Background: Oxytocin is a neuropeptide implicated in maintaining trust and affiliative behaviors in humans. Currently, there is great interest in exploring the therapeutic potential of oxytocin as an adjunct to conventional antipsychotic treatment for improving clinical and social cognitive symptoms in patients with schizophrenia. It has been well established that patients with schizophrenia show deficits in probabilistic reasoning tasks such that they quickly jump to conclusions without sufficient evidence. Since performance on this task is related to activation of prefrontal areas also implicated in social cognition, we explored whether intranasal oxytocin could improve probabilistic reasoning performance in stable medicated patients with schizophrenia.

Methods: Forty-three male, medicated patients with schizophrenia (Mean Age ± SD: 40.81±11.44) and 16 matched healthy controls (Mean Age ± SD: 30.38±9.85) participated in a double-blind, placebo-controlled, crossover study. Participants were required to complete the “Jumping to Conclusions” probabilistic reasoning task on 2 separate study visits (minimum 20 days apart). For each study visit, participants were randomized to receive either intranasal oxytocin (50 IU in solution) or intranasal placebo (saline).

Results: Consistent with previous findings, patients with schizophrenia showed deficits in probabilistic reasoning, jumping to conclusions more often than healthy controls, t(57) = 2.78, P = .007. Oxytocin did not significantly change probabilistic reasoning performance in patients, t(42) = −1.11, P = .27, nor in healthy controls, t(15) = −6.2, P = .55. However, there was great variability in change in performance given oxytocin in patients. Exploratory analyses found that patients with lower baseline social functioning, as assessed by the Social Functioning Scale, showed more change on the probabilistic reasoning task given oxytocin, characterized by a reduced tendency to “jump to conclusions.”

Conclusion: Acute oxytocin does not appear to modify probabilistic reasoning in healthy controls and patients with schizophrenia. However, future studies should explore the potential confound of baseline social functioning.

Results: Defeatist attitudes were moderately correlated with the Apply to Self (r = .453, P = .000), and Harm to Self-Esteem (r = .349, P = .006) subscales of the SSMIS-SF as well as both SERS subscales (positive: r = −.332, P = .002, negative: r = .461, P = .000), hopelessness (r = .391, P = .000), positive symptoms (Positive and Negative Syndrome (PANSS) positive subscale: r = .421, P < .001), and performance-based functioning (Maryland Assessment of Social Competence: r = −.274, P = .013). Both subscales of the SSMIS were correlated with SERS positive (r = −.454, P = .000), = −.419, P = .001) and negative (r = −.553, P = .000, r = .552, P = .000) self-esteem, hopelessness (r = .335, P = .000, r = .372, P = .000), and positive symptoms (r = .256, P = .048, r = .308, P = .017). Simultaneous regressions with both SSMIS subscales and DPAS as predictors were significant only for SERS positive (R² = .226, F(3, 55) = 5.342, P < .003) and SERS negative (R² = .385, F(3, 55) = 11.467, P < .000) self-esteem, hopelessness (R² = .216, F(3, 55) = 5.036, P < .004), and PANSS positive symptoms (R² = .159, F(3, 56) = 3.540, P = .020). In these models, defeatist attitudes, but not the stigma subscales, were a significant independent predictor of SERS negative (but not positive) self-esteem (βstd = .271, P = .027), hopelessness (βstd = .284, P = .039), and positive symptoms (βstd = .283, P = .044).

Conclusion: Thus, despite some overlap between these constructs, generalized defeatist beliefs were a stronger predictor of important outcomes in schizophrenia than self-stigma. These findings suggest, while both types of defeatist attitudes can be productive targets for interventions such as cognitive behavior therapy, reducing severity of more generalized defeatist attitudes may produce better outcomes.

SA119. DEFEATIST ATTITUDES AND SELF-STIGMA ASSOCIATIONS IN PATIENTS WITH SCHIZOPHRENIA

Tanya Mikhail, Eric Granholm, Jason Holden, Peter Link, and Kim Mueser
1VA San Diego Healthcare System; 2Veterans Medical Research Foundation; 3University of California, San Diego; 4Veterans Affairs San Diego Healthcare System

Background: Recent research has explored relationships among stigma, self-esteem, defeatist performance attitudes, and outcomes in schizophrenia. Internalized stigma has been associated with diminished self-esteem, hopelessness, and defeatist performance attitudes that have been associated with symptoms and poor functioning in schizophrenia. Internalized stigma can be viewed as self-defeating beliefs linked to illness, whereas defeatist attitudes as measured with the Defeatist Performance Attitude Scale (DPAS) are more generalized defeatist beliefs that may come from self-stigma related to illness as well as other factors such as failure experiences that are not attributed to illness.

Methods: This study examined the relationships between these constructs as measured by the DPAS (Cane, Olinger, Gotlib, & Kuiper, 2006), the short form of the Self-Stigma of Mental Illness Scale (SSMIS-SF) and the Self-Esteem Rating Scale (SERS), and the Beck Hopelessness Scale (BHS). Participants (N = 60) enrolled in a randomized clinical trial for older adults with schizophrenia (mean age = 56) completed these assessments along with a battery of symptom, functioning, and neuropsychological measures.

Results: Significant correlations were observed between DPAS and both SERS subscales, positive (r = .553, P = .000) and negative (r = −.461, P = .000), self-esteem (r = .453, P = .000), and hopelessness (r = .421, P < .001) with the DPAS. Moreover, DPAS was associated with all subscales of the SSMIS and BHS. The key factors that emerged for both importance and changeability were Initial and Ongoing Training Feedback and Support (regular initial training, regular ongoing training, and feedback and support), and then structured these statements by sorting and rating them based on importance and changeability. These ratings were then used to construct multidimensional scaling wherein each statement is a point on a “concept map” with statements rated together by more people closer to each other and cluster analysis was then used to aggregate similar groups of statements into clusters. Investigators then worked with stakeholders to help them develop labels and interpretations for the clusters. The maps can be used to develop an implementation intervention for EBPs in ACT teams in other settings.

Results: The key factors that emerged for both importance and changeability were Initial and Ongoing Training Feedback and Support (regular ongoing training, and support).