Orbital and physical parameters of eclipsing binaries from the ASAS catalogue – VIII. The totally eclipsing double-giant system HD 187669

K. G. Helminiak,1,2† D. Graczyk,3,4‡ M. Konacki,2,5 B. Pilecki,4,6 M. Ratajczak,2 G. Pietrzyński,4,6 P. Sybilski,2 S. Villanova,4 W. Gieren,3,4 G. Pojmański,6 P. Konorski,6 K. Suchomska,6 D. E. Reichart,7 K. M. Iversen,7 J. B. Haislip7 and A. P. LaCluyze7

1Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720, USA
2Nicolaus Copernicus Astronomical Center, Department of Astrophysics, ul. Rubionańska 8, PL-87-100 Toruń, Poland
3Millennium Institute of Astrophysics, Av. Vícuta Mackenna 4860, Santiago, Chile
4Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile
5Astronomical Observatory, A. Mickiewicz University, ul. Słoneczna 36, PL-60-286 Poznań, Poland
6Warsaw University Observatory, Al. Ujazdowskie 4, PL-00-478 Warsaw, Poland
7Department of Physics, and Astronomy, University of North Carolina, Campus Boc 3255, Chapel Hill, NC 27599-3255, USA

ABSTRACT

We present the first full orbital and physical analysis of HD 187669, recognized by the All-Sky Automated Survey (ASAS) as the eclipsing binary ASAS J195222-3233.7. We combined multi-band photometry from the ASAS and SuperWASP public archives and 0.41-m PROMPT robotic telescopes with our high-precision radial velocities from the HARPS spectrograph. Two different approaches were used for the analysis: (1) fitting to all data simultaneously with the WD code and (2) analysing each light curve (with IKTBERP) and radial velocities separately and combining the partial results at the end. This system also shows a total primary (deeper) eclipse, lasting for about 6 d. A spectrum obtained during this eclipse was used to perform atmospheric analysis with the MOOG and SME codes to constrain the physical parameters of the secondary. We found that ASAS J195222-3233.7 is a double-lined spectroscopic binary composed of two evolved, late-type giants, with masses of $M_1 = 1.504 \pm 0.004$ and $M_2 = 1.505 \pm 0.004 \, M_\odot$, and radii of $R_1 = 11.33 \pm 0.28$ and $R_2 = 22.62 \pm 0.50 \, R_\odot$. It is slightly less metal abundant than the Sun, and has a $P = 88.39$ d orbit. Its properties are well reproduced by a 2.38-Gyr isochrone, and thanks to the metallicity estimation from the totality spectrum and high precision of the masses, it was possible to constrain the age down to 0.1 Gyr. It is the first so evolved Galactic eclipsing binary measured with such good accuracy, and as such it is a unique benchmark for studying the late stages of stellar evolution.

Key words: binaries: eclipsing – binaries: spectroscopic – stars: evolution – stars: fundamental parameters – stars: individual: HD 187669 – stars: late-type.

1 INTRODUCTION

Despite the fortunate configuration of detached eclipsing binaries (DEBs) and the many possibilities that they give us, analysis of these objects is still difficult. The light curves do not contain enough information about the effective temperatures in the absolute scale, mainly their ratio. They are sometimes set on the basis of the colour of the whole system, which is the combined light of two, sometimes very different stars. Another problem occurs when calculating the fractional radii (defined as a fraction of the major semi-axis). The information about their sum comes mainly from the width of eclipses, and is somewhat degenerated with the inclination angle, but from the light curves only it is difficult to constrain their ratio. Again, other kinds of data are needed, like spectra, from which one can try to estimate the ratio of fluxes from the two components. Both issues are, however, much less important in even more fortunate cases when a system shows total eclipses, when light from only one component is seen. A flat minimum in the light curves solves these problems and other kinds of observation can help to improve the analysis even more.

† Subaru Research Fellow, E-mail: xsysiek@naoj.org
‡ E-mail: darek@astro-udec.cl

© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
Such a fortunate situation occurs either when the inclination angle is very close to 90 degrees, or when the two stars have significantly different sizes. The latter usually means that at least one component is evolved. Because of the long-lasting evolution on the main sequence, such evolved systems are much less common than main-sequence eclipsing binaries. In a very fine summary, Torres, Andersen & Gimenez (2010) point out the lack of red giant systems with accurately measured properties, especially masses and radii. Torres et al. (2010) list only four red giants in their sample: AlPhe A, TZ For A, and both components of OGLE-051019.64-685812.3 in the Large Magellanic Cloud (LMC). Since then a small number of systems have been added to the sample, but either containing one giant component (KIC 8410637; Frandsen et al. 2013), or located in the Magellanic Clouds (e.g. Pietrzyński et al. 2013; Graczyk et al. 2014), i.e. no Galactic double-giant system has been accurately studied. Some interesting cases have been analysed (Galan et al. 2008; Ratatczak et al. 2013), but for various reasons their parameters have not yet been determined precisely enough. Long baseline interferometry has been successful in measuring the radii of single red giants directly, but without mass determination. Astroseismology of solar-type oscillations is another option, and with the long-cadence, continuous and precise light curves from the CoRoT and Kepler satellites, it appears to be a promising method (Kallinger 2002; Bedding et al. 2010), especially if combined with interferometric radius measurements (Baines et al. 2014), but still the precision achieved is lower than for double-lined DEBs, or the differences between the parameters obtained from astroseismology and other methods is significant.

In this paper we present our results of a detailed analysis of a binary system showing a total eclipse, and composed of two cool giant stars – ASAS J195222-3233.7 (HD 187669, CD-32 15534, TYC 7443-867-1; hereafter ASAS-19). Despite being relatively bright – \(V \approx 8.9 \) mag – this star was recognized as a binary only in the All-Sky Automated Survey (ASAS; Pojmanski 2002)\(^1\) and this is the first detailed study of this interesting target. Time-series photometry is also available in the Public Archive of the Wide-Angle Search for Planets (SuperWASP; Pollacco et al. 2006). Except for single-epoch brightness and position measurements, no information is available in other databases or the literature. The only spectral type classification – KOIII – is from Houk (1982).

Two teams were working on this system mostly independently. One group was led by KH (the H-group with MK, MR and PS) and the second group by DG (the G-group with BP, GP, PK, SV, WG and KS). We used the same data in our analyses and we compared our partial results as the work progressed. However, the overall approach used by each group was different. In the end, we combined our results to obtain the final parameters of the system.

2 OBSERVATIONS

2.1 Photometry

2.1.1 ASAS

The V-band photometry of ASAS-19, publicly available from the ASAS Catalogue,\(^2\) spans from 2000 November to 2009 December, and contains 406 good quality points (flagged A in the original data).

Table 1. The PROMPT V, I and ASAS I photometry of ASAS-19. Portion of the table is shown for the reference. The complete table is available in the online version of the manuscript.

