
Modeling Global and Local Node Contexts

for Text Generation from Knowledge Graphs

Leonardo F. R. Ribeiroy, Yue Zhangz, Claire Gardentx and Iryna Gurevychy

yResearch Training Group AIPHES and UKP Lab, Technische Universit�at Darmstadt
zSchool of Engineering, Westlake University, xCNRS/LORIA, Nancy, France

ribeiro@aiphes.tu-darmstadt.de, yue.zhang@wias.org.cn

claire.gardent@loria.fr, gurevych@ukp.informatik.tu-darmstadt.de

Abstract

Recent graph-to-text models generate text

from graph-based data using either global or

local aggregation to learn node representa-

tions. Global node encoding allows explicit

communication between two distant nodes,

thereby neglecting graph topology as all nodes

are directly connected. In contrast, local node

encodingconsiders the relations between neigh-

bor nodes capturing the graph structure, but it

can fail to capture long-range relations. In this

work, we gather both encoding strategies, pro-

posing novel neural models that encode an

input graph combining both global and local

node contexts, in order to learn better contextu-

alized node embeddings. In our experiments,

we demonstrate that our approaches lead to

significant improvements on two graph-to-

text datasets achieving BLEU scores of 18.01

on the AGENDA dataset, and 63.69 on the

WebNLG dataset for seen categories, outper-

forming state-of-the-art models by 3.7 and 3.1

points, respectively.1

1 Introduction

Graph-to-text generation refers to the task of gen-

erating natural language text from input graph

structures, which can be semantic representations

(Konstas et al., 2017) or knowledge graphs (KGs)

(Gardent et al., 2017; Koncel-Kedziorski et al.,

2019). Whereas most recent work (Song et al.,

2018; Ribeiro et al., 2019; Guo et al., 2019) fo-

cuses on generating sentences, a more challenging

and interesting scenario emerges when the goal is

to generate multisentence texts. In this context, in

addition to sentence generation, document plan-

ning needs to be handled: The input needs to be

mapped into several sentences; sentences need to

1Codeis available athttps://github.com/UKPLab/

kg2text.

be ordered and connected using appropriate dis-

course markers; and inter-sentential anaphora and

ellipsis may need to be generated to avoid repeti-

tion. In this paper, we focus on generating texts

rather than sentences where the output are short

texts (Gardent et al., 2017) or paragraphs (Koncel-

Kedziorski et al., 2019).

A key issue in neural graph-to-text generation is

how to encode the input graphs. The basic idea is

to incrementally compute node representations by

aggregating structural context information. To this

end, two main approaches have been proposed: (i)

models based on local node aggregation, usually

built upon Graph Neural Networks (GNNs) (Kipf

and Welling, 2017; Hamilton et al., 2017) and

(ii) models that leverage global node aggregation.

Systems that adopt global encoding strategies are

typically based on Transformers (Vaswani et al.

2017), using self-attention to compute a node

representation based on all nodes in the graph. This

approach enjoys the advantage of a large node con-

text range, but neglects the graph topology by

effectively treating every node as being connected

to all the others in the graph. In contrast, models

based on local aggregation learn the representation

of each node based on its adjacent nodes as

defined in the input graph. This approach effect-

ively exploits the graph topology, and the graph

structure has a strong impact on the node repre-

sentation (Xu et al., 2018). However, encoding

relations between distant nodes can be challenging

by requiring more graph encoding layers, which

can also propagate noise (Li et al., 2018).

For example, Figure 1a presents a KG, for

which a corresponding text is shown in Figure 1b.

Note that there is a mismatch between how enti-

ties are connected in the graph and how their nat-

ural language descriptions are related in the text.

Some entities syntactically related in the text are

not connected in the graph. For instance, in the

589

Transactions of the Association for Computational Linguistics, vol. 8, pp. 589�604, 2020. https://doi.org/10.1162/tacl a 00332

Action Editor: Alessandro Moschitti. Submission batch: 2/2019; Revision batch: 5/2020; Published 9/2020.
c 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

mailto:ribeiro@aiphes.tu-darmstadt.de
mailto:yue.zhang@wias.org.cn
mailto:claire.gardent@loria.fr
mailto:gurevych@ukp.informatik.tu-darmstadt.de
https://github.com/UKPLab/kg2text
https://github.com/UKPLab/kg2text
https://doi.org/10.1162/tacl_a_00332

Figure 1: A graphical representation (a) of a scientific

text (b). (c) A global encoder directly captures longer

dependencies between any pair of nodes (blue and red

arrows), but fails in capturing the graph structure. (d) A

local encoder explicitly accesses information from the

adjacent nodes (blue arrows) and implicitly captures

distant information (dashed red arrows).

sentence ‘‘For the link prediction task, first we

learn node embeddings using DistMult method.’’,

although the entity mentions are dependent of the

same verb, in the graph, the node embeddings node

has no explicit connection with link prediction

and DistMult nodes, which are in a different

connected component. This example illustrates

the importance of encoding distant information in

the input graph. As shown in Figure 1c, a global

encoder is able to learn a node representation

for node embeddings which captures information

from non-connected entities such as DistMult. By

modeling distant connections between all nodes,

we allow for these missing links to be captured,

as KGs are known to be highly incomplete (Dong

et al., 2014; Schlichtkrull et al., 2018).

