sampling from the groups (until data saturation). Up to 3 to 4 participants per group were randomly selected to be interviewed.

Analyses

Descriptive statistics were used to characterize the study population. Only data from patients who completed ≥2 MBSR classes were analyzed. Linear mixed regression models with maximum-likelihood estimation techniques were used to evaluate if
continuous outcomes changed during follow-up. Variance components correlation matrix was used. To control for repeated measures, a random effect was added to participants. Bootstrap resampling (R = 1000) was computed when the model residuals were not normally distributed. Generalized estimating equation was used for dichotomic outcomes with log-binomial models. Analyses were performed using IBM SPSS Statistics version 25 and SAS software version 9.4 (SAS Institute Inc., Cary, NC, USA).

Verbatim transcripts of all audio recordings were used to conduct descriptive content analysis, based on the interactive cyclical process of data reduction, data display, conclusion drawing, and verification [17]. Data were coded by two independent analysts and disagreements resolved through discussion. The NVivo software (QSR International Pty Ltd., 2021) was used to analyze the full interview transcriptions.

RESULTS

Four MBSR group sessions were held between the fall of 2017 and spring of 2019. A total of 306 charts were reviewed; 190 patients were ineligible or not offered the study and 51 declined referral (Supplementary Figure S1, available at Rheumatology Advances in Practice online). MBSR was offered to 65 patients, 39 (60%) consented, 38 completed baseline data. Number, length, or timing of groups, age extremes, and commuting distance were common barriers for participation. Nine patients failed to attend, one showed up only for the first class, leaving 28 (43%) patients for analyses. All 10 patients offered a qualitative interview agreed.

Recruited patients were predominately Caucasian women with long-standing disease (Table 1). Use of DMARDs was universal, while steroids (0%) and NSAIDs (11%) were
rarely used. A quarter were using antidepressants. Pharmacological treatments remained stable during the study.

Mental health outcomes

Depression symptoms, sleep disturbances, and anxiety improved significantly between baseline and 6 months; these were maintained or improved at 12 months (Figure 1; Supplementary Table S2, available at *Rheumatology Advances in Practice* online).

Effect sizes and confidence intervals are shown in Supplementary Table S3, available at *Rheumatology Advances in Practice* online. The proportion of patients with CES-D ≥16 decreased from 67.9% at baseline to 36% (p=0.01) and 11.8% (p=0.002) at 6 and 12 months, respectively. While changes in coping strategies at 6 months failed to reach significance, emotion-oriented coping improved significantly between 6 and 12 months. Post hoc exploratory analyses suggest that higher depression and anxiety scores (both found more frequently in anti-depressant users) may lead to larger effect size of MBSR on these outcomes (data not shown).

Most interviewed patients reported that MBSR impacted their psychological well-being and this often preceded its physical benefits. For example, Patient 2 stated:

"The physical benefits, you don't get them right away. It's more abstract. But you have to give yourself a chance, you have to be patient and practice. There's stuff sometimes you can't really explain to yourself, but it works, it feels good in there [pointing her head]."

All interviewed patients confirmed they were still practicing at least some MBSR components taught during the sessions, especially those that fit their lifestyle and were perceived most effective at reducing stress or improving their capacity to focus or sleep.
while experiencing pain. More than half integrated at least one practice into their daily/weekly routine.

In addition, the opportunity to share illness experiences with peers was often viewed as key motivator to attend sessions, with positive effect on mental health. For example, Patient 16 stated:

“We feel less alone in this situation. We feel that yes, we can improve our condition. Sometimes, we give each other tips, too. Understanding others is good for us.”

Arthritis-related outcomes

Non-significant and transient decreases in PGA, pain, and SDAI were observed at 6 months. EGA increased and Delta decreased at 6 and 12 months, albeit not significantly.

In contrast, mean M-HAQ scores decreased from 0.9 ± 0.8 at baseline, to 0.8 ± 0.8 and 0.7 ± 0.8 at 6 and 12 months, respectively. Decrease was significant at 6 months.