<table>
<thead>
<tr>
<th>BJD-2450000</th>
<th>Mag</th>
<th>Error</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>2404.777 62</td>
<td>7.567</td>
<td>0.075</td>
<td>AI</td>
</tr>
<tr>
<td>2405.806 52</td>
<td>7.480</td>
<td>0.071</td>
<td>AI</td>
</tr>
<tr>
<td>2406.820 07</td>
<td>7.502</td>
<td>0.074</td>
<td>AI</td>
</tr>
<tr>
<td>2415.822 23</td>
<td>7.494</td>
<td>0.068</td>
<td>AI</td>
</tr>
<tr>
<td>2500.621 85</td>
<td>7.533</td>
<td>0.074</td>
<td>AI</td>
</tr>
</tbody>
</table>

The I-band photometry was downloaded from the internal ASAS catalogue and spans from 2000 May to 2009 June, and contains 247 good points.

2.1.2 SuperWASP

From the SuperWASP public archive,\(^3\) we extracted raw flux measurements of the binary. To transform them to magnitudes, we used flux measurements of a nearby, slightly brighter star HD 187742 (\(V = 8.07 \) mag, \(SW = 8.193 \) mag), also classified as KOIII (Houk 1982), which we previously inspected for variability. We cross-matched the two data sets and removed the obvious outliers from the resulting light curve. Originally, the SuperWASP data spanned from 2006 March to 2008 May (three observing seasons), but we found that the data from 2007 and 2008 suffer from large systematic variations, thus we decided to include data only from 2007 April and July, when the primary eclipse was recorded, and the observations do not have significant outliers. We ended up with 5554 good data points.

2.1.3 PROMPT

Dedicated photometric observations of ASAS-19 were carried out for the V and I bands with the 0.41-m Prompt-4 and Prompt-5 robotic telescopes,\(^4\) located in the Cerro Tololo Inter-American Observatory in Chile. A more detailed description of the observational settings, reduction procedure and calibration to a standard photometric system can be found in Helminiak et al. (2011). The PROMPT observations span about 400 d. In total, we secured 1714 and 1400 measurements for the V and I bands, respectively. The typical exposure times were 5–7 s for the V band and 2–3 s for the I band. Most of the observations were concentrated in the two eclipses, especially in the flat part of the primary one, which was covered almost completely by both bands between 2009 September 20 and 25.

Table I contains PROMPT V-band and I-band, and ASAS I-band light curves. The first column is the time stamp BJD-2450000. The second and third columns are the measured brightness (in mag) and its formal error. The last column denotes the data set: AI = ASAS I, PI = PROMPT I, and PV = PROMPT V. The complete table is

4. Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes. PROMPT is operated by SKYNET (http://skynet.unc.edu) – a distributed network of robotic telescopes located around the world, dedicated to continuous gamma-ray burst afterglow observations.
available in machine-readable form in the electronic version of the
manuscript.

2.2 HARPS spectroscopy

ASAS-19 was observed spectroscopically with the High Accuracy
Radial velocity Planet Searcher (HARPS; Mayor et al. 2003), at-
tached to the 3.6-m telescope in La Silla Observatory, Chile, be-
tween 2010 August and 2013 June. A total of 27 spectra were taken
in two modes – high efficiency (EGGS) and high radial velocity
(RV) accuracy.

14 spectra, taken between 2009 and 2013, were obtained in the
high-efficiency EGGS mode. The exposure time was usually be-
tween 300 and 600 s depending on seeing conditions at La Silla.
We would like to draw special attention to the spectrum from 2010
September 10, taken exactly during the total part of the primary
eclipse, when light from only one component was recorded. This
spectrum was used for atmospheric analysis, but the RV was not
measured.

13 spectra, taken between 2011 June and 2012 September, were
obtained in the high RV accuracy mode. The exposure time for
those observations varied between 780 and 1200 s, giving a signal-
to-noise ratio (S/N) around 5500 Å of 70–120. All spectra were
reduced on-site with the available Data Reduction Software (DRS).

3 ANALYSIS

3.1 Radial velocities

3.1.1 H-group

RVs were initially calculated with the two-dimensional cross-
correlation TODCOR code (Zucker & Mazeh 1994), with synthetic
spectra taken as templates. These RVs were then used as starting
values for the tomographic spectral disentangling and least-squares
fitting procedure (Konacki et al. 2010). This procedure uses to-
mographic methods to produce decomposed spectra of each star,
suitable for more precise RV measurements and spectral analysis
(after proper scaling). To find the new RVs, the code uses the least-
squares method to find shifts of the two spectra in the log λ domain,
so their sum matches a given observed spectrum.

3.1.2 G-group

The components’ RVs were determined using the RaVeSpAn code
(Pilecki, Konorski & Górski 2012) utilizing the broadening func-
tion formalism (Rucinski 1992, 1999). We used templates from the
synthetic library of local thermodynamic equilibrium (LTE) spectra
by Coelho et al. (2005); the templates were not convolved down
to the HARPS resolution. In the beginning, we choose templates
to match the components’ effective temperature, gravity and abun-
dance. However, the resulting rms values of both RV curves were
significantly larger than those from the H-group. We decided to
investigate the effect. It turned out that using solar metallicity and
a cooler template (T eff ≈ 4000 K) for both components reduced
rms values by a factor of 1.5. Further, the difference in rms values
between both stars was reduced to almost zero, signifying similar
precision of their RV determination. We expected this because al-
though the secondary rotates twice as fast as the primary (producing
larger rotational broadening of lines), at the same time it is opti-
cally 2.5 times brighter (producing significantly stronger lines in
the combined spectrum). These effects should cancel out if there
are no other important sources of scatter (i.e. stellar spots). The
resulting RVs have slightly larger rms values than those derived
by tomographic spectral disentangling. Also, the γ difference be-
tween components is much smaller ~40 m s⁻¹ – and comparable
with individual rms values (see later sections). The overall precision
of RV measurements and orbital solutions made by both groups is
slightly worse than expected from the spectrograph performance.
This is probably because of a noticeable rotational broadening
of both components and/or stellar activity. Our measurements and their
residuals from the WD fit are shown in Table 2.

3.2 Spectroscopic orbital fit (H-group)

The strategy of the H-group was to obtain partial results with dif-
ferent approaches and working on different data, and combine them
into one set later. The orbital fit to the RVs measured by least-squares
fitting was done first. The fit was performed with the v2FIT code,
which is a simple procedure that fits a double-Keplerian solution
with a Levenberg–Marquardt algorithm. As free parameters, we set
the two velocity semi-amplitudes K₁₂, orbital period P, centre-of-
mass velocity of the primary γ₁, the difference between the two
centre-of-mass velocities γ₂ − γ₁, and the time of phase zero, de-
fining as the moment of the periastron passage for eccentric orbits,
or a quadrature for circular orbits. Initially we also set as free the
eccentricity e and argument of the periastron ω₂, but we found e to
be indifferent from zero.