In contrast, the local strategy refines the node

representation with richer neighborhood informa-

tion, as nodes that share the same neighborhood

exhibit a strong homophily: Two similar entities

are much more likely to be connected than at

random. Consequently, the local context enriches

the node representation with local information

from KG triples. For example, in Figure 1a, GAT

reaches node embeddings through the GNN. This

transitive relation can be captured by a local

encoder, as shown in Figure 1d. Capturing this

form of relationship also can support text gene-

ration at the sentence level.

In this paper, we investigate novel graph-to-

text architectures that combine both global and

local node aggregations, gathering the benefits

from both strategies. In particular, we propose a

unified graph-to-text framework based on Graph

Attention Networks (GATs) (Veli�ckovi�c et al.,

2018). As part of this framework, we empirically

compare two main architectures: a cascaded archi-

tecture that performs global node aggregation

before performing local node aggregation, and a

parallel architecture that performs global and

local aggregations simultaneously. The cascaded

architecture allows the local encoder to leverage

global encoding features, and the parallel architec-

ture allows more independent features to comple-

ment each other. To further consider fine-grained

integration, we additionally consider layer-wise

integration of the global and local encoders.

Extensive experiments show that our ap-

proaches consistently outperform recent models

on two benchmarks for text generation from KGs.

To the best of our knowledge, we are the first to

consider integrating global and local context ag-

gregation in graph-to-text generation, and the first

to propose a unified GAT structure for combining

global and local node contexts.

2 Related Work

Early efforts for graph-to-text generation used

statistical methods (Flanigan et al., 2016;

Pourdamghani et al., 2016; Song et al., 2017).

Recently, several neural graph-to-text models

have exhibited success by leveraging encoder

mechanisms based on LSTMs, GNNs, and

Transformers.

AMR-to-Text Generation. Various neural mo-

dels have been proposed to generate sentences

from Abstract Meaning Representation (AMR)

graphs. Konstas et al. (2017) provide the first neu-

ral approach for this task, by linearizing the input

graph as a sequence of nodes and edges. Song et al.

(2018) propose the graph recurrent network to di-

rectly encode the AMR nodes, whereas Beck et al.

(2018) develop a model based on gated GNNs.

590

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

However, both approaches only use local node

aggregation strategies. Damonte and Cohen

(2019) combine graph convolutional networks

and LSTMs in order to learn complementary node

contexts. However, differently from Transformers

and GNNs, LSTMs generate node representations

that are influenced by the node order. Ribeiro et al.

(2019) develop a model based on different GNNs

that learns node representations which simulta-

neously encode a top�down and a bottom�up

views of the AMR graphs, whereas Guo et al.

(2019) leverage dense connectivity in GNNs. Re-

cently, Wang et al. (2020) propose a local graph

encoder based on Transformers using separated

attentions for incoming and outgoing neighbors.

Recent methods (Zhu et al., 2019; Cai and Lam,

2020) also use Transformers, but learn globalized

node representations, modeling graph paths in

order to capture structural relations.

KG-to-Text Generation. In this work, we focus

on generating text from KGs. In comparison to

AMRs, which are rooted and connected graphs,

KGs do not have a defined topology, which may

vary widely among different datasets, making

the generation process more demanding. KGs are

sparse structures that potentially contain a large

number of relations. Moreover, we are typically

interested in generating multisentence texts from

KGs, and this involves solving document planning

issues (Konstas and Lapata, 2013).

Recent neural approaches for KG-to-text gener-

ation simply linearize the KG triples, thereby

loosing graph structure information. For instance,

Colin and Gardent (2018), Moryossef et al. (2019),

and Adapt (Gardent et al., 2017) utilize LSTM/

GRU to encode WebNLG graphs. Castro Ferreira

et al. (2019) systematically compare pipeline and

end-to-end models for text generation from

WebNLG graphs. Trisedya et al. (2018) develop

a graph encoder based on LSTMs that captures

relationships within and between triples. Previous

work has also studied how to explicitly encode

the graph structure using GNNs or Transformers.

Marcheggiani and Perez Beltrachini (2018) pro-

pose an encoder based on graph convolutional net-

works, that consider explicitly local node contexts,

and show superior performance compared with

LSTMs. Recently, Koncel-Kedziorski et al. (2019)

proposed a Transformer-basedapproach that com-

putes the node representations by attending over

node neighborhoods following a self-attention

strategy. In contrast, our models focus on distinct

global and local message passing mechanisms,

capturing complementary graph contexts.

Integrating Global Information. There has

been recent work that attempts to integrate global

context in order to learn better node representa-

tions in graph-to-text generation. To this end,

existing methods use an artificial global node for

message exchange with the other nodes. This

strategy can be regarded as extending the graph

structure but using similar message passing mech-

anisms. In particular, Koncel-Kedziorski et al.

(2019) add a global node to the graph and use

its representation to initialize the decoder. Re-

cently, Guo et al. (2019) and Cai and Lam (2020)

also utilized an artificial global node with direct

edges to all other nodes to allow global message

exchange for AMR-to-text generation. Similarly,

Zhang et al. (2018) use a global node to a graph

recurrent network model for sentence represen-

tation. Different from the above methods, we

consider integrating global and local contexts at

the node level, rather than the graph level, by

investigating model alternatives rather than graph

structure changes. In addition, we integrate GAT

and Transformer architectures into a unified

global-local model.

3 Graph-to-Text Model

This section first describes (i) the graph transfor-

mation adopted to create a relational graph from

the input (Section 3.1), and (ii) the graph encoders

of our framework based on GAT (Veli�ckovi�c et al.,

2018), for dealing with both global (Section 3.3)

and local (Section 3.4) node contexts. We adopt

GAT because it is closely related to the Trans-

former architecture (Vaswani et al., 2017), which

provides a convenient prototype for modeling

global node context. Then, (iii) we proposed stra-

tegies to combined the global and local graph en-

oders (Section 3.5). Finally, (iv) we describe the

decoding and training procedures (Section 3.6).

