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Abstract

This paper presents the results of a large-scale
evaluation study of window-based Distribu-
tional Semantic Models on a wide variety of
tasks. Our study combines a broad coverage
of model parameters with a model selection
methodology that is robust to overfitting and
able to capture parameter interactions. We
show that our strategy allows us to identify pa-
rameter configurations that achieve good per-
formance across different datasets and tasks1.

1 Introduction

Distributional Semantic Models (DSMs) are em-
ployed to produce semantic representations of words
from co-occurrence patterns in texts or documents
(Sahlgren, 2006; Turney and Pantel, 2010). Build-
ing on the Distributional Hypothesis (Harris, 1954),
DSMs quantify the amount of meaning shared by
words as the degree of overlap of the sets of contexts
in which they occur.

A widely used approach operationalizes the set of
contexts as co-occurrences with other words within
a certain window (e.g., 5 words). A window-based
DSM can be represented as a co-occurrence matrix
in which rows correspond to target words, columns
correspond to context words, and cells store the co-
occurrence frequencies of target words and context
words. The co-occurrence information is usually
weighted by some scoring function and the rows of
the matrix are normalized. Since the co-occurrence

1The analysis presented in this paper is complemented by
supplementary materials, which are available for download at
http://www.linguistik.fau.de/dsmeval/. This page will also be
kept up to date with the results of follow-up experiments.

matrix tends to be very large and sparsely popu-
lated, dimensionality reduction techniques are often
used to obtain a more compact representation. Lan-
dauer and Dumais (1997) claim that dimensionality
reduction also improves the semantic representation
encoded in the co-occurrence matrix. Finally, dis-
tances between the row vectors of the matrix are
computed and – according to the Distributional Hy-
pothesis – interpreted as a correlate of the semantic
similarities between the corresponding target words.
The construction and use of a DSM involves many
design choices, such as: selection of a source cor-
pus, size of the co-occurrence window; choice of a
suitable scoring function, possibly combined with an
additional transformation; whether to apply dimen-
sionality reduction, and the number of reduced di-
mensions; metric for measuring distances between
vectors. Different design choices – technically, the
DSM parameters – can result in quite different sim-
ilarities for the same words (Sahlgren, 2006).

DSMs have already proven successful in model-
ing lexical meaning: they have been applied in Natu-
ral Language Processing (Schütze, 1998; Lin, 1998),
Information Retrieval (Salton et al., 1975), and Cog-
nitive Modeling (Landauer and Dumais, 1997; Lund
and Burgess, 1996; Padó and Lapata, 2007; Ba-
roni and Lenci, 2010). Recently, the field of Dis-
tributional Semantics has moved towards new chal-
lenges, such as predicting brain activation (Mitchell
et al., 2008; Murphy et al., 2012; Bullinaria and
Levy, 2013) and modeling meaning composition
(Baroni et al., 2014, and references therein).

Despite such progress, a full understanding of the
different parameters governing a DSM and their in-
fluence on model performance has not been achieved
yet. The present paper is a contribution towards this
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goal: it presents the results of a large-scale evalua-
tion of window-based DSMs on a wide variety of se-
mantic tasks. More complex tasks building on distri-
butional representations (e.g., vector composition or
relational analogies) will also benefit from our find-
ings, allowing them to choose optimal parameters
for the underlying word-level DSMs.

At the level of parameter coverage, this work eval-
uates most of the relevant parameters considered in
comparable state-of-the-art studies (Bullinaria and
Levy, 2007; Bullinaria and Levy, 2012); it also in-
troduces an additional one, which has received lit-
tle attention in the literature: the index of distribu-
tional relatedness, which connects distances in the
DSM space to semantic similarity. We compare
direct use of distance measures to neighbor rank.
Neighbor rank has already been successfully used to
model priming effects with DSMs (Hare et al., 2009;
Lapesa and Evert, 2013); the present study extends
its evaluation to standard tasks. We show that neigh-
bor rank consistently improves the performance of
DSMs compared to distance, but the degree of this
improvement varies from task to task.

At the level of task coverage, the present study
includes most of the standard datasets used in com-
parative studies (Bullinaria and Levy, 2007; Baroni
and Lenci, 2010; Bullinaria and Levy, 2012). We
consider three types of evaluation tasks: multiple
choice (TOEFL test), correlation to human similar-
ity ratings, and semantic clustering.

At the level of methodology, our work adopts the
approach to model selection proposed by Lapesa and
Evert (2013), which is described in detail in section
4. Our results show that parameter interactions play
a crucial role in determining model performance.

This paper is structured as follows. Section 2
briefly reviews state-of-the-art studies on DSM eval-
uation. Section 3 describes the experimental setting
in terms of tasks and evaluated parameters. Sec-
tion 4 outlines our methodology for model selection.
In section 5 we report the results of our evaluation
study. Finally, section 6 summarizes the main find-
ings and sketches ongoing and future work.

2 Previous work

In this section we summarize the results of previous
evaluation studies of Distributional Semantic Mod-

els. Among the existing work on DSM evaluation,
we can identify two main types of approaches.

One possibility is to evaluate a distributional
model with certain new features on a range of tasks,
applying little or no parameter tuning, and to com-
pare it to competing models; examples are Pado
and Lapata’s (2007) Dependency Vectors as well
as Baroni and Lenci’s (2010) Distributional Mem-
ory. Since both studies focus on testing a single new
model with fixed parameters (or a small number of
new models), we will not go into further detail con-
cerning them.

Alternatively, the evaluation may be conducted
via incremental tuning of parameters, which are
tested sequentially to identify their best perform-
ing values on a number of tasks, as has been done
by Bullinaria and Levy (2007; 2012), Polajnar and
Clark (2014), and Kiela and Clark (2014).