Remarkably, M-HAQ≥ 1, indicative of moderate to severe disability, decreased from 57.1% at baseline, to 32.1% at 6 months ($p=0.007$), and 26.1% at 12 months ($p=0.008$) (Supplementary Table S2).

These results are consistent with patients’ reports. Even when prompted to discuss the effects of the intervention on disease, only a minority mentioned pain reduction. However, some commented on their new relationship to pain. As Patient 2 stated:

“I have less pain, or maybe sometimes it’s still there, but I perceive it differently. We experience it differently in our brain, so sometimes we perceive it differently. As the teacher was trying to explain to us, we should not give it all the space.”
Facets of Mindfulness

The Total Mindfulness score (FFMQ) significantly changed at 6 months; some improvement was maintained at 12 months (Supplementary Table S2). Specifically, FFMQ components Observation, Description, and Act with Awareness increased significantly at 6 months, with a trend for Non-judgmental of internal experience.

DISCUSSION

In this pragmatic pilot study in patients reporting depressive symptoms and/or high PGA despite controlled RA, we identified hurdles that prevented participation in MBSR group sessions. Several potentially eligible patients declined a psychosocial intervention offered by rheumatologists, seen as a ‘joint’ specialist [18]. Addressing depression was less well received than reducing stress and anxiety. Using Delta (PGA–EGA ≥2) as inclusion criterion was simpler for rheumatologists. Interestingly this latter approach identified patients who had high depression or anxiety scores for the most part. An 8-week in-person group intervention was viewed too demanding for many. Online MBSR may appeal to these patients as it saves commute time and travel issues [19]. Nonetheless, participating patients appreciated the tools they acquired, and most integrated some mindfulness practices into their lives.

The MBSR intervention had a marked impact (lasting up to 12 months) on depression and anxiety, as expected [9,10], as well as on sleep quality and emotion-oriented coping. Moreover, we observed a strong positive impact on function, the strongest predictor of health care costs in RA [20]. However, improvements in these psychosocial PROs translated into minor or no changes in other RA-related symptoms such as pain, PGA, Delta, or disease activity scores. Apparent failure to improve pain and PGA is puzzling since both are highly correlated with depression, anxiety, and function. Long disease
duration, comorbidities and central sensitization may explain why pain and PGA remained mostly stable, disconnected from psychosocial PROs. Although suggestive, our results need to be confirmed in larger, randomized studies.

Our study has specific strengths. Most importantly and contrary to previous trials [10,11], RA participants had controlled disease and therefore the effect of MBSR could be distinguished from interventions on, or spontaneous variation of inflammation. Obstacles and facilitators for recruitment in future RCTs were identified. Follow-up was completed up to 12 months. Qualitative results complemented quantitative observations.

Nonetheless, our study has limitations. We deviated from the randomized design due to recruitment difficulties; thus, improvements observed cannot be ascribed to MBSR. Indeed, we lack information on the stability of PROs over time in controlled RA patients with negative PROs. Up to 40% of eligible patients declined, and close to 30% of those consenting failed to attend sessions. We propose that sharing evidence for MBSR benefits in this population may stimulate further patient interest and facilitate future recruitment. Group numbers (5 to 10 in size) were smaller than is generally recommended. Nonetheless those who attended were afforded an opportunity to share illness experiences with peers in a safe setting. Low statistical power may explain failure to find significant changes for some RA-related outcomes.

CONCLUSION

High levels of depressive and anxiety symptoms, and perception of disease burden affect patients’ quality of life with controlled RA. This low-cost, non-pharmacological MBSR intervention was highly appreciated by participants, improved distressing PROs, and provided significant long-term functional benefits. Our results suggest that MBSR may
have minimal impact on pain, PGA levels, and [PGA-EGA] Delta. We maintain that addressing psychological distress is of high importance in controlled RA [8], but the lack of correlation of psychosocial improvements with PGA implies that focusing on depression per se is unlikely to increase remission rates in controlled RA.