3.1 Graph Preparation

We represent a KG as a multi-relational graph2

Ge = (Ve; Ee; R) with entity nodes e 2 Ve and

labeled edges (eh; r; et) 2 Ee, where r 2 R

2In this paper, multi-relational graphs refer to directed

graphs with labeled edges.

591

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

denotes the relation existing from the entity eh
to et.

3

Unlike other current approaches (Koncel-

Kedziorski et al., 2019; Moryossef et al., 2019), we

represent an entity as a set of nodes. For instance,

the KG node "node embedding" in Figure 1 will

be represented by two nodes, one for the token

"node" and the other for the token "embedding".

Formally, we transform each Ge into a new graph

G = (V ; E ; R), where each token of an entity

e 2 Ve becomes a node v 2 V . We convert each

edge (eh; r; et) 2 Ee into a set of edges (with the

same relation r) and connect every token of eh
to every token of et. That is, an edge (u; r; v)
will belong to E if and only if there exists an edge

(eh; r; et) 2 Ee such that u 2 eh and v 2 et, where

eh and et are seen as sets of tokens. We represent

each node v 2 V with an embedding h0
v 2 R

dv ,

generated from its corresponding token.

The new graph G increases the representational

power of the models because it allows learning

node embeddings at a token level, instead of

entity level. This is particularly important for text

generation as it permits the model to be more

flexible, capturing richer relationships between

entity tokens. This also allows the model to learn

relations and attention functions between source

and target tokens. However, it has the side effect

of removing the natural sequential order of multi-

word entities. To preserve this information, we

use position embeddings (Vaswani et al., 2017),

that is, h0
v becomes the sum of the corresponding

token embedding and the positional embedding

for v.

3.2 Graph Neural Networks (GNN)

Multilayer GNNs work by iteratively learning a

representation vector hv of a node v based on

both its context node neighbors and edge features,

through an information propagation scheme. More

formally, the l-th layer aggregates the representa-

tions of v’s context nodes:

h
(l)
N (v) = AGGR(l)

�n�

h(l�1)
u ; ruv

�

: u 2 N (v)
o�

;

where AGGR(l)(:) is an aggregation function,

shared by all nodes on the l-th layer. ruv represents

the relation between u and v. N (v) is a set

3R contains relations both in canonical direction (e.g.,

used-for) and in inverse direction (e.g., used-for-inv), so that

the models consider the differences in the incoming and

outgoing relations.

of context nodes for v. In most GNNs, the

context nodes are those adjacent to v. h
(l)
N (v) is

the aggregated context representation of N (v) at

layer l. h
(l)
N (v) is used to update the representation

of v:

h(l)
v = COMBINE(l)

�

h(l�1)
v ; h

(l)
N (v)

�

:

After L iterations, a node’s representation

encodes the structural information within its L-

hop neighborhood. The choices of AGGR(l)(:)
and COMBINE(l)(:) differ by the specific GNN

model. An example of AGGR(l)(:) is the sum

of the representations of N (v). An example

of COMBINE(l)(:) is a concatenation after the

feature transformation.

3.3 Global Graph Encoder

A global graph encoder aggregates the global

context for updating each node based on all

nodes of the graph (see Figure 1c). We use

the attention mechanism as the message passing

scheme, extending the self-attention network

structure of Transformer to a GAT structure.

In particular, we compute a layer of the global

convolution for a node v 2 V , which takes the

input feature representations hv as input, adopting

AGGR(l)(:) as:

hN (v) =
X

u2V
�vuWg hu; (1)

where Wg 2 R
dv�dz is a model parameter. The

attention weight �vu is calculated as:

�vu =
exp(evu)

P

k2V exp(evk)
; (2)

where

evu =
�

(Wqhv)> (Wkhu)
�

=dz (3)

is the attention function which measures the

global importance of node u’s features to node

v. Wq; Wk 2 R
dv�dz are model parameters

and dz is a scaling factor. To capture distinct

relations between nodes, K independent global

convolutions are calculated and concatenated:

ĥN (v) =

K

k=1
h

(k)
N (v): (4)

Finally, we define COMBINE(l)(:) using layer

normalization (LayerNorm) and a fully connected

592

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

feed-forward network (FFN), in a similar way as

the transformer architecture:

ĥv = LayerNorm(ĥN (v) + hv); (5)

hglobal
v = FFN(ĥv) + ĥN (v) + hv: (6)

Note that the global encoder creates an artificial

complete graph with O(n2) edges and does not

consider the edge relations. In particular, if the

labeled edges were considered, the self-attention

space complexity would increase to �(jRjn2).

3.4 Local Graph Encoder

The representation hglobal
v captures macro relation-

ships from v to all other nodes in the graph.

However, this representation lacks both structural

information regarding the local neighborhood of v
and the graph topology. Also, it does not capture

labeled edges (relations) between nodes (see

Equations 1 and 3). In order to capture these

crucial graph properties and impose a strong

relational inductive bias, we build a graph

encoder to aggregate the local context by utilizing

a modified version of GAT augmented with

relational weights. In particular, we compute a

layer of the local convolution for a node v 2 V ,

adopting AGGR(l)(:) as:

hN (v) =
X

u2N (v)
�vuWrhu; (7)

where Wr 2 R
dv�dz encodes the relation r 2 R

between u and v. N (v) is a set of nodes adjacent

to v and v itself. The attention coefficient �vu is

computed as:

�vu =
exp(evu)

P

k 2 N (v) exp(evk)
; (8)

where

evu = �
�

a>[Wvhv k Wrhu]
�

(9)

is the attention function which calculates the local

importance of adjacent nodes, considering the

edge labels. � is an activation function, k denotes

concatenation and Wv 2 R
dv�dz and a 2 R

2dz are

model parameters.

