
Nested Named Entity Recognition via

Second-best Sequence Learning and Decoding

Takashi Shibuyay � Eduard Hovyy

yCarnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
�Sony Corporation, Tokyo 141-8610, Japan

shibuyat@jp.sony.com hovy@cmu.edu

Abstract

When an entity name contains other names

within it, the identification of all combinations

of names can become difficult and expensive.

We propose a new method to recognize not

only outermost named entities but also inner

nested ones. We design an objective function

for training a neural model that treats the tag

sequence for nested entities as the second best

path within the span of their parent entity. In

addition, we provide the decoding method for

inference that extracts entities iteratively from

outermost ones to inner ones in an outside-

to-inside way. Our method has no additional

hyperparameters to the conditional random

field based model widely used for flat named

entity recognition tasks. Experiments demon-

strate that our method performs better than or at

least as well as existing methods capable of

handling nested entities, achieving F1-scores

of 85:82%, 84:34%, and 77:36% on ACE-

2004, ACE-2005, and GENIA datasets, re-

spectively.

1 Introduction

Named entity recognition (NER) is the task of

identifying text spans associated with proper

names and classifying them according to their se-

mantic class such as person or organization.

NER, or in general the task of recognizing entity

mentions, is one of the first stages in deep language

understanding, and its importance has been well

recognized in the NLP community (Nadeau and

Sekine, 2007).

One popular approach to the NER task is to

regard it as a sequence labeling problem. In this

case, it is implicitly assumed that mentions are

not nested in texts. However, names often contain

entities nested within themselves, as illustrated

in Figure 1, which contains 3 mentions of the

same type (PROTEIN) in the span ‘‘... in Ca2+

-dependent PKC isoforms in ...’’, taken from the

GENIA dataset (Kim et al., 2003). Name nest-

ing is common, especially in technical domains

(Alex et al., 2007; Byrne, 2007; Wang, 2009).

The assumption of no nesting leads to loss of

potentially important information and may nega-

tively impact subsequent downstream tasks. For

instance, a downstream entity linking system that

relies on NER may fail to link the correct entity if

the entity mention is nested.

Various approaches to recognizing nested enti-

ties have been proposed. Many of them rely on pro-

ducing and rating all possible (sub)spans, which

can be computationally expensive. Wang and Lu

(2018) provided a hypergraph-based approach to

consider all possible spans. Sohrab and Miwa

(2018) proposed a neural exhaustive model that

enumerates and classifies all possible spans. These

methods, however, achieve high performance at

the cost of time complexity. To reduce the running

time, they set a threshold to discard longer entity

mentions. If the hyperparameter is set low, running

time is reduced but longer mentions are missed.

In contrast, Muis and Lu (2017) proposed a

sequence labeling approach that assigns tags to

gaps between words, which efficiently handles se-

quences using Viterbi decoding. However, this

approach suffers from structural ambiguity issues

during inference, as explained by Wang and Lu

(2018). Katiyar and Cardie (2018) proposed an-

other hypergraph-based approach that learns the

structure in a greedymanner.However, their method

uses an additional hyperparameter as the thresh-

old for selecting multiple mention candidates.

This hyperparameter affects the trade-off between

recall and precision.

In this paper, we propose new learning and de-

coding methods to extract nested entities without

605

Transactions of the Association for Computational Linguistics, vol. 8, pp. 605�620, 2020. https://doi.org/10.1162/tacl a 00334
Action Editor: Mihai Surdeanu. Submission batch: 2/2020; Revision batch: 5/2020; Published 9/2020.

c 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00334/1879868/tacl_a_00334.pdf by guest on 16 M
ay 2021

https://doi.org/10.1162/tacl_a_00334

Figure 1: Example of nested entities.

any additional hyperparameters. We summarize

our contributions as follows:

� We describe a decoding method that iteratively

recognizes entities from outermost ones to

inner ones without structural ambiguity. It

recursively searches a span of each extracted

entity for inner nested entities using the

Viterbi algorithm. This algorithm does not

require hyperparameters for the maximal

length or number of mentions considered.

� We also provide a novel learning method that

ensures the aforementioned decoding. Models

are optimized based on an objective function

designedaccording to the decoding procedure.