Bullinaria and Levy (2007) report on a system-
atic study of the impact of a number of parame-
ters (shape and size of the co-occurrence window,
distance metric, association score for co-occurrence
counts) on a number of tasks (including the TOEFL
synonym task, which is also evaluated in our study).
Evaluated models were based on the British Na-
tional Corpus. Bullinaria and Levy (2007) found
that vectors scored with Pointwise Mutual Informa-
tion, built from very small context windows with as
many context dimensions as possible, and using co-
sine distance ensured the best performance across all
tasks at issue.

Bullinaria and Levy (2012) extend the evaluation
reported in Bullinaria and Levy (2007). Starting
from the optimal configuration identified in the first
study, they test the impact of three further parame-
ters: application of stop-word lists, stemming, and
dimensionality reduction using Singular Value De-
composition. DSMs were built from the ukWaC
corpus, and evaluated on a number of tasks (includ-
ing TOEFL and noun clustering on the dataset of
Mitchell et al. (2008), also evaluated in our study).
Neither stemming nor the application of stop-word
lists resulted in a significant improvement of DSM
performance. Positive results were achieved by per-
forming SVD dimensionality reduction and discard-
ing the initial components of the reduced matrix.

Polajnar and Clark (2014) evaluate the impact of
context selection (for each target, only the most rel-
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evant context words are selected, and the remaining
vector entries are set to zero) and vector normaliza-
tion (used to vary model sparsity and the range of
values of the DSM vectors) in standard tasks related
to word and phrase similarity. Context selection and
normalization improved DSM performance on word
similarity and compositional tasks, both with and
without SVD.

Kiela and Clark (2014) evaluate window-based
and dependency-based DSMs on a variety of tasks
related to word and phrase similarity. A wide range
of parameters are involved in this study: source
corpus, window size, number of context dimen-
sions, use of stemming, lemmatization and stop-
words, similarity metric, score for feature weight-
ing. Best results were obtained with large corpora
and small window sizes, around 50000 context di-
mensions, stemming, Positive Mutual Information,
and a mean-adjusted version of cosine distance.

Even though we adopt a different approach than
these incremental tuning studies, there is consider-
able overlap in the evaluated parameters and tasks,
which will be pointed out in section 3.

An alternative to incremental tuning is the
methodology proposed by Lapesa and Evert (2013)
and Lapesa et al. (2014). They systematically test
a large number of parameter combinations and use
linear regression to determine the importance of in-
dividual parameters and their interactions. As their
evaluation methodology is adopted in the present
work and described in more detail in section 4, we
will not discuss it here and instead focus on the main
results. DSMs are evaluated in the task of modeling
semantic priming. This task, albeit not standard in
DSM evaluation, is of great interest as priming ex-
periments provide a window into the structure of the
mental lexicon. Both studies showed that neighbor
rank outperforms distance in capturing priming ef-
fects. They also found that the scoring function has
a crucial influence on model performance and inter-
acts strongly with an additional logarithmic transfor-
mation. Lapesa et al. (2014) focused on a compari-
son of syntagmatic and paradigmatic relations. They
found that discarding the initial SVD dimensions is
only benefical for certain relations, suggesting that
these dimensions may encode syntagmatic informa-
tion if larger context windows are used. Concerning
the scope of the evaluation, both studies consider a

wide range of parameters2 but target only a very spe-
cific task. Our study aims at extending their parame-
ter set and evaluation methodology to standard tasks.

3 Experimental setting

3.1 Tasks

The evaluation of DSMs has been conducted on
three standard types of semantic tasks.

The first task is a multiple choice setting: distri-
butional relatedness between a target word and two
or more other words is used to select the best, i.e.
most similar candidate. Performance in this task is
quantified by the decision accuracy. The evaluated
dataset is the well-known TOEFL multiple-choice
synonym test (Landauer and Dumais, 1997), which
was also included in the studies of Bullinaria and
Levy (2007; 2012) and Kiela and Clark (2014).

In the second task, we measure the correla-
tion between distributional relatedness and native
speaker judgments of semantic similarity or related-
ness. Following previous studies (Baroni and Lenci,
2010; Padó and Lapata, 2007), performance in this
task is quantified in terms of Pearson correlation.3

Evaluated datasets are the Rubenstein and Goode-
nough dataset (RG65) of 65 noun pairs (Rubenstein
and Goodenough, 1965), also evaluated by Kiela
and Clark (2014), and the WordSim-353 dataset
(WS353) of 353 noun pairs (Finkelstein et al., 2002),
included in the study of Polajnar and Clark (2014).

The third evaluation task is noun clustering:
distributional similarity between words is used to
assign them to a pre-defined number of semantic
classes. Performance in this task is quantified in
terms of cluster purity. Clustering is performed with
an algorithm based on partitioning around medoids
(Kaufman and Rousseeuw, 1990, Ch. 2), using the

2The parameter set of Lapesa et al. (2014) fully corresponds
to the one used in the present study.

3Some other evaluation studies adopt Spearman’s rank cor-
relation ρ , which is more appropriate if there is a non-linear re-
lation between distributional relatedness and the human judge-
ments. We computed both coefficients in our experiments and
decided to report Pearson’s r for three reasons: (i) Baroni and
Lenci (2010) already list r scores for a wide range of DSMs in
this task; (ii) in most experimental runs, ρ and r values were
quite similar, with a tendency for ρ to be slightly lower then
r (difference of means RG65: 0.001; WS353: 0.02); (iii) lin-
ear regression analyses for ρ and r showed the same trends and
patterns for all DSM parameters.
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R function pam with standard settings.4 Evaluated
datasets for the clustering task are the Almuhareb-
Poesio set (henceforth, AP) containing 402 nouns
grouped into 21 classes (Almuhareb, 2006); the Bat-
tig set, containing 83 concrete nouns grouped into
10 classes (Van Overschelde et al., 2004); the ESS-
LLI 2008 set, containing 44 concrete nouns grouped
into 6 classes;5 and the Mitchell set, containing 60
nouns grouped into 12 classes (Mitchell et al., 2008),
also employed by Bullinaria and Levy (2012).