We use multihead attentions to learn local re-

lations in different perspectives, as in Equation 4,

generating ĥN (v). Finally, we define COMBINE(l)

(:) as:

hlocal
v = RNN(hv; ĥN (v)); (10)

where we use as RNN a Gated Recurrent Unit

(GRU) (Cho et al., 2014). GRU facilitates infor-

mation propagation between local layers. This

choice is motivated by recent work (Xu et al.,

2018; Dehmamy et al., 2019) that theoretically

demonstrates that sharing information between

layers helps the structural signals propagate. In a

similar direction, AMR-to-text generation models

use LSTMs (Song et al., 2017) and dense connec-

tions (Guo et al., 2019) between GNN layers.

3.5 Combining Global and Local Encodings

Our goal is to implement a graph encoder capable

of encoding global and local aspects of the input

graph. We hypothesize that these two sources of

information are complementary, and a combina-

tion of both enriches node representations for text

generation. In order to test this hypothesis, we

investigate different combined architectures.

Intuitively, there are two general methods for

integrating two types of representation. The first

is to concatenate vectors of global and local

contexts, which we call a parallel representation.

The second is to form a pipeline, where a global

representation is first obtained, which is then used

as a input for calculating refined representations

based on the local node context. We call this

approach a cascaded representation.

Parallel and cascaded integration can be per-

formed at the model level, considering the global

and local graph encoders as two representation

learning units disregarding internal structures.

However, because our model takes a multilayer

architecture, where each layer makes a level of

abstraction in representation, we can alternatively

consider integration on the layer level, so that

more interaction between global and local contexts

may be captured. As a result, we present four

architectures for integration, as shown in Figure 2.

All models serve the same purpose, and their

relative strengths should be evaluated empirically.

Parallel Graph Encoding (PGE). In this setup,

we compose global and local graph encoders in

a fully parallel structure (Figure 2a). Note that

each graph encoder can have different numbers

of layers and attention heads. The final node

593

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

Figure 2: Overview of the proposed encoder architectures. (a) Parallel Graph Encoder (PGE) with separated parallel

global and local node encoders. (b) Cascaded Graph Encoder (CGE) with separated cascaded encoders. (c) PGE-

LW: global and local node representations are concatenated layer-wise. (d) CGE-LW: Both node representations

are cascaded layer-wise.

representation is the concatenation of the local

and global node representations of the last layers

of both graph encoders:

hglobal
v = GE(h0

v; fh0
u : u 2 Vg)

hlocal
v = LE(h0

v; fh0
u : u 2 N (v)g)

hv = [hglobal
v k hlocal

v] ; (11)

where GE and LE denote the global and local

graph encoders, respectively. h0
v is the initial node

embedding used in the first layer of both encoders.

Cascaded Graph Encoding (CGE). We

cascade local and global graph encoders as

shown in Figure 2b. We first compute a globally

contextualized node embedding, and then refine it

with the local node context. h0
v is the initial input

for the global encoder and hglobal
v is the initial

input for the local encoder. In particular, the final

node representation is calculated as follows:

hglobal
v = GE(h0

v; fh0
u : u 2 Vg)

hv = LE(hglobal
v ;fhglobal

u : u 2 N (v)g): (12)

Layer-wise Parallel Graph Encoding. To

allow fine-grained interaction between the two

types of graph contextual information, we also

combine the encoders in a layer-wise (LW)

fashion. As shown in Figure 2c, for each graph

layer, we use both global and local encoders in a

parallel structure (PGE-LW). More precisely, each

encoder layer is calculates as follows:

hglobal
v = GEl(h

l�1
v ; fhl�1

u : u 2 Vg)

hlocal
v = LEl(h

l�1
v ; fhl�1

u : u 2 N (v)g)

hl
v = [hglobal

v k hlocal
v] ; (13)

where GEl and LEl refer to the l-th layers of the

global and local graph encoders, respectively.

Layer-wise Cascaded Graph Encoding. We

also propose cascading the graph encoders layer-

wise (CGE-LW, Figure 2d). In particular, we

compute each encoder layer as follows:

hglobal
v = GEl(h

l�1
v ; fhl�1

u : u 2 Vg)

hl
v = LEl(h

global
v ; fhglobal

u : u 2 N (v)g):
(14)

3.6 Decoder and Training

Our decoder follows the core architecture of a

Transformer decoder (Vaswani et al., 2017). Each

time step t is updated by performing multihead

attentions over the output of the encoder (node

embeddings hv) and over previously generated

tokens (token embeddings). An additional chal-

lenge in our setup is to generate multisentence

outputs. In order to encourage the model to gen-

erate longer texts, we implement a length penalty

(Wu et al., 2016) to refine the pure max-probability

beam search.

The model is trained to optimize the negative

log-likelihood of each gold-standard output text.

We use label smoothing regularization to prevent

the model from predicting the tokens too confi-

dently during training and generalizing poorly.

4 Data and Preprocessing

We attest the effectiveness of our models on

two datasets: AGENDA (Koncel-Kedziorski et al.,

2019) and WebNLG (Gardent et al., 2017). Table 1

shows the statistics for both datasets.