We found, however, that the two components have significantly
different values of γ, with the primary’s (defined here as the hot-
ter star) being blue-shifted by 177 ± 15 m s⁻¹ – larger than that
found by the G-group. Several explanations are possible, but the
one we find the most plausible is that it is a systematic difference
introduced by the method used by the H-group, which is optimized
for precise measurements of velocity variations, not their absolute
values. We also find it possible that it was due to stellar spots, which
cause time-varying asymmetries in line profiles, which finally led
to a template mismatch, or due to different large-scale convective
motions in the two stars (Schwarzschild 1975; Porter & Woodward
2000). We can exclude the differential gravitational red shift, as it
would make the secondary blue-shifted.

The measurement errors of the order of single m s⁻¹ appear to be
underestimated, so get the reduced χ² close to 1, and thus re-
liable statistical errors of the parameters, we added in quadrature
a systematic contribution of 36 and 52 m s⁻¹ for the primary and sec-
dary, respectively. To account for possible systematic differences
in the final solution, we ran 10 000 Monte Carlo iterations, per-
turbing the parameters that were held fixed (i.e. e and ω). We added
the Monte Carlo errors to the statistical ones in quadrature; however,
they were typically an order of magnitude lower than the statistical
ones. All the RV measurements from the tomographic disentan-
gling, together with their residuals from the model RV curve, are
shown in Table 2. Neither of the groups used the spectrum taken in
totality for the RV calculations and further modelling. The resulting
orbital parameters are presented in Table 3, and the corresponding
model RV curves are shown in Fig. 1.

3.3 Spectral analysis of the decomposed and total eclipse
spectra

3.3.1 MOOG (G-group)

We disentangled the spectra of both components and then we anal-
ysed them together with the single spectrum of the secondary
component taken at the total primary eclipse. For disentangling and derivation of the atmospheric parameters, we used the LTE program MOOG (Sneden 1973) and followed the prescription given in Graczyk et al. (2014). Details of the method are given in Marino et al. (2008) and the line list in Villanova, Geisler & Piotto (2010). The totality spectrum was analysed first, and the temperature $T_{\text{eff,1}} = 4360$ K was obtained. The disentangled spectra were scaled using the light ratio determined from the solution of RV and light

Table 2. Radial velocity measurements from disentangling and least-squares spectra fitting (H-group), and RaVeSpAn (G-group), and their residuals (all in km s$^{-1}$). Index 1 denotes the hotter star (primary) and 2 the cooler (secondary).

<table>
<thead>
<tr>
<th>JD-2450000</th>
<th>v_1</th>
<th>$(O - C)_1$</th>
<th>v_2</th>
<th>$(O - C)_2$</th>
<th>v_1</th>
<th>$(O - C)_1$</th>
<th>v_2</th>
<th>$(O - C)_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5435.559 09</td>
<td>17.346</td>
<td>0.001</td>
<td>-48.742</td>
<td>0.057</td>
<td>16.954</td>
<td>0.014</td>
<td>-49.149</td>
<td>0.075</td>
</tr>
<tr>
<td>5467.507 40</td>
<td>-47.938</td>
<td>-0.010</td>
<td>16.282</td>
<td>-0.071</td>
<td>-48.140</td>
<td>0.016</td>
<td>15.823</td>
<td>-0.019</td>
</tr>
<tr>
<td>5486.492 96</td>
<td>-48.725</td>
<td>0.017</td>
<td>17.104</td>
<td>-0.062</td>
<td>-49.002</td>
<td>-0.035</td>
<td>16.582</td>
<td>-0.069</td>
</tr>
<tr>
<td>5470.485 28</td>
<td>-49.883</td>
<td>0.008</td>
<td>18.228</td>
<td>-0.086</td>
<td>-50.101</td>
<td>0.011</td>
<td>17.705</td>
<td>-0.088</td>
</tr>
<tr>
<td>5471.487 92</td>
<td>-50.220</td>
<td>-0.007</td>
<td>18.589</td>
<td>-0.046</td>
<td>-50.443</td>
<td>0.011</td>
<td>18.086</td>
<td>-0.027</td>
</tr>
<tr>
<td>5477.661 39</td>
<td>-48.393</td>
<td>-0.037</td>
<td>16.770</td>
<td>-0.010</td>
<td>-48.645</td>
<td>-0.075</td>
<td>16.261</td>
<td>0.000</td>
</tr>
<tr>
<td>5478.664 94</td>
<td>-47.458</td>
<td>-0.013</td>
<td>15.852</td>
<td>-0.019</td>
<td>-47.663</td>
<td>0.004</td>
<td>15.345</td>
<td>-0.009</td>
</tr>
<tr>
<td>5479.503 41</td>
<td>-46.618</td>
<td>-0.057</td>
<td>14.973</td>
<td>0.015</td>
<td>-46.829</td>
<td>-0.054</td>
<td>14.495</td>
<td>0.022</td>
</tr>
<tr>
<td>5503.512 01</td>
<td>3.903</td>
<td>-0.030</td>
<td>-35.459</td>
<td>0.041</td>
<td>3.570</td>
<td>-0.056</td>
<td>-35.968</td>
<td>-0.024</td>
</tr>
<tr>
<td>5504.506 35</td>
<td>5.859</td>
<td>-0.024</td>
<td>-37.428</td>
<td>0.066</td>
<td>5.546</td>
<td>-0.023</td>
<td>-37.940</td>
<td>0.055</td>
</tr>
<tr>
<td>5721.646 81</td>
<td>-29.487</td>
<td>0.073</td>
<td>-1.956</td>
<td>0.031</td>
<td>-29.733</td>
<td>0.140</td>
<td>-2.448</td>
<td>-0.022</td>
</tr>
<tr>
<td>5721.757 42</td>
<td>-29.746</td>
<td>0.063</td>
<td>-1.700</td>
<td>0.038</td>
<td>-30.050</td>
<td>0.073</td>
<td>-2.150</td>
<td>0.026</td>
</tr>
<tr>
<td>5722.656 25</td>
<td>-31.774</td>
<td>0.022</td>
<td>0.286</td>
<td>0.039</td>
<td>-32.106</td>
<td>-0.005</td>
<td>-0.199</td>
<td>0.000</td>
</tr>
<tr>
<td>5722.774 60</td>
<td>-32.030</td>
<td>0.023</td>
<td>0.557</td>
<td>0.054</td>
<td>-32.389</td>
<td>-0.032</td>
<td>0.095</td>
<td>0.037</td>
</tr>
<tr>
<td>5811.583 72</td>
<td>-32.927</td>
<td>0.029</td>
<td>1.471</td>
<td>0.067</td>
<td>-33.268</td>
<td>-0.006</td>
<td>0.972</td>
<td>0.009</td>
</tr>
<tr>
<td>5813.593 59</td>
<td>-37.061</td>
<td>-0.010</td>
<td>5.645</td>
<td>0.152</td>
<td>-37.374</td>
<td>-0.032</td>
<td>5.103</td>
<td>0.063</td>
</tr>
<tr>
<td>6137.544 67</td>
<td>18.418</td>
<td>0.020</td>
<td>-49.839</td>
<td>0.011</td>
<td>17.970</td>
<td>-0.021</td>
<td>-50.208</td>
<td>0.065</td>
</tr>
<tr>
<td>6138.529 70</td>
<td>18.009</td>
<td>0.002</td>
<td>-49.492</td>
<td>-0.032</td>
<td>17.557</td>
<td>0.036</td>
<td>-49.896</td>
<td>-0.021</td>
</tr>
<tr>
<td>6178.631 70</td>
<td>-50.258</td>
<td>-0.038</td>
<td>18.669</td>
<td>0.027</td>
<td>-50.462</td>
<td>-0.018</td>
<td>18.151</td>
<td>0.026</td>
</tr>
<tr>
<td>6178.699 65</td>
<td>-50.229</td>
<td>0.006</td>
<td>18.687</td>
<td>0.030</td>
<td>-50.472</td>
<td>0.014</td>
<td>18.183</td>
<td>0.043</td>
</tr>
<tr>
<td>6179.547 39</td>
<td>-50.351</td>
<td>0.006</td>
<td>18.768</td>
<td>-0.011</td>
<td>-50.556</td>
<td>0.019</td>
<td>18.274</td>
<td>0.018</td>
</tr>
<tr>
<td>6179.666 79</td>
<td>-50.354</td>
<td>0.010</td>
<td>18.782</td>
<td>-0.004</td>
<td>-50.545</td>
<td>0.037</td>
<td>18.295</td>
<td>0.032</td>
</tr>
<tr>
<td>6179.691 62</td>
<td>-50.374</td>
<td>-0.009</td>
<td>18.788</td>
<td>0.002</td>
<td>-50.603</td>
<td>-0.020</td>
<td>18.300</td>
<td>0.036</td>
</tr>
<tr>
<td>6214.498 23</td>
<td>10.895</td>
<td>0.013</td>
<td>-42.425</td>
<td>-0.074</td>
<td>10.573</td>
<td>-0.013</td>
<td>-42.901</td>
<td>0.007</td>
</tr>
<tr>
<td>6240.545 79</td>
<td>-2.315</td>
<td>-0.054</td>
<td>-29.200</td>
<td>0.035</td>
<td>-2.614</td>
<td>0.088</td>
<td>-29.579</td>
<td>0.020</td>
</tr>
<tr>
<td>6448.947 01</td>
<td>-49.097</td>
<td>-0.002</td>
<td>17.506</td>
<td>-0.013</td>
<td>-49.285</td>
<td>0.038</td>
<td>16.964</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Table 3. Results of the orbital fit to the RVs performed by the H-group.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (d)</td>
<td>18.83891</td>
<td>0.0008</td>
</tr>
<tr>
<td>T_{0} (JD)a</td>
<td>2452.069 851</td>
<td>0.043</td>
</tr>
<tr>
<td>K_1 (km s$^{-1}$)</td>
<td>34.524</td>
<td>0.010</td>
</tr>
<tr>
<td>K_2 (km s$^{-1}$)</td>
<td>34.461</td>
<td>0.015</td>
</tr>
<tr>
<td>γ_1 (km s$^{-1}$)</td>
<td>-15.846</td>
<td>0.008</td>
</tr>
<tr>
<td>$\gamma_2 - \gamma_1$ (km s$^{-1}$)</td>
<td>0.177</td>
<td>0.015</td>
</tr>
<tr>
<td>$a_{12} \sin i (R_\odot)$</td>
<td>120.549</td>
<td>0.036</td>
</tr>
<tr>
<td>e</td>
<td>0.0 (fix)</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>1.0018</td>
<td>0.0005</td>
</tr>
<tr>
<td>$M_1 \sin^3 i (M_\odot)$</td>
<td>1.5020</td>
<td>0.0013</td>
</tr>
<tr>
<td>$M_2 \sin^3 i (M_\odot)$</td>
<td>1.5047</td>
<td>0.0011</td>
</tr>
<tr>
<td>rms$_1$ (m s$^{-1}$)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>rms$_2$ (m s$^{-1}$)</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>DOFb</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>χ^2/DOF</td>
<td>0.9963</td>
<td></td>
</tr>
</tbody>
</table>