3.2 Parameters

DSMs evaluated in this paper belong to the class
of window-based models. All models use the same
large vocabulary of target words (27522 lemma
types), which is based on the vocabulary of Distri-
butional Memory (Baroni and Lenci, 2010) and has
been extended to cover all items in our datasets. Dis-
tributional models were built using the UCS toolkit6

and the wordspace package for R (Evert, 2014).
The following parameters have been evaluated:7

• Source Corpus (abbreviated in the plots as cor-
pus): the corpora from which we compiled our
DSMs differ in both size and quality, and they rep-
resent standard choices in DSM evaluation. Eval-
uated corpora in this study are: British National
Corpus8; ukWaC; WaCkypedia EN9;
• Context window:

– Direction* (win.direction): we collected co-
occurrence counts both using a directed win-
dow (i.e., separate co-occurrence counts for

4Other clustering studies have often been carried out us-
ing the CLUTO toolkit (Karypis, 2003) with standard settings,
which corresponds to spectral clustering of the distributional
vectors. Unlike pam, which operates on a pre-computed dis-
similarity matrix, CLUTO cannot be used to test different dis-
tance measures or neighbor rank. Comparative clustering ex-
periments showed no substantial differences for cosine similar-
ity; in the rank-based setting, pam consistently outperformed
CLUTO clustering.

5http://wordspace.collocations.de/doku.php/data:
esslli2008:concrete nouns categorization

6http://www.collocations.de/software.html
7Parameters also evaluated by Bullinaria and Levy (2007;

2012), albeit with a different range of values, are marked with
an asterisk (*); those evaluated by Kiela and Clark (2014)
and/or Polajnar and Clark (2014) are marked with a dagger (†).

8http://www.natcorp.ox.ac.uk/
9Both ukWaC and WaCkypedia EN are available from http:

//wacky.sslmit.unibo.it/doku.php?id=corpora.

context words to the left and to the right of the
target) and an undirected window (no distinc-
tion between left and right context);

– Size (win.size)*†: we expect this parameter to
be crucial as it determines the amount of shared
context involved in the computation of similar-
ity. We tested windows of 1, 2, 4, 8, and 16
words to the left and right of the target, limited
by sentence boundaries;

• Context selection: Context words are filtered by
part-of-speech (nouns, verbs, adjectives, and ad-
verbs). From the full co-occurrence matrix, we
further select dimensions (i.e., columns, corre-
sponding to context words) according to the fol-
lowing two parameters:

– Criterion for context selection (criterion):
marginal frequency; number of nonzero co-
occurrence counts;

– Threshold for context selection (con-
text.dim)*†: from the context dimensions
ranked according to this criterion, we select
the top 5000, 10000, 20000, 50000 or 100000
dimensions;

• Score for feature weighting (score)*†: we com-
pare plain co-occurrence frequency to tf.idf and to
the following association measures: Dice coeffi-
cient; simple log-likelihood; Mutual Information
(MI); t-score; z-score;10

• Feature transformation (transformation): to re-
duce the skewness of feature scores, it is possible
to apply a transformation function. We evaluate
square root, sigmoid (tanh) and logarithmic trans-
formation vs. no transformation.

10See Evert (2008) for a thorough description of the asso-
ciation measures and details on their calculation (Fig. 58.4 on
p. 1225 and Fig. 58.9 on p. 1235). We selected these measures
because they have widely been used in previous work on DSMs
(tf.idf, MI and log-likelihood) or are popular choices for the
identification of multiword expressions. Based on statistical hy-
pothesis tests, log-likelihood, t-score and z-score measure the
significance of association between a target and feature term;
MI shows how much more frequently they co-occur than ex-
pected by chance; and Dice captures the mutual predictability
of target and feature term. Note that we compute sparse ver-
sions of the association measures with negative values clamped
to zero in order to preserve the sparseness of the co-occurrence
matrix. For example, our MI measure corresponds to Positive
MI in the other evaluation studies.
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• Distance metric (metric)*†: cosine distance (i.e.,
angle between vectors); Manhattan distance11;
• Dimensionality reduction: we optionally apply

Singular Value Decomposition to 1000 dimen-
sions, using randomized SVD (Halko et al., 2009)
for performance reasons. For the SVD-based
models, there are two additional parameters:
– Number of latent dimensions (red.dim): out

of the 1000 SVD dimensions, we select the first
100, 300, 500, 700, 900 dimensions (i.e. those
with the largest singular values);

– Number of skipped dimensions (dim.skip):
when selecting the reduced dimensions, we ex-
clude the first 0, 50 or 100 dimensions. This
parameter has already been evaluated by Bulli-
naria and Levy (2012), who achieved best per-
formance by discarding the initial components
of the reduced matrix, i.e., those with the high-
est variance.

• Index of distributional relatedness (rel.index).
Given two words a and b represented in a DSM,
we consider two alternative ways of quantify-
ing the degree of relatedness between a and b.
The first option (and standard in DSM model-
ing) is to compute the distance (cosine or Man-
hattan) between the vectors of a and b. The al-
ternative choice, proposed in this work, is based
on neighbor rank. Neighbor rank has already
been successfully used for capturing priming ef-
fects (Hare et al., 2009; Lapesa and Evert, 2013;
Lapesa et al., 2014) and for quantifying the se-
mantic relatedness between derivationally related
words (Zeller et al., 2014); however, its perfor-
mance on standard tasks has not been tested yet.
For the TOEFL task, we compute rank as the po-
sition of the target among the nearest neighbors
of each synonym candidate.12 For the correla-

11In this study, the range of evaluated metrics is restricted to
cosine vs. manhattan for a number of reasons: (i) cosine is con-
sidered a standard choice in DSM modeling and is adopted by
most evaluation studies (Bullinaria and Levy, 2007; Bullinaria
and Levy, 2012; Polajnar and Clark, 2014); (ii) for our normal-
ized vectors, Euclidean distance is fully equivalent to cosine;
(iii) preliminary experiments with the maximum distance mea-
sure resulted in very low performance.