AGENDA. In this dataset, KGs are paired with

scientific abstracts extracted from proceedings of

12 top AI conferences. Each instance consists

of the paper title, a KG, and the paper abstract.

Entities correspond to scientific terms that are

often multiword expressions (co-referential enti-

ties are merged). We treat each token in the title as

a node, creating a unique graph with title and KG

594

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

#train #dev #test #relations avg #entities avg #nodes avg #edges avg #CC avg length

AGENDA 38,720 1,000 1,000 7 12.4 44.3 68.6 19.1 140.3

WebNLG 18,102 872 971 373 4.0 34.9 101.0 1.5 24.2

Table 1: Data statistics. Nodes, edges, and CC values are calculated after the graph transformation.

The average values are calculated for all splits (training, dev, and test sets). CC refers to the number of

connected components.

Figure 3: BLEU scores for the AGENDA dev set, with respect to (a) the encoder layers, (b) the encoder hidden

dimensions, and (c) the number of parameters.

tokens as nodes. As shown in Table 1, the average

output length is considerably large, as the target

outputs are multisentence abstracts.

WebNLG. In this dataset, each instance con-

tains a KG extracted from DBPedia. The target

text consists of sentences that verbalize the graph.

We evaluate the models on the test set with seen

categories. Note that this dataset has a conside-

rable number of edge relations (see Table 1).

In order to avoid parameter explosion, we use

regularization based on the basis function decom-

position to define the model relation weights

(Schlichtkrull et al., 2018). Also, as an alternative,

we use the Levi Transformation to create nodes

from relational edges between entities (Beck et al.,

2018). That is, we create a new relation node for

each edge relation between two nodes. The new

relation node is connected to the subject and object

token entities by two binary relations, respectively.

5 Experiments

We implemented all our models using PyTorch

Geometric (PyG) (Fey and Lenssen, 2019) and

OpenNMT-py (Klein et al., 2017). We use the

Adam optimizer with �1 = 0:9 and �2 = 0:98.

Our learning rate schedule follows Vaswani et al.

(2017), with 8,000 and 16,000 warming-up steps

for WebNLG and AGENDA, respectively. The

vocabulary is shared between the node and target

tokens. In order to mitigate the effects of random

seeds, for the test sets, we report the averages over

4 training runs along with their standard deviation.

We use byte pair encoding (Sennrich et al., 2016)

to split entity words into smaller more frequent

pieces. Therefore some nodes in the graph can

be sub-words. We also obtain sub-words on the

target side. Following previous works, we evaluate

the results with BLEU (Papineni et al., 2002),

METEOR (Denkowski and Lavie, 2014), and

CHRF++ (Popovi�c, 2015) automatic metrics and

also perform a human evaluation (Section 5.6).

For layer-wise models, the number of encoder

layers are chosen from f2; 4; 6g, and for PGE

and CGE, the global and local layers are chosen

from and f2; 4; 6g and f1; 2; 3g, respectively.

The hidden encoder dimensions are chosen from

f256; 384; 448g (see Figure 3). Hyperparameters

are tuned on the development set of both datasets.

We report the test results when the BLEU score

on dev set is optimal.

5.1 Results on AGENDA

Table 2 shows the results, where we report the

number of layers and attention heads utilized. We

train models with only global or local encoders as

baselines. Each model has the respective parame-

ter size that gives the best results on the dev set.

First, the local encoder, which requires fewer

encoder layers and parameters, has a better per-

formance compared with the global encoder. This

shows that explicitly encoding the graph structure

595

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

Model #L #H BLEU METEOR CHRF++ #P

Koncel-Kedziorski et al. (2019) 6 8 14:30 � 1:01 18:80 � 0:28 � �

Global Encoder 6 8 15:44 � 0:25 20:76 � 0:194 43:95 � 0:40 54.4

Local Encoder 3 8 16:03 � 0:19 21:12 � 0:32 44:70 � 0:29 54.0

PGE 6, 3 8, 8 17:55 � 0:154 22:02 � 0:07 46.41 � 0:07 56.1

CGE 6, 3 8, 8 17.82 � 0:134 22.23 � 0:09 46.47 � 0:10 61.5

PGE-LW 6 8, 8 17:42 � 0:25 21:78 � 0:20 45:79 � 0:32 69.0

CGE-LW 6 8, 8 18.01 � 0:14 22.34 � 0:07 46.69 � 0:17 69.8

Table 2: Results on the AGENDA test set. #L and #H are the numbers of layers and the attention heads

in each layer, respectively. When more than one, the values are for the global and local encoders,

respectively. #P stands for the number of parameters in millions (node embeddings included).

Model BLEU METEOR CHRF++ #P

UPF-FORGe (Gardent et al., 2017) 40.88 40.00 � �

Melbourne (Gardent et al., 2017) 54.52 41.00 70.72 �

Adapt (Gardent et al., 2017) 60.59 44.00 76.01 �

Marcheggiani and Perez Beltrachini (2018) 55.90 39.00 � 4.9

Trisedya et al. (2018) 58.60 40.60 � �

Castro Ferreira et al. (2019) 57.20 41.00 � �

CGE 62:30 � 0:27 43:51 � 0:18 75:49 � 0:34 13.9

CGE (Levi Graph) 63:10 � 0:13 44:11 � 0:09 76:33 � 0:10 12.8

CGE-LW 62:85 � 0:07 43:75 � 0:21 75:73 � 0:31 11.2

CGE-LW (Levi Graph) 63.69 � 0:10 44.47 � 0:12 76.66 � 0:10 10.4

Table 3: Results on the WebNLG test set with seen categories.

is important to improve the node representations.