Notes. aFor a quadrature before the primary eclipse. Not adopted in further analysis. bDegrees of freedom.

Figure 1. RV measurements and best-fitting orbital solution for ASAS-19. Solid line and filled symbols refer to the primary, and dashed line and open symbols to the secondary component. Differences in RV measurements by the two groups are smaller than the size of symbols, and the models are practically indistinguishable. The dotted line marks the systemic velocity of the primary. The difference between the two systemic velocities was accounted for. Lower panels depict the residuals for each component and each group (different fits) separately. Phase zero is set to the primary minimum. The resulting rms values are 30 and 54 m s$^{-1}$ for the primary and secondary, respectively, from the H-group’s solution (red), and 43 and 42 m s$^{-1}$ analogously for the G-group (blue). A colour version of the figure is available in the online version of the manuscript.

curves, assuming temperature $T_{\text{eff},2} = 4360$ K, by fitting, e.g., the temperature of the primary $T_{\text{eff},1}$. The light ratio varied from 2.2490 at 4670 Å to 2.6712 at 6470 Å. The results are summarized in Table 4. Typical errors in T_{eff}, log g, [Fe/H] and v_λ are 70 K, 0.3, 0.15 dex and 0.2 km s$^{-1}$, respectively. For the uncertainties, parameters derived from the totality spectrum are consistent with those obtained from the disentangled spectrum of the secondary. The small differences at a level of 1σ are caused by a somewhat larger depth of the absorption lines in the disentangled spectrum.

The same procedure used for deriving T_{eff} here (methodology and data from HARPS), was used for Arcturus, a standard star with regards to T_{eff}. It gave $T_{\text{eff}} = 4290$ K (Villanova et al. 2010), which agrees very well with independent measurements (e.g. Ramírez & Allende Prieto 2011, which gives $T_{\text{eff}} = 4286$ K). So, in spite of using an LTE approximation, we can recover a reliable T_{eff} for this kind of stars (cold giants at that metallicity), which is essentially free from larger systematic errors.

3.3.2 SME (H-group)

We also analysed the disentangled and total eclipse spectra with Spectroscopy Made Easy (SME) (Valenti & Piskunov 1996). To ensure that the disentangled spectra are properly scaled, we used the flux ratios obtained for each echelle order separately, taken from our initial TDOCOR measurements. In the range of the V band they were in a good agreement with the flux ratio obtained from the JKTEBOP solution (next section). We also compared the scaled disentangled spectrum of the secondary with the spectrum in totality, and found an almost perfect match (Fig. 2).