12Note that using the positions of the synonym candidates
among the neighbors of the target would have been equivalent
to direct use of the distance measure, since the transformation
from distance to rank is monotonic in this case.

tion and clustering tasks, we compute a symmetric
rank measure as the average of logrank(a,b) and
logrank(b,a). An exploration of the effects of di-
rectionality on the prediction of similarity ratings
and its use in clustering tasks (i.e., experiments
involving rank(a,b) and rank(b,a) as indexes of
relatedness) is left for future work.

4 Model selection

As has already been pointed out in the introductory
section, one of the main open issues in DSM eval-
uation is the need for a systematic investigation of
the interactions between DSM parameters. Another
issue that large-scale evaluation studies face is over-
fitting: if a large number of models (i.e. parameter
combinations) is evaluated, it makes little sense to
look at the best model (i.e. the best parameter com-
bination), which will be subject to heavy overfit-
ting, especially on small datasets such as TOEFL.
The methodology for model selection applied in this
work successfully addresses both issues.

In our evaluation study, we tested all possible
combinations of the parameters described in sec-
tion 3.2. This resulted in a total of 537600 model
runs (33600 in the unreduced setting, 504000 in
the dimensionality-reduced setting). The models
were generated and evaluated on a large HPC cluster
within approximately 5 weeks.

Following Lapesa and Evert (2013), DSM pa-
rameters are considered predictors of model perfor-
mance: we analyze the influence of individual pa-
rameters and their interactions using general linear
models with performance (accuracy, correlation, pu-
rity) as a dependent variable and the model parame-
ters as independent variables, including all two-way
interactions. More complex interactions are beyond
the scope of this paper and are left for future work.
Analysis of variance – which is straightforward for
our full factorial design – is used to quantify the im-
portance of each parameter or interaction. Robust
optimal parameter settings are identified with the
help of effect displays (Fox, 2003), which show the
partial effect of one or two parameters by marginal-
izing over all other parameters. Unlike coefficient
estimates, they allow an intuitive interpretation of
the effect sizes of categorical variables irrespective
of the dummy coding scheme used.
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5 Results

This section reports the results of the modeling ex-
periments outlined in section 3. Table 1 summarizes
the evaluation results: for each dataset, we report
minimum, maximum and mean performance, com-
paring unreduced and reduced runs. The column
Difference of Means shows the average difference
in performance between an unreduced model and its
reduced counterpart (with dimensionality reduction
parameters set to the values of the general best set-
ting identified in section 5.5) and the p-value13 of
a Wilcoxon signed rank test with continuity correc-
tion.It is evident that dimensionality reduction im-
proves model performances for all datasets14.

Dataset
Unreduced Reduced Difference

Min Max Mean Min Max Mean of Means
TOEFL 25.0 87.5 63.9 18.7 98.7 64.4 −4.626***
RG65 0.01 0.88 0.59 0.00 0.89 0.63 −0.073***
WS353 0.00 0.73 0.39 0.00 0.73 0.43 −0.074***
AP 0.15 0.73 0.56 0.13 0.76 0.54 0.004n.s.
BATTIG 0.28 0.99 0.77 0.23 0.99 0.78 −0.037***
ESSLLI 0.32 0.93 0.72 0.32 0.98 0.72 −0.003*
MITCH. 0.26 0.97 0.68 0.27 0.97 0.69 −0.031***

Table 1: Summary of performance

While the improvements are only minimal in
some cases, dimensionality reduction never has a
detrimental effect while offering practical advan-
tages in memory usage and computation speed.
Therefore, in our analysis, we focus on the runs in-
volving dimensionality reduction. In the following
subsections, we present detailed results for each of
the three tasks. In each case, we first discuss the im-
pact of DSM parameters on performance, and then
describe the optimal parameter values.

5.1 TOEFL
In the TOEFL task, the linear model achieves an ad-
justed R2 of 89%, showing that it explains the influ-
ence of model parameters on TOEFL accuracy very
well. Figure 1 displays the ranking of the evaluated
parameters according to their importance in a fea-
ture ablation setting. The R2 values in the plots re-
fer to the proportion of variance explained by the re-
spective parameter together with all its interactions,

13* = p < 0.05; *** = p < 0.001; n.s. = not significant.
14Difference of means and Wilcoxon p-value on Spear-

man’s rho for ratings datasets: RG65, −0.061***; WS353,
−0.091***.

corresponding to the reduction in adjusted R2 if this
parameter is left out. We do not rely on significance
values for model selection because, given the large
number of measurements, virtually all parameters
have a highly significant effect.

criterion

rel.index

win.direction

win.size

context.dim

corpus

red.dim

dim.skip

transformation

score

metric

0 10 20 30
Partial R2

TOEFL

Figure 1: TOEFL, parameters and feature ablation

Table 2 reports all parameter interactions for the
TOEFL task that explain more than 0.5% of the total
variance (i.e. R2 ≥ 0.5%), as well as the correspond-
ing degrees of freedom (df) and R2.

Interaction df R2

score:transf 18 7.42
metric:dim.skip 2 4.44
score:metric 6 1.77
metric:context.dim 4 0.98
win.size:transf 12 0.91
corpus:score 12 0.84
score:context.dim 24 0.64
metric:red.dim 4 0.63

Table 2: TOEFL task: interactions, R2

On the basis of their influence in determining
model performance, we can identify three parame-
ters that are crucial for the TOEFL task, and which
will also turn out to be very influential in the other
tasks at issue: distance metric, feature score and fea-
ture transformation.