Second, our approaches substantially outperform

both baselines. CGE-LW outperforms Koncel-

Kedziorski et al. (2019), a transformer model that

focuses on the relations between adjacent nodes,

by a large margin, achieving the new state-of-the-

art BLEU score of 18.01, 25.9% higher. We also

note that KGs are highly incomplete in this dataset,

with an average number of connected components

of 19.1 (see Table 1). For this reason, the global

encoder plays an important role in our models as it

enables learning node representations based on all

connected components. The results indicate that

combining the local node context, leveraging the

graph topology, and the global node context, cap-

turing macro-level node relations, leads to better

performance. We find that, even though CGE has

a small number of parameters compared to CGE-

LW, it achieves comparable performance.PGE-LW

has the worse performance among the proposed

models. Finally, note that cascaded architec-

tures are more effective according to different

metrics.

5.2 Results on WebNLG

We compare the performance of our more

effective models (CGE, CGE-LW) with six state-

of-the-art results reported on this dataset. Three

systems are the best competitors in the WebNLG

challenge for seen categories: UPF-FORGe,

Melbourne, and Adapt. UPF-FORGe follows a

rule-based approach, whereas the others use neural

encoder-decoder models with linearized triple sets

as input.

Table 3 presents the results. CGE achieves a

BLEU score of 62.30, 8.9% better than the best

model of Castro Ferreira et al. (2019), who use

an end-to-end architecture based on GRUs. CGE

using Levi graphs outperforms Trisedya et al.

(2018), an approach that encodes both intra-

triple and inter-triple relationships, by 4.5 BLEU

points. Interestingly, their intra-triple and inter-

triple mechanisms are closely related with the

local and global encodings. However, they rely on

encoding entities based on sequences generated by

traversal graph algorithms, whereas we explicitly

596

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

exploit the graph structure, throughout the local

neighborhood aggregation.

CGE-LW with Levi graphs as inputs has the

best performance, achieving 63.69 BLEU points,

even thought it uses fewer parameters. Note that

this approach allows the model to handle new

relations, as they are treated as nodes. Moreover,

the relations become part of the shared vocabulary,

making this information directly usable during the

decoding phase. We outperform an approach based

on GNNs (Marcheggiani and Perez Beltrachini,

2018) by a large margin of 7.7 BLEU points, show-

ing that our combined graph encoding strategies

lead to better text generation. We also outperform

Adapt, a strong competitor that utilizes subword

encodings, by 3.1 BLEU points.

5.3 Development Experiments

We report several development experiments in

Figure 3. Figure 3a shows the effect of the number

of encoder layers in the four encoding methods.4

In general, the performance increases when we

gradually enlarge the number of layers, achieving

the best performance with 6 encoder layers.

Figure 3b shows the choices of hidden sizes for the

encoders. The best performances for global and

PGE are achieved with 384 dimensions, whereas

the other models have the better performance with

448 dimensions. In Figure 3c, we evaluate the per-

formance employing different number of parame-

ters.5 When the models are smaller, parallel

encoders obtain better results than the cascaded

ones. When the models are larger, cascaded

models perform better. We speculate that for some

models, the performance can be further improved

with more parameters and layers. However, we do

not attempt this owing to hardware limitations.

5.4 Ablation Study

In Table 4, we report an ablation study on the

impact of each module used in CGE model on the

dev set of AGENDA. We also report the number

of parameters used in each configuration.

Global Graph Encoder. We start by an ablation

on the global encoder. After removing the global

attention coefficients, the performance of the

model drops by 1.79 BLEU and 1.97 CHRF++

4For CGE and PGE the values refer to the global layers

and the number of local layers is fixed to 3.
5It was not possible to execute the local model with larger

number of parameters because of memory limitations.

Model BLEU CHRF++ #P

CGE 17.38 45.68 61.5

Global Encoder

-Global Attention 15.59 43.71 59.0

-FFN 16.33 44.86 50.4

-Global Encoder 15.17 43.30 45.6

Local Encoder

-Local Attention 16.92 45.97 61.5

-Weight Relations 16.88 45.61 53.6

-GRU 16.38 44.71 60.2

-Local Encoder 14.68 42.98 51.8

-Shared Vocab. 16.92 46.16 81.8

Decoder

�Length Penalty 16.68 44.68 61.5

Table 4: Ablation study for modules used in the

encoder and decoder of the CGE model.

scores. Results also show that using FFN in the

global COMBINE(.) function is important to the

model but less effective than the global attention.

However, when we remove FNN, the number of

parameters drops considerably (around 18%) from

61.5 to 50.4 million. Finally, without the entire

global encoder, the result drops substantially by

2.21 BLEU points. This indicates that enriching

node embeddings with a global context allows

learning more expressive graph representations.

Local Graph Encoder. We first remove the

local graph attention and the BLEU score drops

to 16.92, showing that the neighborhood attention

improves the performance. After removing the

relation types, encoded as model weights, the

performance drops by 0.5 BLEU points. However,

the number of parameters is reduced by around

7.9 million. This indicates that we can have a

more efficient model, in terms of the number of

parameters, with a slight drop in performance.

Removing the GRU used on the COMBINE(:)
function decreases the performance considerably.

The worse performance occurs if we remove

the entire local encoder, with a BLEU score of

14.68, essentially making the encoder similar to

the global baseline.