� Empirically, we demonstrate that our method

performs better than or at least as well as the

current state-of-the-art methods with 85:82%,

84:34%, and 77:36% in F1-score on three

standard datasets: ACE-2004,1 ACE-2005,2

and GENIA.

2 Method

We propose applying conditional random fields

(CRFs) (Lafferty et al., 2001), which is commonly

used for flat NER (Lample et al., 2016; Ma and

Hovy, 2016; Chiu and Nichols, 2016; Reimers

and Gurevych, 2017; Strubell et al., 2017; Akbik

et al., 2018), to nested NER in this study. We first

explain our usage of CRF, which is the base of

our decoding and training methods. Then, we

introduce our decoding and training methods. Our

decoding and training methods focus on the output

layer of neural architectures and therefore can be

combined with any neural model.

1https://catalog.ldc.upenn.edu/LDC2005T09.
2https://catalog.ldc.upenn.edu/LDC2006T06.

2.1 Usage of CRF

Our decoding and training methods are based on

two key points about our usage of CRF. The first

key point is that we prepare a separate CRF for

each named entity type. This enables our method

to handle the situation where the same mention

span is assigned multiple entity types. The GENIA

dataset indeed has such mention spans. In the

literature, Muis and Lu (2017) demonstrated that

this approach of multiple CRFs would perform

better on nested NER datasets and even a flat

NER dataset than the standard approach of a single

CRF for all entity types. The second key point is

that each element of the transition matrix of each

CRF has a fixed value according to whether it

corresponds to a legal transition (e.g., B-X to I-X

in IOBES tagging scheme, where X is the name of

entity type) or an illegal one (e.g., O to I-X). This

is helpful for keeping the scores for tag sequences

including outer entities higher than those of tag

sequences including inner entities.

Formally, we use Z = fz1; : : : ; zng to rep-

resent a sequence output from the last hidden

layer of a neural model, where zi is the vector

for the i-th word, and n is the number of tokens.

y(k) = fy
(k)
1 ; : : : ; y

(k)
n g represents a sequence of

IOBES tags of entity type k for Z. Here, we

define the score function to be

�k

�

y
(k)
i�1; y

(k)
i ; zi

�

= P
(k)

y
(k)
i

;i
+ A

(k)

y
(k)
i�1

;y
(k)
i

; (1)

where P
(k)

y
(k)
i

;i
= W

(k)

y
(k)
i

� zi + b
(k)

y
(k)
i

;

A
(k)

y
(k)
i�1;y

(k)
i

=

8

<

:

�1; if y
(k)
i�1 ! y

(k)
i is illegal;

0; otherwise:

W
(k)

y
(k)
i

and b
(k)

y
(k)
i

denote the weight matrix and the

bias vector corresponding to y
(k)
i , respectively.

A(k) stands for the transition matrix from the

previous token to the current token, and A
(k)

y
(k)
i�1

;y
(k)
i

is the transition scores from y
(k)
i�1 to y

(k)
i . Z is

shared between all of the multiple CRFs as their

input.

2.2 Decoding

We use three strategies for decoding. First, we

consider each entity type separately using multiple

CRFs in decoding, which makes it possible to

606

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00334/1879868/tacl_a_00334.pdf by guest on 16 M
ay 2021

https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06

Algorithm 1: Nested NER via 2nd-best sequence decoding

K = the set of entity types;

Function main(zi)

M = fg; # the set of detected mentions. Each element of M is a tuple (s, e, k) regarding a mention.

s, e, and k are the start position, the end position, and the entity type of the mention, respectively.

foreach k 2 K do

calculate CRF scores � for entity type k with the score function �k

�

y
(k)
i�1; y

(k)
i ; zi

�

;

find the best path of the span from position 1 to position n based on the scores �;
~M = the set of the mentions detected in the best path;

M =M [~M ;

foreach m 2 ~M do

detectNestedMentions(�, m:s, m:e, k, M);

return M ;

Function detectNestedMentions(�, s, e, k, M)

if e� s > 1 then

find the 2nd best path of the span from position s to position e based on the scores �;
~M = the set of the mentions detected in the 2nd best path;

