Measuring Sleep Habits Without Using a Diary: The Sleep Timing Questionnaire

Clinical Neuroscience Research Center, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center

Study Objectives: To develop a single-administration instrument yielding equivalent measures of sleep to those obtained from a formal (2-week) sleep diary.

Design & Setting: A single-administration Sleep Timing Questionnaire (STQ) is described (and reproduced in the Appendix). Test-retest reliability was examined in 40 subjects who were given the STQ on two occasions separated by less than 1 year. Convergent validity was measured both by comparing STQ-derived measures with objective measures derived from wrist actigraphy (n=23) and by comparing STQ-derived measures with other subjective measures derived from a detailed 2-week sleep diary in two nonoverlapping samples (n=101, 93). Correlations of STQ measures with age and morningness-eveningness (chronotype) were also examined.

Subjects: The analyses used sample sizes of 40, 23, 101, and 93 (both genders, overall age range 20y - 89y). Most subjects were healthy volunteers; some Study 4 subjects were patients (enrolled in research protocols).

Results: Test-retest reliability for the STQ was demonstrated for estimates of bedtime (n=0.705, p<0.001) and waketime (n=0.826, p<0.001). Convergent validity using wrist actigraphy was demonstrated by correlations of 0.592 (p<0.005) for bedtime, and of 0.769 (p<0.001) for waketime. Diary studies indicated STQ bedtime and waketime data to be highly correlated (at about 0.8) with those obtained from a formal 2-week sleep diary. The STQ also provided data on estimated sleep latency and wake after sleep onset (WASO), which correlated reliably (at about 0.7) with average nightly ratings of these variables from a 2-week sleep diary. Mean estimated values of sleep latency and WASO from the two instruments were within 1 minute of each other. STQ-derived bedtimes and waketimes correlated with both age and chronotype in the expected direction (older subjects earlier, morning types earlier).

Conclusion: The STQ may be a reliable valid measure of sleep timing that could provide a time-efficient alternative to traditional sleep diaries.

Key Words: circadian rhythms, sleep, human, diary, ratings

METHODS

Development of the STQ

The STQ (see Appendix) follows standard practice in our laboratories in first defining "good night time" (GNT) and "good morning time" (GMT). These are used in preference to the terms "bedtime" and "waketime" because of the need to determine when the patient or subject actually began to try and sleep, rather than the time at which they first retired to bed, perhaps to interact with their bedpartner, read a book, or watch TV. In a similar vein, GMT allows the specification that this is the time the patient finally finished the night of sleep, rather than waking in the early morning to use the bathroom, attend to a child, or let a pet out, for example, but then returning to bed. Having thus defined GNT and GMT, the questionnaire then invites the patient or subject to separate nights before school or work ("worknights") from nights before a day off, such as at weekends ("restnights"), dealing with the two situations separately.

Study 1 Measures of Test-Retest Reliability

By scanning our database, we were able to identify a total of 40 subjects who had been administered the STQ on two separate occasions separated by less than 1 year (mean 105 days, range of durations: 6 days to 349 days). In most cases this double administration resulted from the STQ being given both at initial recruitment and during the first evening in the laboratory. In no case were the responses to the first STQ administration available to the subject when the second STQ was being completed. All subjects were healthy volunteers for various sleep research protocols. Ages ranged from 20 years to 82 years (mean: 46.3y, sd: 20.5y); there were 18 men and 22 women. All contributing studies conformed to the University of Pittsburgh Institutional Review Board (IRB) procedures regarding informed consent and conformed to the Declaration of Helsinki. Subjects who completed the study were typically paid $50 per night of PSG. The hypotheses to be tested by this study were that when the two STQ administrations were compared, there would be significant positive correlations between 1) overall GNT estimates at Time One versus overall GMT estimates at Time Two, and 2) overall GMT estimates at Time One versus overall GMT estimates at Time Two.

Study 2 – Concurrent Validity Assessment by Comparing STQ Measures of Bed Timing With Wrist Actigraphic Measures

By scanning our database, we were able to identify a total of 23 healthy control subjects who had been administered the STQ and who had subsequently (typically a few weeks later) completed a field study of wrist actigraphy lasting at least 1 week. In all cases the device used was the Actiwatch® device marketed by Minimitter Corp. of Bend, Oregon. Our own in-house software was used to determine mean activity onset and offset for the week as a whole, recognizing that the subjects were on a standard nychthemeral schedule (i.e., sleeping at night and waking up later on Friday and Saturday nights than on the other 5 nights of the week, a commonsense finding recently confirmed empirically. Such overall scores can then be used to approximate the average Time In Bed (TIB) i.e., the time at night devoted to attempting sleep. Clearly such procedures, while appropriate for most day workers, would need to be modified to be appropriate for shift workers, particularly those on rotating schedules. It should be noted that the studies to be reported here were specifically concerned with those on a regular night-sleeping schedule.