We run SME separately on five HARPS orders between 5907 and 6215 Å, with log (g) being kept fixed to 2.507 and 1.907 for the primary and secondary, respectively – values found in the analysis are described in further sections. For a given component, all runs gave consistent values of T_{eff}, [Fe/H] and v_λ, the last one being in agreement with the results expected from the measured radii, assuming spin–orbit alignment and rotational synchronisation. As final results, we adopted average values of all five runs for the primary, and 10 (disentangled plus totality) for the secondary, and standard deviations as their uncertainties. We got $T_{\text{eff},1} = 4610 \pm 50$ K, [Fe/H]$_1 = -0.24 \pm 0.12$ dex, $T_{\text{eff},2} = 4300 \pm 50$ K and [Fe/H]$_2 = -0.20 \pm 0.07$ dex. Except $T_{\text{eff},1}$, all values are in a better than 1σ agreement with the ones adopted by the G-group (Table 4). However, the final value of $T_{\text{eff},1}$ by the G-group is somewhat lower (Section 3.5), and also consistent within 1σ with our SME analysis. We summarize our SME results in Table 5. Uncertainties of v_λ are 0.3 km s$^{-1}$.

Additionally, we estimated the secondary’s effective temperature from the V – I colour versus line-depth ratio calibrations by Strassmeier & Schordan (2000). We used the totality spectrum and measured 10 ratios of metallic lines from the 6380–6460 Å region, and got the intrinsic secondary’s colour $(V_2 - I_2)_0 = 1.228 \pm 0.030$ mag. This corresponds to $T_{\text{eff},2} = 4370 \pm 80$ K (Worthey & Lee 2011), and a K2.5-3 III star (Tokunaga 2000).

3.4 Light-curve solution with JKTEBOP (H-group)

One of the codes we used for the light-curve analysis was version v28 of JKTEBOP (Southworth, Maxted & Smalley 2004a; Southworth et al. 2004b), which is based on the EBOP program (Popper & Etzel 1981). It is a fast procedure, working on one set of photometric data at a time. It does not analyse RV curves. On the basis of spectroscopic data, we first found the mass ratio and orbital period, which we included in the light-curve analysis. We found that the orbital period found directly by JKTEBOP is in agreement with the one from RVs, however, leading to a significantly worse orbital solution.

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>T_{eff} (K)</th>
<th>log g (cgs)</th>
<th>[Fe/H] (dex)</th>
<th>v_λ (km s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>4770</td>
<td>2.30</td>
<td>-0.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Secondary</td>
<td>4440</td>
<td>1.60</td>
<td>-0.22</td>
<td>1.61</td>
</tr>
<tr>
<td>Totality</td>
<td>4360</td>
<td>1.57</td>
<td>-0.44</td>
<td>1.65</td>
</tr>
<tr>
<td>Adopteda</td>
<td>4360</td>
<td>1.90b</td>
<td>-0.30</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Notes. aFor the secondary. bFrom the WD solution.

Figure 2. Comparison of the spectrum recorded during the total eclipse (green) with the rescaled secondary’s spectrum from the disentangling (blue). The match is almost perfect, but the disentangled spectrum has much higher S/N. A colour version of the figure is available in the online version of the manuscript.
This is because of a longer time span of spectroscopy with respect to PROMPT and SuperWASP observations, and that ASAS data do not have many points for the eclipses.

For Jktebop we used the logarithmic limb-darkening law with coefficients interpolated from the tables of van Hamme (1996) for ASAS and PROMPT. For the SuperWASP data, we used tables calculated by the developers of the PHOEBE code.\(^5\) The gravity darkening coefficients and bolometric albedos were always kept fixed at the values appropriate for stars with convective envelopes (\(g = 0.32\) and \(A = 0.5\)). As mentioned before, no significant eccentricity of the orbit of ASAS-19 was found, nor the third light, thus \(e\) and \(L_3\) were kept fixed at 0. We fitted for the sum of the fractional radii \(r_1 + r_2\), their ratio \(k\), orbital inclination \(i\), moment of the primary minimum \(\text{T}_0\), surface brightness ratios \(J\) and brightness scales (out-of-eclipse magnitudes in each filter).

To calculate reliable errors, we run task 9, which uses the residual-shift method (Southworth 2008) to assess the importance of the correlated red noise, which is particularly strong in the SuperWASP data (Southworth et al. 2011). We run several tests to check how the final model varies with various limb-darkening coefficients and ephemerides, and we did not notice a strong dependence, but at least partially to account for limb-darkening coefficients and ephemerides uncertainties, we let them be perturbed in the residual-shift simulations. It is known that orbital inclination is correlated with the radii-related parameters, especially their sum. In Fig. 3 we show the results of the Jktebop analysis on \(r_1 + r_2\) versus \(i\) and \(k = r_2/r_1\) versus \(i\) diagrams. We see that different data sets give similar values of inclination and \(k\), but clearly different areas of the \(r_1 + r_2\) versus \(i\) plane are occupied. The most likely reason for this inconsistency is the activity and the location of spots, probably varying in time, which were not included in the Jktebop analysis. As shown for late-type dwarfs (for example: Różycka et al. 2009; Windmiller 2010; Helminiak et al. 2011), the location of spots on different components may lead to variations in the resulting radii reaching 2–3 per cent, while the accuracy of our photometry may not be sufficient to detect the spot-originated brightness variations.

For the resulting parameters, we adopted weighted averages of the values found from the five data sets. We mark them in Fig. 3, together with the adopted 1\(\sigma\) errors. The model light curves are presented in Fig. 4. Looking at the scatter of the PROMPT photometry for both eclipses, we can conclude that more spots reside on the primary (hotter, smaller) component. If so, the rms values of the H-group’s RV measurements for both components are more likely enhanced by the rotational broadening than the activity. If it were activity, we would expect larger rms values for the (slower rotating) primary, but we observe the opposite. The resulting values of fractional radii \(r_{1,2}\), and the inclination are given in Table 6. The oblateness of both components is below 1 per cent, so the use of Jktebop is justified.