ACKNOWLEDGEMENTS

We thank Ms France Gervais for her help as a patient representative on our study committee. We thank our research assistants Chantal Guillet, Noémie Poirier and Christine Rosa for their constant contribution. We also thank our rheumatologist colleagues at the CIUSSS de l’Estrie-CHUS hospital Dr. Guylaine Arsenault, Dr. Lyne Bissonnette, Dr. Alessandra Bruns, Dr. Artur deBrum-Fernandes, Dr. Patrick Liang and Dr. Ariel Masetto for patient referral and support for the study. This work was presented in part as posters at the Canadian Rheumatology Association (CRA) annual meetings 2018 and 2020.

Disclosure statement: The authors have declared no conflicts of interest.

Funding: This study was supported by a research grant from Canadian Initiative for Outcomes in Rheumatology cAre (CIORA), a granting division of the CRA.

Data availability statement: All data are incorporated into the article and its online supplementary material.
REFERENCES

8 Dobkin PL, Boire G. Controlled Joint Inflammation but Still No Remission? It’s Time to Attend to Depressive Symptoms. *J Rheumatol* 2018;45:585–7. doi:10.3899/jrheum.170801

Figure 1. Evolution of mental health and RA-associated outcomes over time. CES-D: Center for Epidemiologic Studies Depression Scale, GAD7: General Anxiety Disorder-7, CHIP: Coping with Health Injuries and Problems scale, M-HAQ: Modified Health Assessment Questionnaire, SDAI: Simple Disease Activity Index, PGA: Patient General Assessment of Disease Activity, Delta: Difference between PGA and Evaluator General Assessment of Disease Activity (EGA). The scales of each graph are different.

*p<0.05; **p<0.01 for 6 vs 0 months and 12 vs 6 months comparisons.
Table 1. Baseline characteristics of the 28 patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean ± SD</td>
<td>61.8 ± 13.6</td>
</tr>
<tr>
<td>Women, n (%)</td>
<td>24 (85.7)</td>
</tr>
<tr>
<td>Disease duration (years), median (IQR)</td>
<td>9.8 (4.7-12.5)</td>
</tr>
<tr>
<td>Body mass index (kg/m²), mean ± SD</td>
<td>27 ± 5.6</td>
</tr>
<tr>
<td>Education (number of years), mean ± SD</td>
<td>12.9 ± 3.2</td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td>27 (96.4)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Married/living with a partner</td>
<td>18 (64.3)</td>
</tr>
<tr>
<td>Divorced/separated</td>
<td>4 (14.3)</td>
</tr>
<tr>
<td>Single</td>
<td>3 (10.7)</td>
</tr>
<tr>
<td>Widowed</td>
<td>3 (10.7)</td>
</tr>
<tr>
<td>Seropositive (n=26), n (%)</td>
<td>15 (53.6)</td>
</tr>
<tr>
<td>Treatments, n (%)</td>
<td></td>
</tr>
<tr>
<td>Biologic DMARDs</td>
<td>10 (35.7)</td>
</tr>
<tr>
<td>Conventional DMARDs</td>
<td>23 (82.1)</td>
</tr>
<tr>
<td>Prednisone</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Non-steroidal anti-inflammatory drugs</td>
<td>3 (10.7)</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>7 (25.0)</td>
</tr>
</tbody>
</table>

SD: Standard deviation, IQR: Interquartile range (25th-75th percentiles)
Figure 1. Evolution of mental health and RA-associated outcomes over time. CES-D: Center for Epidemiologic Studies Depression scale; GAD7: General Anxiety Disorder-7, CHIP: Coping with Health Injuries and Problems scale; M-HAQ: Modified Health Assessment Questionnaire; SDAI: Simple Disease Activity Index, PGA: Patient General Assessment of Disease Activity; Delta: Difference between PGA and Evaluator General Assessment of Disease Activity (EGA). The scales of each graph are different.

*p<0.05; **p<0.01 for 6 vs 0 months and 12 vs 6 months comparisons.