In addition, the STQ asks for estimates of GNT and GMT variability for worknights and restnights, which then yield a rough metric of bedtime/waketime stability. Diary measures often ask for an approximate estimate of subjective sleep latency and subjective wake after sleep onset (WASO) on a nightly basis. Clearly, to ask the patient to provide a single estimate of each is inherently inaccurate, requiring an estimated average from nights that may be very different from each other. However, to provide an admittedly very coarse estimate of each, questions regarding sleep latency and WASO comprise the final two questions in the STQ (see Appendix).
awake during the day) and were usually forbidden from napping. For each subject, the overall GMT and GNT from the STQ were compared to the mean times of activity onset and activity offset (respectively), as determined from the 1 week wrist actigraphy trace. All subjects were volunteers for various sleep research protocols. Ages ranged from 23 years to 76 years (mean age: 45.1y, sd: 17.3y), there were 9 men and 14 women. All contributing studies conformed to the University of Pittsburgh IRB procedures regarding informed consent and conformed to the Declaration of Helsinki. Subjects who completed the study were typically paid $25 per week of actigraphy. The hypotheses to be tested by this study were that there would be significant positive correlations between 1) overall GNT estimates from the STQ with habitual time of activity offset estimates from wrist actigraphy, and 2) overall GMT estimates from the STQ and habitual time of activity onset estimates from wrist actigraphy.

Study 3 – Convergent Validity Assessment by Comparing STQ Measures of Bed Timing With Simple 2-week Diary Measures

A convenience sample of 101 healthy people aged 20 years to 59 years (53f, 48m; mean age: 33.5y, sd: 13.2y) was recruited using word of mouth and fliers. None were shift workers, recently returned from a different time zone, pregnant, or parents of children under 2 years of age. The study involved completing several single-administration questionnaires, including the STQ, and Composite Scale of Morningness (CSM) instrument, which yielded a score indicating the degree to which the subject was a morning-type versus an evening-type. Subjects were also required to complete a 2-week abbreviated version of the Social Rhythm Metric (SRM-5). This version comprised just five items, rather than the 17 items required for the standard Social Rhythm Metric. Each evening the subject was required to note the time at which each of five events was done (get out of bed, first contact with another person, start work, dinner, go to bed). The present analysis will focus on the first and last items (get out of bed, go to bed) of the SRM-5 completed for each of 14 consecutive nights. It should be noted that the final item (go to bed) corresponded to the time the subject first climbed into bed and thus did not correspond exactly to GNT as defined by the STQ (which corresponded to the time at which sleep was first attempted). In order to make comparisons between sleep timings from the single administration (STQ) and 2-week diary (SRM-5) instruments, worknight and restnight estimates from the STQ were averaged in the weighted ratio 5:2 to yield an overall GNT estimate and an overall GMT estimate, each of which could be compared to average “go to bed” and “get out of bed” estimates from the SRM-5 diary. The study conformed to the University of Pittsburgh IRB procedures regarding informed consent and conformed to the Declaration of Helsinki. Subjects who completed the study were paid $25.

The hypotheses to be tested by this study were that: 1) sleep timings (overall GNT and GMT) assessed by the STQ in this study would be correlated with those assessed from the same subjects using bedtime and waketime estimates from their 2-week SRM-5 diaries; 2) morningness would be correlated with GNT and GMT scores from the STQ (i.e., morning larks would have earlier GNT and GMT); and 3) age would be correlated with GNT and GMT scores from the STQ, with older subjects going to bed and waking up earlier.

Study 4 – Convergent Validity Assessment Using STQ and 2-week Pittsburgh Sleep Diary Measures in a Diverse Sample of Research Subjects

For a 33-month period (from February 1999 to November 2001), many research subjects who passed through our laboratory for PSG sleep studies, and who had also completed a 2-week sleep diary [the Pittsburgh Sleep Diary - PghSD] prior to the PSG, were additionally asked to complete the STQ on their first evening in the laboratory. Completion of the STQ was made without reference to the PghSD. A total of 93 subjects were included (33 men, 60 women; mean age: 55.4y, sd 18.4; range: 20y - 89y). None had previously been involved in Study 2. Of the 93 subjects, 40 were healthy controls, 53 had diagnosed illnesses (depression: 18, insomnia: 15, other sleep disorder: 5, other: 3); and 12 were caregivers of Alzheimer disease patients or organ transplant patients. All studies conformed to the University of Pittsburgh IRB procedures regarding informed consent for the particular study in which they were enrolled and conformed to the Declaration of Helsinki. Subjects were usually paid $50 per night of PSG.

