Conductivity pulses needed for Diascan® measurements: does it cause sodium burden?

Sir,

Recent, New techniques based on conductivity measurement enable physicians to evaluate the adequacy of haemodialysis dose (HDD) on all haemodialysis treatments by on-line monitoring of Kt/V. Ionic dialysance (Diascan® Hospal-Gambro, Mirandola, Italy) is a parameter calculated from the dialysate conductivity at the dialyser inlet and outlet. Every half hour, the inlet dialysate conductivity increases by 1 ms/cm during 5 min, while the outlet dialysate conductivity-cell measures the effect of this increase. The calculated ion transfer across the membrane (largely sodium) is almost equivalent to urea transfer and therefore ionic dialysance reflects the urea clearance. This method has been shown to have a good correlation with Kt/V measured by the mathematical urea equations in several studies [1–4].

However, some investigators suggest that during the conductivity pulse of 5 min, significant amounts of sodium may be transferred into the patient [5]. In our centre, we studied that effect. Diascan® also measures ionic mass balance (IMB) and plasma conductivity (PC) that are likely to represent sodium balance and plasma sodium, respectively (plasma sodium in mmol/l ≈ plasma conductivity in ms/cm × 10). This is performed by constant measurements of the conductivity in the dialysate inlet and outlet, according to the formulas

\[PC = \frac{[Cd_{out} - (1 - D/Qd_{in}) \times Cd_{in}]/(D/Qd_{in})}{C_{din}} \times \frac{10}{Time(min)} \]

where Qd_{in} and Qd_{out} are dialysate flow at, respectively, inlet and outlet, Cd_{in} and Cd_{out} are dialysate conductivity at, respectively, inlet and outlet and D is ionic dialysance, and

\[IMB = (Qd_{in} \times Cd_{in} - Qd_{out} \times Cd_{out}) \times 10 \times \text{time(min)} \]

A positive IMB means sodium removal from the patient. A negative IMB means sodium transport to the patient.

In patients with zero inter-diaytic weight gain, IMB was measured in 200 isovolaemic haemodialysis sessions by Diascan®, 137 sessions were performed with four to eight conductivity pulses. A total of 63 sessions was performed with only one conductivity pulse.

The results showed a highly significant correlation between pre-dialytic plasma conductivity and IMB (Spearman rank \(r_s = 0.902, P < 0.005 \), in agreement with previous studies [6]. There was no correlation between IMB and the number of conductivity pulses (Spearman rank \(r_s = 0.02, P = 0.328 \) (Figure 1).
In conclusion, Diascan® is a useful tool to assess HDD without evidence of an increased sodium load related to the conductivity pulses during haemodialysis treatment.

Conflict of interest statement. None declared.

1Department of Internal Medicine Karin Moret1
Maxima Medical Centre, Veldhoven Diana C.
2Department of Clinical Grootendorst2
Epidemiology, Leiden University Charles
Medical Center Beerenhout1
3Department of Internal Medicine Jeroen P. Kooman3
University Hospital, Maastricht
The Netherlands
E-mail: K.Moret@mmc.nl

doi: 10.1093/ndtplus/sfp059

Advance Access publication 3 June 2009

Assessment and reduction of fluid overload using a body composition monitor

Sir,

Assessment and reduction of fluid overload is a major clinical problem in haemodialysis (HD) patients which should be assessed by objective methods [1]. Non-invasive bioimpedance spectroscopy with a body composition model has been validated against other methods to assess fluid status [2,3] and fluid changes accurately [4]. Our study investigated whether the application of a new bed-side bioimpedance spectroscopy device BCM (body composition monitor, Fresenius Medical Care, Germany) was feasible in a normal clinical setting. A single pre-dialytic measurement provides the body composition of the patient and quantifies his fluid overload.

The fluid status of HD patients from three centres was measured with BCM. The study consisted of a cross-sectional study (fluid status was assessed once) and a longitudinal study (fluid status was assessed repeatedly, and potential fluid overload reduced following the target defined by BCM).

A total of 139 HD patients were investigated with BCM. The patients were grouped concerning their pre-dialytic fluid overload in quartiles with −0.14 ± 1.04 L in the lowest quartile (Q1) and 4.13 ± 1.50 L in the highest quartile (Q4). In Q4 we found predominantly men (77% versus 43% in Q1, P < 0.01). The incidence of hypertension was at maximum in Q4 (94% versus lowest in Q2 with 76%, P < 0.05). The highest ultrafiltration volumes were observed in Q4 (3.1 ± 0.8 L versus the lowest in Q2 with 2.6 ± 0.8 L, P < 0.02). Patients with a high fluid overload had a lower body mass index (25.0 ± 4.3 kg/m² in Q4 versus 27.8 ± 4.5 kg/m² in Q1, P < 0.01).

For the longitudinal study, a sub-group of 34 patients was selected predominantly according to fluid overload and blood pressure values outside the reference region for healthy persons at the start of the study (fluid load <−1.1 L or >1.1 L and systolic blood pressure values <100 mmHg or >140 mmHg; see Figure 1); they were repeatedly investigated with BCM during 5.9 ± 1.7 months. The mean fluid overload was reduced by 0.62 L; in patients with fluid overload >1.1 L, it even was reduced by 0.81 L (see Table 1).

The observed mean pulse pressure decrease of 3 mmHg did not reach statistical significance (P = 0.146); pulse pressure has been associated with risk of death [5].

Changes in the prescription of antihypertensive medication were not significant either.

In the sub-group of fluid overloaded patients with high blood pressure, a non-significant reduction of blood pressure was observed (BP, pre-dialytic systolic/diastolic BP: 165 ± 18/77 ± 13 mmHg at the start of the study versus 157 ± 26/73 ± 11 mmHg at the end of the study, P = 0.140/P = 0.286). Moreover, a significantly higher UF volume was observed (2.5 ± 1.0 L at the start of the study versus 2.8 ± 0.9 L at the end of the study, P = 0.013).

Fluid overload is present in many HD patients, often unexpected. The analysis shows that special patient groups

Fig. 1. Pre-dialytic systolic blood pressure and fluid overload in the 34 patients of the longitudinal study at the start of the study.