M =M [~M ;

foreach m 2 ~M do

detectNestedMentions(�, m:s, m:e, k, M);

return;

Figure 2: Overview of our second-best path decoding algorithm to iteratively find nested entities.

handle the situation that the same mention span

is assigned multiple entity types. Second, our de-

coder searches nested entities in an outside-to-

inside way,3 which realizes efficient processing

by eliminating the spans of non-entity at an early

stage. More specifically, our method recursively

narrows down the spans to Viterbi-decode. The

spans to Viterbi-decode are dynamically decided

according to the preceding Viterbi-decoding result.

Only the spans that have just been recognized as

3Our usage of inside/outside is different from the inside-

outside algorithm in dynamic programming.

entity mentions are Viterbi-decoded again. Third,

we use the same scores �k

�

y
(k)
i�1; y

(k)
i ; zi

�

of

Equation (1) to extract outermost entities and even

inner entities without re-encoding, which makes

inference more efficient and faster. These three

strategies are deployed and completed only in the

output layer of neural architectures.

We describe the pseudo-code of our decoding

method in Algorithm 1. Also, we depict the over-

view of our decoding method with an example in

Figure 2. We use the term level in the sense of the

depth of entity nesting. [S] and [E] in Figure 2

607

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00334/1879868/tacl_a_00334.pdf by guest on 16 M
ay 2021

stand for the START and END tags, respectively.

We always attach these tags to both ends of every

sequence of IOBES tags in Viterbi-decoding.

We explain the decoding procedure and mecha-

nism in detail below. We consider each entity type

separately and iterate the same decoding process

regarding distinct entity types as described in

Algorithm 1. In the decoding process for each

entity type k, we first calculate the CRF scores

�k

�

y
(k)
i�1; y

(k)
i ;zi

�

over the entire sentence. Next,

we decode a sequence with the standard 1-best

Viterbi decoding as with the conventional linear-

chain CRF. ‘‘Ca2+ -dependent PKC isoforms’’

is extracted at the 1st level with regard to the

example of Figure 2.

Then, we start our recursive decoding to extract

nested entities within previously extracted entity

spans by finding the 2nd best path. In Figure 2,

the span ‘‘Ca2+ -dependent PKC isoforms’’ is

processed at the 2nd level. Here, if we search

for the best path within each span, the same

tag sequence will be obtained, even though the

processed span is different. This is because we

continue using the same scores �k

�

y
(k)
i�1; y

(k)
i ; zi

�

and because all the values of A(k) corresponding

to legal transitions are equal to 0. Regarding the

example of Figure 2, the score of the transition

from [S] to B-P at the 2nd level is equal to the

score of the transition from O to B-P at the 1st

level. This is true for the transition from E-P to

[E] at the 2nd level and the one from E-P to O

at the 1st level. The best path between the [S]

and [E] tags is identical to the best path between

the two O tags under our restriction about the

transition matrix of CRF. Therefore, we search

for the 2nd best path within the span by utilizing

the N -best Viterbi A* algorithm (Seshadri and

Sundberg, 1994; Huang et al., 2012).4 Note that

our situation is different from normal situations

where N -best decoding is needed. We already

know the best path within the span and want to

find only the 2nd best path. Thus, we can extract

nested entities by finding the 2nd best path within

each extracted entity. Regarding the example of

4Without our restriction about the transition matrix of

CRF, we would have to watch both the best path and the 2nd

best path. Besides, if a single CRF was used for all entity

types, the decoder could not always narrow down spans with

the 2nd best path. The 2nd best path in a single CRF could

result in the same span tagged a different entity type. We

would have to watch lower-ranked paths.

Figure 2, ‘‘PKC isoforms’’ is extracted from the

span ‘‘Ca2+ -dependent PKC isoforms’’ at the

2nd level.