Finally, we used the Jktebop solutions to derive observed \(V - I\) colours of both components, and to estimate their effective temperatures. Note that these simple calculations are possible only for totally eclipsing systems. For the secondary, we simply used the photometry in the total eclipse and got 1.434(1) mag. Taking the intrinsic \((V_2 - I_2) = 1.228(30)\) mag from line-depth ratios, we get \(E(V - I) = 0.206(30)\) mag and \(E(B - V) = 0.161(23)\), assuming \(E(V - I) = 1.28 E(B - V)\). From the light-curve solutions, we got magnitude differences between the components: \(V_2 - V_1 = -0.959(23)\) and \(I_2 - I_1 = -1.145(32)\) mag. We then get the observed primary’s \(V - I = 1.082(39)\) mag, and its intrinsic value of 1.046(39) mag. This corresponds to \(T_{\text{eff}, 1} = 4710 \pm 110\) K (Worthey & Lee 2011) and a K0.5 III star (Tokunaga 2000). Interestingly, both temperatures obtained from the calibrations of Worthey & Lee (2011) – 4710 and 4370 K – are 1.7 per cent larger than those from our SME analysis (4630 and 4300 K).

\[^{5}\] http://phoebe-project.org/1.0/files/ld/swasp_2006.ld

3.5 Simultaneous radial velocity and light curve analysis with WD (G-group)

The G-group made a binary model using all data together at the same time. The code used in the analysis was the 2007 version
ASAS J195222-3233.7

1951

Figure 4. Top: Photometry of ASAS-19 (open circles) and \textit{JKTEBOP} models (grey lines) for each band. \textit{PROMPT} and SuperWASP data were shifted for clarity by the indicated values (in mag). Bottom: Residuals of the \textit{JKTEBOP} models, shifted for clarity. Colour coding and sequence are the same as above. A colour version of the figure is available in the online version of the manuscript.

of the Wilson–Devinney program (Wilson & Devinney 1971; Wilson 1979, 1990; van Hamme & Wilson 2007). We simultaneously solved all light and RV curves. The light curves were divided into two groups: the visual group – containing all observations in the ASAS V-band, SuperWASP and \textit{PROMPT} V-band data and the near-infrared group – containing ASAS I-band and \textit{PROMPT} I-band data. Within both groups, some slight shifts were done to adjust SuperWASP and \textit{PROMPT} magnitude scales to ASAS magnitudes. The differences in the mean depth and width of the eclipses between different data sets are smaller than the systematic effects (night-to-night variations) we noticed in the light curves. In total, the visual and near-infrared light curves contain 7121 and 1653 points, respectively. We used RVs derived from the broadening function analysis and we applied a shift of +40 m s\(^{-1}\) to the primary’s velocities to account for its blue shift. The approach to find a model solution was essentially similar to the method described by Graczyk et al. (2014). The difference is that the primary’s effective temperature was set as a free parameter instead of the secondary’s one. The reason was that we estimated the unique surface temperature of the secondary component from an atmospheric analysis of the totality spectrum \(T_2 = 4360 \pm 80\) K.

We set \([\text{Fe/H}] = -0.3\) from the atmospheric analysis with MOOG. The orbital period was kept as a free parameter of a solution. We assumed a circular orbit and synchronous rotation of both components. We also checked for the third light, but the fit resulted in negative values, thus we kept it fixed to zero. A logarithmic limb-darkening law was used (Klinglesmith & Sobieski 1970). In total, we adjusted 11 parameters in the model. The model light curves are presented in Fig. 5. The resulting parameters are shown in Table 7.

We note that our effective temperatures are closer to the values from the Worthey & Lee (2011) calibrations obtained by the H-group, than to their SME results.

4 PHYSICAL PARAMETERS

4.1 G-group

Absolute values of parameters were calculated with the WD code, assuming the same astronomical constants as in table 5 of Graczyk et al. (2012). The distance to the system was derived using the di Benedetto (2005) calibration of visual surface brightness versus \((V - K)\) colour relation appropriate for giant stars and expressed in the Johnson photometric system. We used 2MASS magnitudes from Cutri et al. (2003): \(J = 6.492\) mag and \(K = 5.674\) mag, and extrapolated the components’ light ratios in the \(J\)- and \(K\)-bands from the WD model: \(I_{J1}(J) = 3.26\) and \(I_{J1}(K) = 3.65\). The 2MASS

Table 6. Results of the \textit{JKTEBOP} fit to the observed light curves (H-group).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(I_{\text{ASAS}})</th>
<th>(V_{\text{ASAS}})</th>
<th>(I_{\text{PROMPT}})</th>
<th>(V_{\text{PROMPT}})</th>
<th>SuperWASP</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_0) (JD-2452000)(^a)</td>
<td>92.118(37)</td>
<td>92.036(47)</td>
<td>92.085(28)</td>
<td>92.095(30)</td>
<td>92.058(17)</td>
<td>92.074(25)</td>
</tr>
<tr>
<td>(r_1 + r_2)</td>
<td>0.2929(95)</td>
<td>0.2769(57)</td>
<td>0.2875(73)</td>
<td>0.2931(98)</td>
<td>0.2736(46)</td>
<td>0.2802(63)</td>
</tr>
<tr>
<td>(k = r_2/r_1)</td>
<td>2.014(44)</td>
<td>2.002(23)</td>
<td>1.975(29)</td>
<td>1.933(44)</td>
<td>1.992(22)</td>
<td>1.990(27)</td>
</tr>
<tr>
<td>(i) (deg)</td>
<td>86.5(1.2)</td>
<td>88.0(1.1)</td>
<td>87.52(62)</td>
<td>87.20(79)</td>
<td>87.30(46)</td>
<td>87.34(65)</td>
</tr>
<tr>
<td>(r_1)</td>
<td>0.0971(40)</td>
<td>0.0923(24)</td>
<td>0.0967(31)</td>
<td>0.0999(49)</td>
<td>0.0914(18)</td>
<td>0.0937(23)</td>
</tr>
<tr>
<td>(r_2)</td>
<td>0.1958(62)</td>
<td>0.1847(34)</td>
<td>0.1909(44)</td>
<td>0.1932(54)</td>
<td>0.1821(30)</td>
<td>0.1865(59)</td>
</tr>
<tr>
<td>((L_2/L_1)_V)</td>
<td>2.394(93)</td>
<td>–</td>
<td>2.822(82)</td>
<td>–</td>
<td>2.871(87)</td>
<td></td>
</tr>
<tr>
<td>((L_2/L_1)_I)</td>
<td>–</td>
<td>2.421(43)</td>
<td>–</td>
<td>2.413(78)</td>
<td>2.419(51)</td>
<td></td>
</tr>
<tr>
<td>((L_2/L_1)_SW)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.404(27)</td>
<td>2.404(27)</td>
<td></td>
</tr>
<tr>
<td>rms (mag)</td>
<td>0.025</td>
<td>0.017</td>
<td>0.017</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. \(^a\)Mid-time of the primary eclipse. \(^b\)From the adopted sum and ratio of radii.
calculation from the Alonso, Arribas & Martínez-Roger (1999) calibration for a given effective temperature. The derived extinction is almost equal to the extinction estimated by the H-group, which puts confidence in our approach and resulting distance of 614 ± 18 pc. The distance corresponds to a parallax of 1.63 ± 0.05 mas.