This study focused on a comparison of various measures obtained from the 2-week PghSD diary and the single-administration STQ questionnaire. As was done in Study 2, for the STQ, overall scores were obtained by averaging worknight and restnight estimates of GNT and GMT with a 5:2 weighting of worknights versus restnights. Overall STQ estimates for GNT and GMT were then correlated with average GMT and GNT from the 2-week diary (PghSD). Also computed were correlations between estimates of sleep latency and WASO from the two instruments. The hypotheses to be tested by this study were that: 1)
sleep timings (overall GNT and GMT) assessed by the STQ in this study would be correlated with those assessed from the same subjects using the 2-week sleep diary; 2) overall mean bedtime and waketime estimates from the two instruments would be similar; and 3) estimates of sleep latency and WASO from the two instruments would be similar and would be correlated.

RESULTS

Study 1 Measures of Test-Retest Reliability

The scattergrams of Time One versus Time Two estimates of overall GNT and GMT are illustrated in Figure 1. In both cases the correlation was positive and significant (GNT: r=0.705, p<0.001; GMT: r=0.826, p<0.001), with the fitted regression line accounting for better than half of the variance. Almost all of the unexplained variance could be attributed to two outlying subjects in the measure of GNT—when these were removed, the test-retest correlation for this measure rose to 0.918.

Study 2 – Convergent Validity of STQ Measures of Bed Timing With Wrist Actigraphic Measures

The scattergrams of GNT (STQ) versus mean time of activity offset (actigraphy), and GMT (STQ) versus mean time of activity onset (actigraphy) are illustrated in Figure 2. In both cases the correlation was positive and significant (GNT: r=0.592, p=0.003; GMT: r=0.769, p<0.001), with the fitted regression line accounting for between 35% and 59% of the variance.

Study 3 – Convergent Validity Assessment by Comparing STQ Measures of Bed Timing With Simple 2-week Diary Measures

For overall scores of both GNT and GMT from the STQ, significant positive correlations emerged with equivalent estimates of “go to bed” and “get out of bed” from the 2-week SRM-5 diary (rho= 0.838, p<0.001; rho=0.860, p<0.001, respectively). Even with the slightly different definitions of bed timing used by the two instruments (see above), STQ-determined GNT and GMT were within 20 minutes of the SRM-5 2-week diary-determined average “go to bed” and “get out of bed” times (see Table 1). The mean median and sd of the difference scores were 18, 17, and 42 minutes, respectively, for bedtime, with equivalent figures of 17, 12, and 44 minutes for waketime.

Morningness score from the CSM was negatively correlated with both overall GNT (rho=-0.707, p<0.001), and overall GMT (rho=-0.739, p<0.001) indicating morning types going to bed and waking up earlier. Age was negatively correlated with both overall GNT (rho=-0.510, p<0.001) and overall GMT (rho=-0.656, p<0.001), indicating older subjects (within this 20y - 59y range) going to bed and waking up earlier.

Study 4 – Convergent Validity Assessment Using STQ and 2-week Pittsburgh Sleep Diary Measures in a Diverse Sample of Research Subjects

Mean values from the STQ and 2-week sleep diary (PghSD) from the 93 subjects are given in Table 2. GMT estimates were within 13 minutes, GNT estimates within 21 minutes, and sleep latency and WASO estimates were within 1 minute, when the STQ and sleep diary instruments were compared. The mean, median, and sd of the difference scores (in minutes) were 21, 13, and 44 for GNT; 14, 9, and 49 for GMT; 1, 1, and 12 for sleep latency; and 1, 0, and 27 for WASO. Statistically significant positive correlations between STQ and diary measures occurred for both GNT (r=0.788, p<0.001) and GMT (r=0.814, p<0.001), accounting for better than 60% of the variance. For measures of sleep latency and WASO (where some missing data reduced the sample sizes to 92 and 89, respectively), the correlations were also good (sleep latency: rho= 0.855, p<0.001; WASO: rho= 0.838, p<0.001), accounting for about 70% of the variance.

DISCUSSION

Clearly, no single-administration questionnaire can ever fully match the quality and richness of information provided by a 2-week sleep diary. However, the present results do suggest that the STQ provides acceptable data in answering the question of at what time a given subject habitually takes his or her sleep. In terms of reliability (Study 1), the STQ performed acceptably well, with test-retest correlations of better than 0.7, even after an average delay of 105 days. Validity assessments also confirmed the usefulness of the STQ, both with regard to objective assessments of the sleep-wake cycle made using wrist actigraphy and with regard to subjective assessments using diary instruments. Thus, correlations between STQ and actigraphy-based estimates of bedtime and waketime (Study 2) averaged around 0.6 to 0.7; those between STQ and diary estimates of bedtime and waketime (Studies 3 and 4) averaged around 0.8.