We continue this recursive decoding until no

multi-token entities are detected within a span. In

Figure 2, the span ‘‘PKC isoforms’’ is processed

at the 3rd level. At the 3rd or deeper levels, the

tag sequence of its grandparent level is no longer

either the best path or the 2nd best path because

the start or end position of the current span is

in the middle of the entity mention span at the

grandparent level. As for the example shown in

Figure 2, the word ‘‘PKC’’ is tagged I-P at the

1st level, and the transition from [S] to I-P

is illegal. The scores of the paths that includes

illegal transitions cannot be larger than those of

the paths that consist of only legal transitions

because the elements of the transition matrix A(k)

corresponding to illegal transitions are set to �1.

That is why at all levels below the 1st level we

only need to find the 2nd best path.

This recursive processing is stopped when no

entities are predicted or when only single-token

entities are detected within a span.5 In Figure 2, the

span ‘‘PKC’’ is not processed any more because

it is a single-token entity.

Only one nested entity is extracted within

each decoded span in Figure 2, but there can

be cases where multiple multi-token entities are

detected within a decoded span. In such cases,

our algorithm Viterbi-decodes each of their spans

in the way of the depth-first search algorithm.

The aforementioned processing is executed on all

entity types, and all detected entities are returned

as an output result.

2.3 Training

To extract entities from outside to inside success-

fully, a model has to be trained in a way that the

scores for the paths including outer entities will

be higher than those for the paths including inner

entities. We propose a new objective function to

achieve this requirement.

We maximize the log-likelihood of the correct

tag sequence as with the conventional CRF-based

model. Considering that our model has a separate

5We do not need to recursively decode the span of each

extracted single-token entity because a single-token entity

cannot contain another entity of the same entity type.

608

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00334/1879868/tacl_a_00334.pdf by guest on 16 M
ay 2021

CRF for each entity type, the log-likelihood for

one training data, L (�), is as follows:

L (�) =
X

k

log p
�

Y (k)jZ; �
�

; (2)

where � is the set of parameters of a neural

model, and Y (k) denotes the collection of the

gold IOBES tags for all levels regarding the entity

type k. As we mentioned in Section 2.1, Z is a

sequence output from the last hidden layer of a

neural model and is shared between all of the

multiple CRFs. Therefore, � is updated through a

backpropagation process so that Z can represent

information about all entity types.

In the following, we decompose the log-likelihood

for all levels into the ones for each level. Let

s
(k)
l;j

and e
(k)
l;j

denote the start and end positions

of the j-th span at the l-th level. With regard

to the 1st level, s
(k)
1;1 = 1 and e

(k)
1;1 = n because

we consider the whole span of a sentence. The

spans considered at each deeper level, l > 1, are

determined according to the spans of multi-token

entities at its immediate parent level. As for the

example of Figure 2, only the span of ‘‘Ca2+

-dependent PKC isoforms’’ is considered at the

2nd level. Here, the log-likelihood for each entity

type can be expressed as follows:

log p
�

Y (k)jZ; �
�

= L1st

�

y
(k)
1;1 ; : : : ; y

(k)
1;njZ; �

�

+
X

l>1

X

j

L2nd

�

y
(k)

l;s
(k)

l;j

; : : : ; y
(k)

l;e
(k)

l;j

jZ; �

�

; (3)

where L1st (: : :) and L2nd (: : :) are the log-

likelihoods of the (1st) best and 2nd best paths for

each span, respectively. y
(k)
l;i denotes the correct

IOBES tag of the position i of the l-th level of the

entity type k.

Best path. L1st (: : :) can be calculated in the

same manner as the conventional linear-chain

CRF:

L1st

�

y
(k)
1;1 ; : : : ; y

(k)
1;njZ; �

�

=

(k)
1:n

�

y
(k)
1;1 ;Z

�

� log
X

y02Y
(k)
1:n

exp
(k)
1:n (y

0;Z) ;

(4)

where (k)
s:e (y;Z) =

e
X

i=s

�k (yi�1; yi;zi) + A(k)
ye;ye+1

;

ys�1 = [S]; ye+1 = [E]:

Algorithm 2: LogSumExp of the scores of all

possible paths

C = fB-X;I-X;E-X;S-X;Og;

s = 1; # the start position

e = n; # the end position

foreach c 2 C do

�(c) = P
(k)
c;s + A

(k)
[S];c;

for i = s+ 1; i � e; i ++ do

foreach c 2 C do

foreach c0 2 C do

�c (c
0) = � (c0) + P

(k)
c;i + A

(k)
c0;c;

foreach c 2 C do

�(c) = LogSumExp (�c);

foreach c 2 C do

�(c)+ = A
(k)
c;[E];

return LogSumExp (�);

