medication. In light of recent evidence for a neurobiological continuum between clinical and subclinical psychosis, in the current study, medial temporal lobe connectivity was measured in non-help-seeking young people (college students) with a range of severity of subclinical delusional beliefs (n = 131). We sought to determine whether changes in medial temporal lobe connectivity are associated with such beliefs, in particular persecutory ideas, as well as with a bias to mislabel neutral information as negatively-valenced. We also sought to better understand the phenomenology and antecedents of delusional beliefs in this young adult population, by examining relationships to other subthreshold psychotic experiences and childhood adversity in a larger cohort of subjects (n = 399).

Methods: Participants with a range of severity of delusional beliefs were identified and recruited from college campuses in the Boston area. Associations among symptoms and childhood trauma were examined using hierarchical regression modeling. Resting-state functional magnetic resonance imaging data were collected in a subset of these subjects, and seed-based functional connectivity analyses were conducted using atlas-based amygdala and hippocampus seeds. Also, biases to mislabel neutral information were measured using a validated word classification task. Lastly, a portion of the cohort was followed longitudinally, via on-line assessments.

Results: A history of childhood trauma was highly associated with both delusional beliefs and hallucinatory experiences, which were highly correlated with each other. The severity of delusional beliefs in this cohort strongly correlated with the strength of the connectivity of the amygdala to early visual cortical areas. This effect remained significant after accounting for symptoms of depression, anxiety and hallucinatory experiences. Moreover, the effect was stronger when the analyses were limited to those participants with delusional beliefs that had persisted over a period of one year. Further analyses revealed that these effects were mainly accounted for by the presence of persecutory beliefs, rather than other delusion types. The hippocampal seed showed a similar, but less robust, pattern of effects. Lastly, a significant association between the tendency to mislabel neutral information as negatively-valenced and delusional belief severity was mediated by the strength of amygdala-visual cortex connectivity.

Conclusions: Subclinical delusional beliefs, particularly persecutory ideas, are associated with a history of childhood trauma and increased connectivity between the amygdala and visual cortex, which was linked to a tendency to mislabel neutral information as negatively-valenced. These findings suggest a mechanistic path by which early stress-induced abnormalities in medial temporal lobe function could give rise to misperceptions and misinterpretations of incoming sensory stimuli.

4. THE NEUROBIOLOGY OF COGNITION ACROSS THE PSYCHOSES: EVIDENCE FROM DIVERSE MODALITIES AND ACROSS ILLNESS PHASES

Tamsyn Van Rheenen
University of Melbourne

Cognitive dysfunction is a major feature of the psychotic disorders that is evident even prior to illness onset, and persistent throughout the illness course. Although it is intuitive that such dysfunction is biologically-based, its precise foundation is not currently well understood. Cognitive impairment has been linked to inflammation as well as altered brain structure and function in an increasing number of studies, but inconsistencies in findings across cohorts suggests that the nature of relationships between these variables is complex and potentially influenced by factors that differ from patient-to-patient. In this symposium, we will present data offering novel insights into biology-cognition relationships in psychosis, with an emphasis on new work that addresses heterogeneity within psychosis phenotypes and that focuses on the dynamics of biology-cognition relationships across different phases of the lifespan and illness course.

Dr Van Rheenen (Australia) will chair the session and introduce the topic. She will present data that reconciles inconsistent findings of temporal stability in fluid cognitive deficits in psychosis, but accelerated age-related structural brain deterioration in regions known to support it. She will highlight cognitive reserve as an important moderator of the presence and strength of brain-cognition relationships on the schizophrenia-spectrum. Assistant Professor Lewandowski (USA) will present data examining whether different cognitive profiles in psychosis are reflective of differential resting state network connectivity changes. She will discuss the possibility that associations between cognitive impairment and functional connectivity may be more reflective of discreet phenotypes than a continuum of impairment.

Ms Wannan (Australia) will present data indicating that initial deterioration in visuospatial associative memory ability in psychosis may be related to left hippocampus atrophy in the stratum layers in early psychosis, whereas ongoing deterioration in chronic schizophrenia patients may be related to the spread of pathology to the previously unaffected right hippocampus. The potential that these hippocampal abnormalities and subsequent memory impairments arise from chronic stress exposure and inflammation will be discussed. Associate Professor Burdick (USA) will present data indicating the role of the immune system in cognitive outcomes in patients on the schizophrenia-bipolar spectrum, highlighting the influence of primary and secondary inflammatory mediators and discussing the role that illness course variables play in the inflammatory response. Professor Susan Rossell (Australia) will act as the discussant, synthesising the content of these presentations in an interactive discussion focused on the implications that these data have for our understanding of cognition in psychosis.

Together, this geographically diverse, cross-institutional panel brings a range of experience to the topic. This will ensure an offering of fresh ideas grounded in an established knowledge base that is expected to stimulate lively dialogue focused on the neurobiology of cognition across the psychoses.

4.1 COGNITIVE RESERVE ATTENUATES AGE-RELATED COGNITIVE DECLINE IN THE CONTEXT OF ACCELERATED BRAIN AGEING IN SCHIZOPHRENIA-SPECTRUM DISORDERS: EVIDENCE FOR ACTIVE COMPENSATION

Tamsyn Van Rheenen1, Vanessa Cropley1, Birgitte Fagerlund2, Cassandra Wannan3, Jason Bruggemann3, Rhoshel Lenroot4, Suresh Sundram1, Cynthia Shannon Weickert5, Thomas Weickert5, Andrew Zalesky1, Chad Bousman1, Christos Pantelis1
1University of Melbourne; 2Center for Neuropsychiatric Schizophrenia Research; 3Neuroscience Research Australia; 4University of New South Wales; 5Monash University

Background: In schizophrenia, relative stability in the magnitude of fluid cognitive deficits across age and illness duration is inconsistent with evidence of accelerated deterioration in brain regions known to support these functions. These discrepant brain-cognition outcomes may be explained by variability in cognitive reserve (CR), which in neurological disorders has been shown to enable resilience against brain pathology and minimize its impact on cognitive or clinical indicators of illness.

Methods: Age-related changes in fluid reasoning, working memory and frontal brain volume, area and thickness were mapped using regression analysis in 214 individuals with schizophrenia or schizoaffective disorder and 168 healthy controls. In patients, these changes were modelled as a function of CR.

Results: Patients showed exaggerated age-related decline in brain structure, but not fluid cognition compared to controls. In the patient group, no moderation of age-related brain structural change by CR was evident. However,