4.2 H-group

Absolute values of parameters and their uncertainties were calculated with the jktabsdim code, available together with jktebop, assuming astronomical constants suggested by Harmanec & Prša (2011). This simple code combines the spectroscopic and light curve solutions to derive a set of stellar absolute dimensions, related quantities and distance. We used photometry from 2MASS in JHK (J = 6.492, H = 5.674 and K = 5.674 mag), from Tycho (Hog et al. 2000) in B (10.13 mag), and out-of-eclipse combined Johnson’s V magnitude from the jktebop solution (8.866 mag). jktabsdim calculates distances using a number of bolometric corrections for various filters (Bessell, Castelli & Plez 1998; Flower 1996; Girardi et al. 2002) and surface brightness versus Teff relations from Kervella et al. (2004) – 13 in our case. We found E(B − V) for which the standard deviation of the resulting distance (assumed to be its uncertainty) is the lowest. Outside the given error of E(B − V), distances differ from each other by more than 1σ. The result – 0.13(7) mag – is in a good agreement with the one found on the basis of the secondary’s V − I colours – 0.16(2) mag. Employing this value, and temperatures from calibrations of Worthey & Lee (2011) – 4710 and 4370 K – we get a very similar distance of 604(18) pc.

4.3 Adopted parameters

We combined the results from the analysis done by our two groups to derive absolute parameters. A comparison of the two approaches is presented in Table 8, and the final set of physical parameters in Table 9. As final values, we adopted straight averages of the two obtained by the two groups. To get conservative errors, we took the average of the two uncertainties and added it in quadrature to half of the difference between the two values. When systematic errors were not included [R and log(g)], we assumed that they are 2 × the uncertainty given. All in all, we reached a very good precision in radii (2.5 ± 2.2 per cent), and one of the best estimates of stellar masses in the literature (0.27 ± 0.27 per cent). We have also calculated the distance to the system with 3.3 per cent error (total systematic and statistical uncertainty), which translates into 0.05 mas uncertainty in parallax at 606 pc (1.65 mas). Having precisely measured distances on such scales will be important in independently verifying the results of the recently launched Gaia mission.

5 DISCUSSION

5.1 Galactic binaries with giant components

In the online DEBCat catalogue there are only 17 systems listed that have at least one star evolved and larger than 5 R⊙, and both

5 http://www.astro.caltech.edu/~jmc/2mass/v3/transformation/

7 The disparities obtained from using two different sets of constants are in this case negligible in comparison with the uncertainties of the derived physical parameters.

8 http://www.astro.keele.ac.uk/~jkt/debcat/
Table 8. Comparison of used approaches. For each method a main advantage and presumable source of systematic errors is given.

<table>
<thead>
<tr>
<th>Analysis stage</th>
<th>Method</th>
<th>G-group Advantages</th>
<th>Systematic errors</th>
<th>Method</th>
<th>H-group Advantages</th>
<th>Systematic errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV derivation</td>
<td>RaVeSpAn</td>
<td>Direct determination from BF</td>
<td>Templates</td>
<td>Tomography and least-squares fitting</td>
<td>Disentangled spectra</td>
<td>Initial template mismatch</td>
</tr>
<tr>
<td>Atmospheric</td>
<td>MOOG</td>
<td>Well calibrated against temperature temperature standards</td>
<td>LTE</td>
<td>SME and line-depth ratios</td>
<td>Line profiles fitting, also blends</td>
<td>LTE</td>
</tr>
<tr>
<td>Light curves</td>
<td>WD</td>
<td>All light curves simultaneously</td>
<td>Fluxes from LTE models; activity</td>
<td>JKTebop</td>
<td>Fast; red noise</td>
<td>Stellar activity</td>
</tr>
<tr>
<td>RV curves</td>
<td>WD</td>
<td>Tidal corrections included</td>
<td>Relativistic effects not included</td>
<td>$v2\pi T$</td>
<td>Relativistic effects included</td>
<td>Tidal corrections not included</td>
</tr>
<tr>
<td>Distance</td>
<td>SB – colour relation</td>
<td>Direct, empirical</td>
<td>SB calibration</td>
<td>JKTabsdIm</td>
<td>Average of various methods</td>
<td>Calibration of the methods used</td>
</tr>
</tbody>
</table>

Table 9. Physical parameters of the system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>G-group</th>
<th>H-group</th>
<th>Adopted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum</td>
<td>Primary</td>
<td>Secondary</td>
<td>Primary</td>
</tr>
<tr>
<td>$M (M_\odot)$</td>
<td>K0 III</td>
<td>K2.5 III</td>
<td>K0.5 III</td>
</tr>
<tr>
<td>$R (R_\odot)$</td>
<td>1.50(2)</td>
<td>1.50(2)</td>
<td>1.50(3)</td>
</tr>
<tr>
<td>log g (cgs)</td>
<td>11.34(9)</td>
<td>22.74(9)</td>
<td>11.31(28)</td>
</tr>
<tr>
<td>T_{eff} (K)</td>
<td>4687(85)</td>
<td>4360(80)</td>
<td>4610(50)</td>
</tr>
<tr>
<td>$L (L_\odot)$</td>
<td>55.7(4.1)</td>
<td>168(12)</td>
<td>51.9(3.3)</td>
</tr>
<tr>
<td>M_{bol} (mag)</td>
<td>0.39</td>
<td>-0.81</td>
<td>0.46</td>
</tr>
<tr>
<td>$B-C_V$ (mag)</td>
<td>-0.48</td>
<td>-0.71</td>
<td>-0.44</td>
</tr>
<tr>
<td>$[\text{Fe}/H]$</td>
<td>-0.25(15)</td>
<td>-0.30(15)</td>
<td>-0.24(12)</td>
</tr>
<tr>
<td>Distance (pc)</td>
<td>614(18)</td>
<td>598(18)</td>
<td>606(18)</td>
</tr>
<tr>
<td>$B - V$ (mag)</td>
<td>0.12(2)</td>
<td>0.13(7)</td>
<td>0.13(5)</td>
</tr>
</tbody>
</table>

Notes. aFormal WD fit errors; systematic errors not always included. bSystematic errors included.
eFrom the SME analysis.

masses and radii known with an accuracy of 2 per cent or better. Of these, only three are Galactic systems (others belong to the LMC or Small Magellanic Cloud) and only the primaries are larger than $5 R_\odot$. These are V380 Cyg (B1.5 III; Tkachenko et al. 2014), TZ For (Andersen et al. 1991) and KIC 8410637 (Frandsen et al. 2013). A number of other Galactic systems have smaller components, although they evolved from the main sequence (AI Phe, Andersen et al. 1988, Helminiak et al. 2009; CF Tau, Lacy, Torres & Claret 2012; V432 Aur, Siviero et al. 2004), or are much more evolved but measured less precisely (OW Gem, Galan et al. 2008; α Aur, Torres, Claret & Young 2009; ASAS J182510-2435.5 and V1980 Sgr, Ratajczak et al. 2013). This makes ASAS-19 the best measured, evolved Galactic binary, and a very unique object, important for studies of the late stages of stellar evolution.