The best distance metric is cosine distance: this
is one of the consistent findings of our evalua-
tion study and it is in accordance with Bullinaria
and Levy (2007) and, to a lesser extent, Kiela
and Clark (2014).15 Score and transformation al-
ways have a fundamental impact on model perfor-

15In Kiela and Clark (2014), cosine is reported to be the best
similarity metric, together with the correlation similarity metric

536

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00201/1566943/tacl_a_00201.pdf by guest on 24 M
ay 2025



●
●

●

●

●
●

●

55

60

65

70

75

frequency tf.idf MI Dice simple−ll t−score z−score

transformation

●
none
log
root
sigmoid

Figure 2: TOEFL, score / transformation

●
●

●

●
●

55

60

65

70

75

1 2 4 8 16

transformation

●
none
log
root
sigmoid

Figure 3: TOEFL, window size / transformation

●

●

●
●

55

60

65

70

75

100 300 500 700 900

metric

●
cosine
manhattan

Figure 4: TOEFL, metric / n. of latent dim.

●

●
●

55

60

65

70

75

0 50 100

metric

●
cosine
manhattan

Figure 5: TOEFL, metric / n. of skipped dim.

mance: these parameters affect the distributional
space independently of tasks and datasets. We
will show that they are systematically involved in
a strong interaction and that it is possible to iden-
tify a score/transformation combination with robust
performance across all tasks. The interaction be-
tween score and transformation is displayed in fig-
ure 2. The best results are achieved by association
measures based on significance tests (simple-ll, t-
score, z-score), followed by MI. This result is in line
with previous studies (Bullinaria and Levy, 2012;
Kiela and Clark, 2014), which found Pointwise MI
or Positive MI to be the best feature scores. The best
choice, simple-log likelihood, exhibits a strong vari-
ation in performance across different transforma-
tions. For all three significance measures, the best
feature transformation is consistently a logarithmic
transformation. Raw co-occurrence frequency, tf.idf
and Dice only perform well in combination with a
square root transformation.

The best window size, as shown in figure 3, is a
2-word window for all evaluated transformations.

(a mean-adjusted version of cosine similarity). The latter, how-
ever, turned out to be more robust across different corpora and
weighting schemes.

The SVD parameters (number of latent dimen-
sions and number of skipped dimensions) play a
significant role in determining model performance.
They are particularly important for the TOEFL task,
but we will see that their explanatory power is also
quite strong in the other tasks. Interestingly, they
show a tendency to participate in interactions with
other parameters, but do not interact among them-
selves. We display the interaction between metric
and number of latent dimensions in figure 4: the
steep performance increase for both metrics shows
that the widely-used choice of 300 latent dimen-
sions (Landauer and Dumais, 1997) is suboptimal
for the TOEFL task. The best value in our exper-
iment is 900 latent dimensions, and additional di-
mensions would probably lead to a further improve-
ment. The interaction between metric and number of
skipped dimensions is displayed in figure 5. While
manhattan performs poorly no matter how many di-
mensions are skipped, cosine is positively affected
by skipping 100 and (to a lesser extent) 50 dimen-
sions. The latter trend has already been discussed
by Bullinaria and Levy (2012).

Inspection of the remaining interaction plots, not
shown here for reasons of space, reveals that the best
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DSM performance in the TOEFL task is achieved
by selecting ukwac as corpus and 10000 original di-
mensions. The index of distributional relatedness
has a very low explanatory power in the TOEFL
task, with neighbor rank being the best choice (see
plots 16 and 17 in section 5.4).

Given the minimal explanatory power of the di-
rection of the context window and the criterion for
context selection in all three tasks, we will not fur-
ther consider these parameters in our analysis. We
recommend to set them to an “unmarked” option:
undirected and frequency.

The best setting identified by inspecting all effects
is shown in table 5, together with its performance
and with the performance of the (over-trained) best
model in this task. Parameters of the latter are re-
ported in appendix A.

5.2 Ratings

Figure 6 displays the importance of the evaluated pa-
rameters in the task of predicting similarity ratings.
Parameters are ranked according to the average fea-
ture ablation R2 values across both datasets (adj. R2

of the full linear model: RG65: 86%; WS353: 90%).
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Figure 6: Ratings, parameters and feature ablation

Table 3 reports all interactions that explain more
than 0.5% of the total variance in both datasets. For
reasons of space, we only discuss the interactions
and best parameter values on RG65; the correspond-
ing plots for WS353 are shown only if there are sub-
stantial differences.

As already noted for the TOEFL task, score and
transformation have a large explanatory power and
they are involved in a strong interaction showing the

Interaction df RG65 WS353
score:transf 18 10.28 8.66
metric:red.dim 4 2.18 1.42
score:metric 6 1.91 0.59
win.size:transf 12 1.43 1.01
corpus:metric 2 1.83 0.51
metric:context.dim 4 1.08 0.62
corpus:score 12 0.77 0.82
win.size:score 24 0.77 0.69
score:dim.skip 12 0.58 0.85

Table 3: Ratings datasets: interactions, R2

same tendencies and optimal values already iden-
tified for TOEFL. For reasons of space, we do not
elaborate on this interaction here.

The analysis of the main effects shows that for
both datasets WaCkypedia is the best option as
a source corpus, suggesting that this task bene-
fits from a trade-off between quality and quan-
tity (WaCkypedia being smaller and cleaner than
ukWaC, but less balanced than the BNC).

Index of distributional relatedness plays a much
more important role than for the TOEFL task, with
neighbor rank clearly outperforming distance (see
figures 16 and 17 and the discussion in section 5.4
for more details).

The choice of the optimal window size depends on
transformation: on the RG65 dataset, figure 7 shows
that for a logarithmic transformation – which we al-
ready identified as the best transformation in combi-
nation with significance association measures – the
highest performance is achieved with a 4 word win-
dow. The corresponding effect display for WS353
(figure 8) suggests that a further small improvement
may be obtained with an 8 word window in this case.
One possible explanation for this observation is the
different composition of the WS353 dataset, which
includes examples of semantic relatedness beyond
attributional similarity. The 4 word window is a ro-
bust choice across both datasets, though.