A second research question is that of whether the STQ would be sufficiently precise to test hypotheses regarding the influence of individual difference variables such as age and morningness on habitual sleep timing. In Study 3, the correlations with morningness score were about 0.7 for both overall GNT and overall GMT, indicating that about 50% of the variance was being explained. The STQ also did quite well (at about 0.5 - 0.6) in tracking changes in sleep timing related to age. This was despite the absence of subjects conventionally considered “old” in this sample of 101 (the age range was 20y - 59y).

A third research question is that of whether the final two items of the STQ asking questions regarding habitual sleep latency and WASO would be related to the average of nightly estimates from the 2-week sleep diary (Study 4). In both cases, the STQ did well, showing correlations of about 0.8 and mean estimates that were with in a few minutes of the daily estimates. This is a particularly strong validation of the STQ in that nightly ratings were being compared to a single-administration overall estimate. It remains true, of course, that these correlations were between two subjective ratings, and it is quite possible that less satisfactory correlations would be obtained when objective measures of sleep latency and WASO are obtained using PSG, for example. A future paper is planned to address that topic.
CONCLUSIONS

The STQ appears to be a useful single-administration questionnaire for accurately assessing the habitual timing of a person’s sleep. STQ measures of sleep timing showed good reliability and validity, correlating well with both wrist actigraph-based and 2-week diary-based measures. Correlations were also obtained with individual difference measures such as age and chronotype. STQ questions relating to sleep latency and WASO correlated well with equivalent nightly diary measures averaged over 2 weeks.

ACKNOWLEDGMENTS

Primary support for this work was provided by NASA grant NAG9-1036. Additional support was provided by NASA grant NAG9-1234, National Institute on Aging grants AG-13396, AG-15138, AG-00972 and AG-15136, NIH grant MH 24652, and GCRC grant RR 00056. Sincere thanks to the many staff and faculty whose research projects contributed data to Study 4.

REFERENCES

APPENDIX

SLEEP TIMING QUESTIONNAIRE (STQ)

Name__________________________
ID#____________________________
Date____________________________

SLEEP TIMING QUESTIONNAIRE (STQ)

This questionnaire asks about when you normally sleep. We are interested in getting as accurate a picture as we can of the times when you normally go to bed and get up. Please think carefully before giving your answers and be as accurate and as specific as you can be. Please answer in terms of a recent “normal average week,” not one in which you traveled, vacationed or had family crises. Thanks.

Please think of GOOD NIGHT TIME as the time at which you finally get out of bed and start your day.

How stable (i.e., similar each night) are your GOOD NIGHT TIMES before a work day or school day? (circle one)

0-15 mins. 16-30 mins. 31-45 mins. 46-60 mins.
61-75 mins. 76-90 mins. 91-105 mins 106-120 mins.

How stable (i.e., similar each night) are your GOOD NIGHT TIMES on a night before a day off (e.g. a weekend)? (circle one)

0-15 mins. 16-30 mins. 31-45 mins. 46-60 mins.
61-75 mins. 76-90 mins. 91-105 mins 106-120 mins.

Please think of GOOD MORNING TIME as the time at which you finally get out of bed and start your day.

Before a work day or school day,
what is your earliest GOOD MORNING TIME?_____:_____ am/pm
Before a work day or school day,
what is your latest GOOD MORNING TIME? _____:_____ am/pm
Before a work day or school day,
what is your usual GOOD MORNING TIME? _____:_____ am/pm

How stable (i.e., similar each night) are your GOOD MORNING TIMES before a work day or school day? (circle one)

0-15 mins. 16-30 mins. 31-45 mins. 46-60 mins.
61-75 mins. 76-90 mins. 91-105 mins 106-120 mins.

How stable (i.e., similar each night) are your GOOD MORNING TIMES on a night before a day off (e.g. a weekend)? (circle one)

0-15 mins. 16-30 mins. 31-45 mins. 46-60 mins.
61-75 mins. 76-90 mins. 91-105 mins 106-120 mins.

Please think of how much sleep you lose to unwanted wakefulness:

On most nights, how long, on average does it take you to fall asleep after you start trying?
__________ minutes

On most nights, how much sleep do you lose, on average, from waking up during the night (e.g. to go to the bathroom)?
__________ minutes

These questions are about how much sleep you lose to unwanted wakefulness:

On most nights, how long, on average does it take you to fall asleep after you start trying?

On most nights, how much sleep do you lose, on average, from waking up during the night (e.g. to go to the bathroom)?

Downloaded from https://academic.oup.com/sleep/article/26/2/208/2709176 by guest on 26 July 2022