Finally, we find that vocabulary sharing

improves the performance, and the length penalty

is beneficial as we generate multisentence outputs.

597

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

Figure 4: CHRF++ scores for the AGENDA test set, with respect to (a) the number of nodes, and (b) the graph

diameter. (c) Distribution of length of the gold references and models’ outputs for the AGENDA test set.

5.5 Impact of the Graph Structure and

Output Length

The overall performance on both datasets suggests

the strength of combining global and local node

representations. However, we are also interested

in estimating the models’ performance concerning

different data properties.

Graph Size. Figure 4a shows the effect of the

graph size, measured in number of nodes, on the

performance, measured using CHRF++ scores,6

for the AGENDA. We evaluate global and local

graph encoders, PGE-LW and CGE-LW. We find

that the score increases as the graph size increases.

Interestingly, the gap between the local and global

encoders increases when the graph size increases.

This suggests that, because larger graphs may

have very different topologies, modeling the rela-

tions between nodes based on the graph structure

is more beneficial than allowing direct communi-

cation between nodes, overlooking the graph

structure. Also note that the the cascaded model

(CGE-LW) is consistently better than the parallel

model (PGE-LW) over all graph sizes.

Table 5 shows the effect of the graph size,

measured in number of triples, on the performance

for the WebNLG. Our model obtains better scores

over all partitions. In contrast to AGENDA, the

performance decreases as the graph size increases.

This behavior highlights a crucial difference

between AGENDA and AMR and WebNLG

datasets, in which the models’ general perfor-

mance decreases as the graph size increases

(Gardent et al., 2017; Cai and Lam, 2020).

In WebNLG, the graph and sentence sizes are

correlated, and longer sentences are more chal-

lenging to generate than the smaller ones. Differ-

6CHRF++ score is used as it is a sentence-level metric.

ently, AGENDA contains similar text lengths7

and when the input is a larger graph, the model

has more information to be leveraged during the

generation.

Graph Diameter. Figure 4b shows the impact

of the graph diameter8 on the performance for the

AGENDA. Similarly to the graph size, the score

increases as the diameter increases. As the global

encoder is not aware of the graph structure, this

module has the worst scores, even though it

enables direct node communication over long

distance. In contrast, the local encoder can

propagate precise node information throughout

the graph structure for k-hop distances, making

the relative performance better. Table 5 shows the

models’ performances with respect to the graph

diameter for WebNLG. Similarly to the graph size,

the score decreases as the diameter increases.

Output Length. One interesting phenomenon

to analyze is the length distribution (in number of

words) of the generated outputs. We expect that

our models generate texts with similar output

lengths as the reference texts. As shown in

Figure 4c, the references usually are bigger than

the texts generated by all models for AGENDA.

The texts generated byCGE-no-pl, aCGEmodel

without length penalty, are consistently shorter

than the texts from the global and CGE models.

We increase the length of the texts when we use the

length penalty (see Section 3.6). However, there is

still a gap between the reference and the generated

text lengths. We leave further investigation of this

aspect for future work.

7As shown on Figure 4c, 82% of the reference abstracts

have more than 100 words.
8The diameter of a graph is defined as the length of the

longest shortest path between two nodes. We convert the

graphs into undirected graphs to calculate the diameters.

598

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

#T #DP Melbourne Adapt CGE-LW

1-2 396 78.74 83.10 84.35

3-4 386 66.84 72.02 72.27

5-7 189 61.85 69.28 70.25

#D #DP Melbourne Adapt CGE-LW

1 222 82.27 87.54 88.04

2 469 69.94 74.54 75.90

� 3 280 62.87 69.30 69.41

#S #DP Melbourne Adapt CGE-LW

1 388 77.19 81.66 82.03

2 306 67.29 73.29 73.78

3 151 66.30 72.46 73.21

4 66 66.73 71.26 75.16

� 5 60 61.93 67.57 69.20

Table 5: CHRF++ scores with respect to the

number of triples (#T), graph diameters (#D),

and number of sentences (#S) on the WebNLG

test set. #DP refers to the number of datapoints.

Table 5 shows the models’ performances with

respect to the number of sentences for WebNLG.

In general, increasing the number of sentences

reduces the performance of all models. Note

that when the number of sentences increases, the

gap between CGE-LW and the baselines becomes

larger. This suggests that our approach is able to

better handle complex graph inputs in order to

generate multisentence texts.

Effect of the Number of Nodes on the Output

Length. Figure 5 shows the effect of the size of

a graph, defined as the number of nodes, on the

quality (measured in CHRF++ scores) and length

of the generated text (in number of words) in the

AGENDA dev set. We bin both the graph size and

the output length in 4 classes. CGE consistently

outperforms the global model, in some cases by

a large margin. When handling smaller graphs

(with � 35 nodes), both models have difficulties

generating good summaries. However, for these

smaller graphs, our model achieves a score 12.2%

better when generating texts with length � 75.

Interestingly, when generating longer texts (>140)

from smaller graphs, our model outperforms the

global encoder by an impressive 21.7%, indicating

that our model is more effective in capturing

semantic signals from graphs with scarce infor-

mation. Our approach also performs better when

Figure 5: Relation between the number of nodes and

the length of the generated text, in number of words.

the graph size is large (> 55) but the generation

output is small (� 75), beating the global encoder

by 9 points.