The number of latent dimensions is involved in
a strong interaction with the distance metric (figure
9). Best results are achieved with the cosine met-
ric and at least 300 latent dimensions, as well as 50
skipped dimensions. The interaction plot between
metric and number of original dimensions in figure
10 shows that 50000 context dimensions are suffi-
cient for good performance, and no further improve-
ment can be expected from even higher-dimensional
spaces.
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●

●

●
● ●

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1 2 4 8 16

transformation

●
none
log
root
sigmoid

Figure 8: WS353, window size / transformation

●

●

●

●
●

0.45

0.50

0.55

0.60

0.65

0.70

0.75

100 300 500 700 900

metric

●
cosine
manhattan

Figure 9: RG65, metric / n. latent dim.
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Figure 10: RG65, metric / n. context dimensions

Best settings for both datasets are summarized in
table 5. Refer to appendix A for best models.

5.3 Clustering
Figure 11 displays the importance of the evaluated
parameters in the clustering task (adj. R2 of the full
linear model: AP: 82%; BATTIG: 77%; ESSLLI:
58%; MITCHELL: 73%). Parameter ranking is de-
termined by the average of the feature ablation R2

values over all four datasets.
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Figure 11: Clustering, parameters and feat. ablation

Interaction df AP BATTIG ESSLLI MITCHELL
score:transf 18 7.10 7.95 7.56 11.42
metric:red.dim 4 3.29 3.16 2.03 2.03
win.size:metric 4 2.22 1.26 2.97 2.72
win.size:transf 12 2.00 2.95 0.88 2.66
corpus:metric 2 1.42 2.91 2.79 1.11
metric:dim.skip 2 2.25 1.54 2.77 0.86
corpus:win.size 8 2.36 1.18 1.49 1.23
score:dim.skip 12 0.56 1.15 0.99 1.39
win.size:score 24 0.74 0.77 0.54 0.65

Table 4: Clustering task: interactions, R2

Table 4 reports all parameter interactions that ex-
plain more than 0.5% of the total variance for each
of the four datasets.

In the following discussion, we focus on the AP
dataset, which is larger and thus more reliable than
the other three datasets. We mention remarkable dif-
ferences between the datasets in terms of best pa-
rameter values. For a full overview of the best pa-
rameter setting for each dataset, see table 5.

As already discussed for TOEFL and the ratings
task, we find score and transformation at the top of
the feature ablation ranking. Table 4 confirms that
the two parameters are involved in a strong inter-
action. The interaction plot (figure 12) shows the
behavior we are already familiar with: significance
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Figure 15: AP, metric / n. of skipped dim.

measures (simple-ll, t-score and z-score) reach the
best performance in combination with log transfor-
mation: this combination is a robust choice also for
the other datasets, with minor differences that can be
observed in table 5 .

The interaction between window size and metric is
displayed in figure 13: best performance is achieved
with a 2 or 4 word window in combination with co-
sine distance. Results on the other datasets suggest a
preference for the 4 word window. This is confirmed
by interaction plots with source corpus (figure 14),
which also reveal that WaCkypedia is again the best
compromise between size and quality.

A very clear picture concerning the number of
skipped dimensions emerges from figure 15 and is
the same for all datasets: skipping dimensions is
not necessary to achieve good performance (even
though skipping 50 dimensions turned out at least to
be not detrimental for BATTIG and MITCHELL).

Further effect displays, not shown here for rea-
sons of space, suggest that 300 or 500 latent dimen-
sions – with some variation across the datasets (cf.
table 5) – and a medium-sized co-occurrence matrix
(20000 or 50000 dimensions) are needed to achieve
good performance. Neighbor rank is the best choice

as index of distributional relatedness (see section
5.4). See appendix A for best models.

5.4 Relatedness index

A novel contribution of our work is the systematic
evaluation of a parameter that has received little at-
tention in DSM research so far, and only in studies
limited to a narrow choice of datasets (Lapesa and
Evert, 2013; Lapesa et al., 2014; Zeller et al., 2014):
the index of distributional relatedness.

The aim of this section is to provide a full
overview of the impact of this parameter in our ex-
periments. Despite the main focus of the paper on
the reduced setting, in this section we also show re-
sults from the unreduced setting, for two reasons:
first, since this parameter is relatively novel and
evaluated here for the first time on standard tasks,
we consider it necessary to provide a full picture
concerning its behavior; second, relatedness index
turned out to be much more influential in the unre-
duced setting than in the reduced one.

Figure 16 and 17 display the partial effect of relat-
edness index for each dataset, in the unreduced and
reduced setting respectively. To allow for a com-
parison between the different measures of perfor-
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Figure 17: Reduced Setting

mance, correlation and purity values have been con-
verted to percentages. The picture emerging from
the two plots is very clear: neighbor rank is the best
choice for both settings across all seven datasets.
The degree of improvement over vector distance,
however, shows considerable variation between dif-
ferent datasets. The rating task benefits the most
from the use of neighbor rank.

On the other hand, neighbor rank has very lit-
tle effect for the TOEFL task in a reduced setting,
where its high computational complexity is clearly
not justified; the improvement on the AP clustering
dataset is also fairly small. While the TOEFL result
seems to contradict the substantial improvement of
neighbor rank found by Lapesa and Evert (2013) for
a multiple-choice task based on stimuli from prim-
ing experiments, there were only two choices (con-
sistent and inconsistent prime) in this case rather
than four. We do not rule out that a more refined
use of the rank information (for example, different
strategies for rank combinations) may produce bet-
ter results on the TOEFL and AP datasets.

As discussed in section 3.2, we have not yet ex-
plored the potential of neighbor rank in modeling
directionality effects in semantic similarity. Unlike
Lapesa and Evert (2013), who adopt four differ-
ent indexes of distributional relatedness (vector dis-
tance; forward rank, i.e., rank of the target in the
neighbors of the prime; backward rank, i.e, rank of
the prime in the neighbors of the target; average of
backward and forward rank), we used only a single
rank-based index (cf. section 3.2), mostly for rea-
sons of computational complexity. We consider the
results of this study more than encouraging, and ex-
pect further improvements from a full exploration of
directionality effects in the tasks at issue.