5.2 Age and evolutionary status

Both stars are currently on the red giant branch, but before the Red Clump (Fig. 6). At this stage of evolution, stars of a similar mass present a wide range of radii, temperatures, luminosities etc., so precise mass and metallicity determination is crucial to constrain their age and exact evolutionary phase. We compared our results in Table 9 with stellar isochrones from the Padova and Trieste Stellar Evolution Code (PARSEC) (Bressan et al. 2012). We used the value of $[\text{Fe}/H] = -0.25$, which for this set translates into
Comparison of our final results with a 2.38 Gyr, $[\text{Fe}/\text{H}] = -0.25$ isochrone from the PARSEC set (black solid line). Other, marginally fitting isochrones are plotted in grey (dashed): on the left panels for $(r, \ [\text{Fe}/\text{H}]) = (2.55 \, \text{Gyr}, -0.15)$, and $(2.24 \, \text{Gyr}, -0.35)$, showing the age uncertainty due to metallicity, and on the right panels for $(r, \ [\text{Fe}/\text{H}]) = (2.37 \, \text{Gyr}, -0.25)$, and $(2.39 \, \text{Gyr}, -0.25)$, showing the age uncertainty due to mass.

$Z = 0.00855$ and $Y = 0.2642$. We looked for the age that fits best to our precise and direct mass measurements, and found that ASAS-19 is $2.38^{+0.17}_{-0.14}$ Gyr old. Most of the uncertainty in its age comes from the $[\text{Fe}/\text{H}]$ determination – for a fixed metal content, the uncertainty from the mass determination is only 0.01 Gyr.

In Fig. 7 we show our results on mass versus temperature, luminosity and radius diagrams, together with various isochrones: the best fitting (2.38 Gyr, -0.25 dex); two for the marginal values of age and metallicity that still reproduce our results within 1σ, 2.24 Gyr for -0.35, and 2.55 Gyr for -0.15 dex (left, also in Fig. 6); and two more for fixed metallicity of -0.25 dex but ages of 2.37 and 2.39 Gyr (right). Note that the 2.38 Gyr, -0.25 dex isochrone that fits the mass measurements best, predicts slightly hotter and more luminous stars (Fig. 6). This discrepancy may come from either metallicity or temperatures being a bit underestimated. The 2.38 Gyr, -0.25 dex isochrone fits better if temperatures from the calibrations of Worthey & Lee (2011) are used.

5.3 Usefulness of observations during total eclipses

Cases like ASAS-19 allow for independent verification of indirect approaches to determining the physical parameters of stars in eclipsing binaries. It shows how the observations performed during a total eclipse are useful for the analysis of DEBs. Especially important was the spectrum taken when only one star was visible. From its analysis, we could independently estimate the temperature of one of the components and the metallicity of the whole system. Light curves alone do not constrain well the temperature scale, only the ratio of the two T_{eff}’s. The common approach to light-curve modeling utilizes the observed colour of the whole system, but it works fine only if the components have similar temperatures or the total light is dominated by one of them, and only if the observed colour is properly dereddened. In our case, we could securely keep one of the T_{eff}’s fixed. We could also calculate the observed colours of both stars, one directly from the photometry of the total eclipse, and the other from simple calculations described in Section 3.4. Having the multi-band photometry and the T_{eff} estimation from the spectrum, one can also calculate $R(B-V)$ by comparing the colours observed and predicted by colour–temperature calibrations. For nearby systems, where interstellar extinction is not significant, the observed colours would be enough to calculate the temperature of both components.

We also used the totality spectrum to estimate the metallicity of the system. This helped us to constrain the age of the binary. The well-known age–metallicity degeneration is weaker for red giants than for main sequence stars, but is still present. As we showed in Section 5.2, 0.1 dex uncertainty in $[\text{Fe}/\text{H}]$ translates into 0.1 Gyr error in age. For main sequence objects, it is at least 10 times more, but it would still be enough to discriminate between stars that have just started their main sequence evolution, and those that are about to finish it soon.

Metallicity can also be estimated from tomographically disentangled spectra, but the disentangled spectra have to be correctly renormalized to account for the companion’s continuum, which dilutes the depth of the absorption lines. This is relatively easy for systems with total eclipses, as from the depth of the eclipse it is straightforward to calculate the contribution of each component, and it also allows us to check if the flux ratio inferred from `todcor` is correct. It is also possible to verify the results of decomposition by comparing the decomposed and totality spectra, as in Fig. 2. As one can see, the disentangled spectra have higher S/N; however, the approach we used (H-group) requires at least eight observations in evenly spread orbital phases. For totally eclipsing systems, having a single observation during the total eclipse is less time-consuming and can give important results with less effort. We also want to note, that the decomposition itself is easier, as for each observed composite spectrum, only two parameters are required: the velocity difference for the component visible in totality and the flux ratio, both of which can be estimated separately or are easy to fit for.

Finally we want to emphasize that a high signal-to-noise spectrum taken during totality can also be a very good template for RV measurements of at least one component, as it obviously matches its T_{eff}, log g, $[\text{Fe}/\text{H}]$ and turbulence velocities.

ACKNOWLEDGEMENTS

We would like to thank the staff of the European Southern Observatory La Silla observatory for their support during observations, and the anonymous referee for valuable comments and suggestions, which helped to improve this work.

KGH acknowledges support provided by the National Astronomical Observatory of Japan as Subaru Astronomical Research Fellow and the Polish National Science centre (grant 2011/03/N/ST9/01819). We (DG, BP, GP, PK and KS) gratefully acknowledge financial support for this work from the Polish National Science Centre (grant 2013/09/B/ST9/01551) and the TEAM subsidy from the Foundation for Polish Science. DG, GP, KG...
and WG are supported by the BASAL Centro de Astrofísica y Tecnologías Afines (PBFB-06/2007). DG and WG also acknowledge support from the Millennium Institute of Astrophysics of the Initiative Científica Milenio del Ministerio de Economía, Fomento y Turismo de Chile (project IC120009). SV gratefully acknowledges the support provided by Fondecyt (register number 11130721). MK is supported by a European Research Council Starting Grant, the Polish National Science Centre (grant 5813/B/H03/2011/40), the Ministry of Science and Higher Education (grant W103/ERC/2011) and the Foundation for Polish Science through grant ‘Ideas for Poland’. MR is supported by the Polish National Science Centre (grant 2011/01/N/ST9/02209). This research was supported in part by the National Science Foundation (grants 0959447, 0836187, 0707634 and 0449001), and by the European Social Fund and the national budget of the Republic of Poland within the Integrated Regional Operational Programme, Measure 2.6, Regional Innovation Strategies and Transfer of Knowledge – An Individual Project of the Kuyavian-Pomeranian Voivodship ‘Scholarships for PhD Students 2008/2009 – IROP’.

We have used data from the WASP public archive in this research. The WASP consortium comprises the University of Cambridge, Keele University, University of Leicester, The Open University, The Queens University Belfast, St Andrews University and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UK’s Science and Technology Facilities Council.

REFERENCES

Cutri R. M. et al., 2003, VizieR Online Data Catalogue, 2246, 0
Mayor M. et al., 2003, The Messenger, 114, 20
Pietrzyński G. et al., 2013, Nature, 495, 76

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Please note: Oxford University Press are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a TeX/LaTeX file prepared by the author.