5.6 Human Evaluation

To further assess the quality of the generated text,

we conduct a human evaluation on the WebNLG

dataset.9 Following previous work (Gardent et al.,

2017; Castro Ferreira et al., 2019), we assess two

quality criteria: (i) Fluency (i.e., does the text flow

in a natural, easy to read manner?) and (ii) Ade-

quacy (i.e., does the text clearly express the data?).

We divide the datapoints into seven different

sets by the number of triples. For each set, we

randomly select 20 texts generated by Adapt,

CGE with Levi graphs, and their corresponding

human reference (420 texts in total). Because the

number of datapoints for each set is not balanced

(see Table 5), this sampling strategy ensures that

we have the same number of samples for the

different triple sets. Moreover, having human

references may serve as an indicator of the sanity

of the human evaluation experiment. We recruited

human workers from Amazon Mechanical Turk

to rate the text outputs on a 1�5 Likert scale. For

each text, we collect scores from 4 workers and

average them. Table 6 shows the results. We first

note a similar trend as in the automatic evaluation,

with CGE outperforming Adapt on both fluency

and adequacy. In sets with the number of triples

smaller than 5, CGE was the highest rated system

in fluency. Similarly to the automatic evaluation,

both systems are better in generating text from

9Because AGENDA is scientific in nature, we choose to

crowd-source human evaluations only for WebNLG.

599

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

#T Adapt CGE Reference

F A F A F A

All 3:96C 4:44C 4:12B 4:54B 4:24A 4:63A

1�2 3:94C 4:59B 4:18B 4:72A 4:30A 4:69A

3�4 3:79C 4:45B 3:96B 4:50AB 4:14A 4:66A

5�7 4:08B 4:35B 4:18B 4:45B 4:28A 4:59A

#D Adapt CGE Reference

F A F A F A

1�2 3:98C 4:50B 4:16B 4:61A 4:28A 4:66A

� 3 3:91C 4:33B 4:03B 4:43B 4:17A 4:60A

Table 6: Fluency (F) and Adequacy (A) obtained

in the human evaluation. #T refers to the number

of input triples and #D to graph diameters. The

ranking was determined by pair-wise Mann-

Whitney tests with p < 0.05, and the difference

between systems that have a letter in common is

not statistically significant.

graphs with smaller diameters. Note that bigger

diameters pose difficulties to the models, which

achieve their worst performance for diameters

� 3.

5.7 Additional Experiments

Impact of the Vocabulary Sharing and Length

Penalty. During the ablation studies, we note

that the vocabulary sharing and length penalty are

beneficial for the performance. To better estimate

their impact, we evaluate CGE-LW model with

its variations without using vocabulary sharing,

length penalty and without both mechanisms,

on the test set of both datasets. Table 7 shows

the results. We observe that sharing vocabulary

is more important to WebNLG than AGENDA.

This suggests that sharing vocabulary is beneficial

when the training data is small, as in WebNLG. On

the other hand, length penalty is more effective for

AGENDA, as it has longer texts than WebNLG,10

improving the BLEU score by 0.71 points.

How Far Does the Global Attention Look?

Following previous work (Voita et al., 2019;

Cai and Lam, 2020), we investigate the attention

distribution of each graph encoder global layer of

CGE-LW on the AGENDA dev set. In particular,

for each node, we verify its global neighbor that

10As shown in Table 1, AGENDA has texts 5.8 times

longer than WebNLG on average.

AGENDA

Model BLEU CHRF++

CGE-LW 18.17 46.80

-Shared Vocab 17.88 47.12

-Length Penalty 17.46 45.76

-Both 17.24 46.14

WebNLG

Model BLEU CHRF++

CGE-LW 63.86 76.80

-Shared Vocab 63.07 76.17

-Length Penalty 63.28 76.51

-Both 62.60 75.80

Table 7: Effects of the vocabulary

sharing and length penalty on the test

sets of AGENDA and WebNLG.

receives the maximum attention weight and record

the distance between them.11 Figure 7 shows the

averaged distances for each global layer. We

observe that the global encoder mainly focuses

on distant nodes, instead of the neighbors and

closest nodes. This is very interesting and agrees

with our intuition: Whereas the local encoder

is concerned about the local neighborhood, the

global encoder focuses on the information from

long-distance nodes.

Case Study. Figure 6 shows examples of gen-

erated texts when the WebNLG graph is complex

(7 triples). WhileCGE generates a factually correct

text (it correctly verbalises all triples), the Adapt’s

output is repetitive. The example also illustrates

how the text generated by CGE closely follows

the graph structure whereby the first sentence ver-

balises the right-most subgraph, the second the

left-most one and the linking node Turkey makes

the transition (using hyperonymy and a definite

description, i.e., The country). The text created

by CGE is also more coherent than the reference.

As noted above, the input graph includes two

subgraphs linked by Turkey. In natural language,

such a meaning representation corresponds to a

topic shift with the first part of the text describing

an entity from one subgraph, the second part an

entity from the other subgraph, and the linking

entity (Turkey) marking the topic shift. Typically,

11The distance between two nodes is defined as the number

of edges in a shortest path connecting them.

600

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00332/1923190/tacl_a_00332.pdf by guest on 29 N
ovem

ber 2023

	Introduction
	Related Work
	Graph-to-Text Model
	Graph Preparation
	Graph Neural Networks (GNN)
	Global Graph Encoder
	Local Graph Encoder
	Combining Global and Local Encodings
	Decoder and Training

	Data and Preprocessing
	Experiments
	Results on AGENDA
	Results on WebNLG
	Development Experiments
	Ablation Study
	Impact of the Graph Structure and Output Length
	Human Evaluation
	Additional Experiments

	Conclusion