5.5 Best settings

We conclude the result overview by evaluating the
best parameter combinations identified for each task
and data set, showing how well our approach to
model selection works in practice.

Table 5 summarizes the optimal parameter set-
tings identified for each task and compares the per-
formance of this model (B.set = best setting) with
the over-trained best run in the experiment (B.run
= best run).16 In most cases, the result of our ro-
bust parameter optimization is close to the best run.
The only exception is the ESSLLI dataset, which is
smaller than the other datasets and particularly sus-
ceptible to over-training (cf. the low R2 of the re-
gression analysis in section 5.3). Table 5 also re-
ports the current state of the art for each task (SoA =
state-of-the-art), taken from the ACL wiki17 where
available (TOEFL and similarity ratings), from Ba-
roni and Lenci (2010) for the clustering tasks, and
from more recent studies of which we are aware.
Our results are comparable to the state of the art,
even though the latter includes a much broader range
of approaches than our window-based DSMs. In one
case (BATTIG), our optimized model even improves
on the best previous result.

A side-by-side inspection of the main effects and
interaction plots for different data sets allowed us
to identify parameter settings that are robust across
datasets and even across tasks. Table 6 shows rec-
ommended settings for each task (independent of the

16Abbreviations in the table: win = window size; c.dim =
number of context dimensions; tr = transformation; red.dim =
number of latent dimensions; d.sk= number of skipped dimen-
sions; r.ind = relatedness index; Parameter values: s-ll = simple-
ll; t-sc = t-score; cos = cosine; man = manhattan.

17http://aclweb.org/aclwiki
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Dataset corpus win c.dim score tr metric r.ind red.dim d.sk B.set B.run SoA Reference
TOEFL ukwac 2 10k s-ll log cos rank 900 100 92.5 98.7 100.0 Bullinaria and Levy (2012)
RG65 wacky 4 50k s-ll log cos rank 500 50 0.87 0.89 0.86 Hassan and Mihalcea (2011)18

WS353 wacky 8 50k s-ll log cos rank 300 50 0.68 0.73 0.81 Halawi et al. (2012)19

AP wacky 4 20k s-ll log cos rank 300 0 0.69 0.76 0.79 Rotenhäusler and Schütze (2009)
BATTIG wacky 8 50k s-ll log cos rank 500 0 0.98 0.99 0.96 Baroni and Lenci (2010)
ESSLLI wacky 2 20k t-sc log cos rank 300 0 0.77 0.98 0.91 Katrenko, ESSLLI workshop20

MITCHELL wacky 4 50k s-ll log cos rank 500 0 0.88 0.97 0.94 Bullinaria and Levy (2012)
common for all datasets: window direction = undirected; criterion for context selection = frequency

Table 5: Best Settings

particular dataset) and a more general setting that
achieves good performance in all three tasks. Eval-
uation results for these settings on each dataset are
reported in table 7. In most cases, the general model
is close to the performance of the task- and dataset-
specific settings. Our robust evaluation methodol-
ogy has enabled us to find a good trade-off between
portability and performance.

Task corpus win c.dim score tr metric r.ind red.dim d.sk
TOEFL ukwac 2 10k s-ll log cos rank 900 100
Rating wacky 4 50k s-ll log cos rank 300 50
Clustering wacky 4 50k s-ll log cos rank 500 0
General wacky 4 50k s-ll log cos rank 500 50

Table 6: General Best Settings

Dataset TOEFL RATINGS CLUSTERING GENERAL
TOEFL 92.5 85.0 75.0 90.0
RG65 0.84 0.86 0.84 0.87
WS353 0.62 0.67 0.64 0.68
AP 0.62 0.66 0.67 0.67
BATTIG 0.87 0.91 0.98 0.90
ESSLLI 0.66 0.77 0.80 0.77
MITCHELL 0.75 0.83 0.88 0.83

Table 7: General best Settings – Performance

6 Conclusion

In this paper, we reported the results of a large-scale
evaluation of window-based Distributional Semantic
Models, involving a wide range of parameters and
tasks. Our model selection methodology is robust
to overfitting and sensitive to parameter interactions.

18The ACL wiki lists the hybrid model of Yih and Qazvinian
(2012) as the best model on RG65 with ρ = 0.89, but does not
specify its Pearson correlation r. In our comparison table, we
show the best Pearson correlation, achieved by Hassan and Mi-
halcea (2011), which is also the best corpus-based model.

19Halawi et al. (2012) report Spearman’s ρ . The ρ values
for our best setting are: RG65: 0.85, WS353: 0.70; best setting
for the ratings task: RG65: 0.82, WS353: 0.67; best general
setting: RG65: 0.87, WS353: 0.70.

20http://wordspace.collocations.de/

It allowed us to identify parameter configurations
that perform well across different datasets within the
same task, and even across different tasks. We rec-
ommend the setting highlighted in bold font in table
5 as a general-purpose DSM for future research. We
believe that many applications of DSMs (e.g. vector
compositon) will benefit from using such a param-
eter combination that achieves robust performance
in a variety of semantic tasks. Moreover, an exten-
sive evaluation based on a robust methodology like
the one presented here is the first necessary step for
further comparisons of bag-of-words DSMs to dif-
ferent techniques for modeling word meaning, such
as neural embeddings (Mikolov et al., 2013). Let us
now summarize our main findings.

• Our experiments show that a cluster of three pa-
rameters, namely score, transformation and dis-
tance metric, plays a consistently crucial role in
determining DSM performance. These param-
eters also show a homogeneous behavior across
tasks and datasets with respect to best parameter
values: simple-ll, log transformation and cosine
distance. These tendencies confirm the results in
Polajnar and Clark (2014) and Kiela and Clark
(2014). In particular, the finding that sparse as-
sociation measures (with negative values clamped
to zero) achieve the best performance can be con-
nected to the positive impact of context selection
highlighted by Polajnar and Clark (2014): ongo-
ing work targets a more specific analysis of their
“thinning” effect on distributional vectors.
• Another group of parameters (corpus, window

size, dimensionality reduction parameters) is also
influential in all tasks, but shows more variation
wrt. the best parameter values. Except for the
TOEFL task, best results are obtained with the
WaCkypedia corpus, confirming the observation
of Sridharan and Murphy (2012) that corpus qual-
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ity compensates for size to some extent. Window
size and dimensionality reduction show a more
task-specific behavior, even though it is possible
to find a good compromise in a 4 word window, a
reduced space of 500 dimensions and skipping of
the first 50 dimensions. The latter result confirms
the findings of Bullinaria and Levy (2007; 2012)
in their clustering experiments.
• The number of context dimensions turned out to be

less crucial. While very high-dimensional spaces
usually result in better performance, the increase
beyond 20000 or 50000 dimensions is rarely suf-
ficient to justify the increased processing cost.
• A novel contribution of our work is the systematic

evaluation of a parameter that has been given lit-
tle attention in DSM research so far: the index of
distributional relatedness. Our results show that,
even if the parameter is not among the most in-
fluential ones, neighbor rank consistently outper-
forms distance. Without SVD dimensionality re-
duction, the difference is more pronounced: this
result is particularly interesting for composition-
ality tasks, where SVD has been reported to be
detrimental (Baroni and Zamparelli, 2010). In
such cases, the benefits of using neighbor rank
clearly outweigh the increased (but manageable)
computational complexity.

Ongoing work focuses on the extension of the eval-
uation setting to further parameters (e.g., new dis-
tance metrics and association scores, Caron’s (2001)
exponent p) and tasks (e.g., compositionality tasks,
meaning in context), as well as the evaluation of
dependency-based models. We are also working
on a refined model selection methodology involv-
ing a systematic analysis of three-way interactions
and the exclusion of inferior parameter values (such
as Manhattan distance, sigmoid transformation and
Dice score), which may have a confounding effect
on some of the effect displays.

Appendix A: Best models

This appendix reports the best runs for every
dataset.21

21Some abbreviations are different from tables 5 and 6. Pa-
rameters: w = window; dir = direction; e = exclusion criterion
for context selection; m = metric. Performance: acc = accu-
racy; cor = correlation; pur = purity. Parameter values: dir =
directed; undir = undirected; f = frequency; nz = non-zero.

corpus w dir e c.dim score tr m r.ind red.dim d.sk acc
ukwac 2 undir f 5000 MI none cos rank 900 100 98.75
ukwac 4 dir f 50000 t-score log cos rank 900 100 98.75
ukwac 4 undir f 50000 t-score root cos dist 900 100 98.75
ukwac 4 dir f 5000 simple-ll log cos dist 900 100 98.75

Table 8: TOEFL dataset – 23 models tied for best
result (4 hand-picked examples shown)

corpus w dir e c.dim score tr m r.ind red.dim d.sk cor
ukwac 16 undir nz 20000 MI none cos rank 700 100 0.89
ukwac 8 dir f 20000 MI none cos rank 700 100 0.89
wacky 4 dir nz 50000 simple-ll log cos rank 700 50 0.89
wacky 4 undir f 100000 z-score log cos rank 900 50 0.89

Table 9: Ratings, RG65 dataset – 19 models tied for
best result (4 hand-picked examples shown)

corpus w dir e c.dim score tr m r.ind red.dim d.sk cor
wacky 16 dir f 5000 MI none man rank 900 50 0.73
wacky 16 undir f 5000 MI none man rank 900 50 0.72
wacky 16 undir f 5000 z-score log man rank 900 50 0.72
wacky 16 dir f 10000 z-score root man rank 900 50 0.72

Table 10: Ratings, WordSim353 dataset – best
model (3 additional hand-picked models with sim-
ilar performance are shown)

corpus w dir e c.dim score tr m r.ind red.dim d.sk pur
ukwac 4 dir nz 10000 t-score log man rank 900 50 0.76
wacky 1 dir nz 10000 z-score log man rank 900 50 0.75
wacky 1 undir f 20000 simple-ll log man rank 900 50 0.75
wacky 2 dir f 100000 z-score log cos rank 500 0 0.75

Table 11: Clustering, Almuhareb-Poesio dataset –
best model (plus 3 additional hand-picked models)

corpus w dir e c.dim score tr m r.ind red.dim d.sk pur
ukwac 1 undir f 20000 Dice root man rank 300 100 0.99
ukwac 2 undir f 100000 freq log cos dist 300 50 0.99
wacky 16 undir f 50000 z-score log man dist 500 50 0.99
wacky 8 undir f 10000 Dice root man rank 500 0 0.99

Table 12: Clustering, Battig dataset – 1037 models
tied for best result (4 hand-picked examples shown)

corpus w dir e c.dim score tr m r.ind red.dim d.sk pur
wacky 16 dir nz 50000 z-score none man dist 900 0 0.98
ukwac 1 dir nz 100000 simple-ll log cos dist 100 50 0.95
ukwac 2 undir f 50000 tf.idf none man dist 700 0 0.95
wacky 8 undir f 100000 tf.idf root man rank 500 0 0.95

Table 13: Clustering, ESSLLI dataset – best model
(plus 3 additional hand-picked models)

corpus w dir e c.dim score tr m r.ind red.dim d.sk pur
bnc 2 undir nz 100000 simple-ll log cos rank 900 0 0.97
bnc 2 undir f 50000 simple-ll log cos rank 700 0 0.97
bnc 2 undir nz 50000 simple-ll log cos rank 900 0 0.97

Table 14: Clustering, Mitchell dataset – 3 models
tied for best result
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