Y
(k)
s:e denotes the set of all possible tag sequences

from position s to position e of the entity type

k. The first term of Equation (4) is the score of

the gold tag sequence, and the second term is the

logarithm of the summation of the exponential

scores of all possible tag sequences. It is well

known that the second term of Equation (4) can

be efficiently calculated by the algorithm shown

in Algorithm 2.

2nd best path. L2nd (: : :) given the best path

can be calculated by excluding the best path from

all possible paths. This concept is also adopted

by ListNet (Cao et al., 2007), which is used for

ranking tasks such as document retrieval or

recommendation. L2nd (: : :) can be expressed by

the following equation:

L2nd

�

y
(k)

l;s
(k)

l;j

; : : : ; y
(k)

l;e
(k)

l;j

jZ; �

�

=

(k)

s
(k)

l;j
:e

(k)

l;j

�

y
(k)
l;j ;Z

�

� log
X

y02 ~Y
(k)

s
(k)
l;j

:e
(k)
l;j

exp
(k)

s
(k)

l;j
:e

(k)

l;j

(y0;Z) ; (5)

where ~Y
(k)
s:e denotes the set of all possible tag

sequences except the best path within the span

from position s to position e of the entity type k.

However, to the best of our knowledge, the

way of efficiently computing the second term

of Equation (5) has not been proposed yet in

the literature. Simply subtracting the exponential

score of the best path from the summation of the

609

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00334/1879868/tacl_a_00334.pdf by guest on 16 M
ay 2021

Figure 3: Lattice and best path.

exponential scores of all possible paths causes

underflow, overflow, or loss of significant digits.

We introduce a way of accurately computing it

with the same time complexity as Algorithm 2 for

Equation (4). For explanation, we use the simpli-

fied example of the lattice depicted in Figure 3,

in which the span length is 4 and the number of

states is 3. The special nodes for start and end states

are attached to the both ends of the span. There are

81(= 34) paths in this lattice. We assume that the

path that consists of top nodes of all time steps are

the best path as shown in Figure 3. No generality

is lost by making this assumption. To calculate the

second term of Equation (5), we have to consider

the exponential scores for all the possible paths

except the best path, 80(= 81 � 1) paths.

We first give a way of thinking, which is not

our algorithm itself but helpful to understand it. In

the example, we can further group these 80 paths

according to the steps where the best path is not

taken. In this way, we have 4 spaces in total as

illustrated in Figure 4. In Space 1, the top node

of time step 4 is excluded from consideration.

54(= 33 � 2) paths are taken into account here.

Since this space covers all paths that do not go

through the top node of time step 4, we only have

to consider the paths that go through this node in

other spaces. In Space 2, this node is always passed

through, and instead the top node of time step 3

is excluded. 18(= 32 � 2) paths are considered

in this space. Similarly, 6(= 31 � 2) paths and

2(= 30 � 2) paths are taken into consideration

in Space 3 and Space 4, respectively. Thus, we

can consider all the possible paths except the best

path, 80(= 54+18+ 6+2) paths. However, this

is not our algorithm itself as we mentioned.

We introduce two tricks for making the

calculation more efficient. We explain them with

Figure 5, in which Spaces 2 and 3 are picked up.

The first trick is that the separated two spaces can

be merged at time step 4 because the paths later

than time step 3 are identical. When we reach time

step 4 in the forward iteration in each of the two

spaces, we can merge them using the calculation

results at time step 3, as shown with the red edges

in Figure 5. The second trick is that the blue nodes

in Figure 5 can be copied from Space 2 to Space 3

at time step 2 since the considered paths until that

time step are also the same. These two tricks can

be applied to other pairs of two adjacent spaces,

which relieves the need to separately calculate

the summation of the exponential scores for each

space. Therefore, the second term of Equation (5)

can be calculated as shown in Algorithm 3.

Thus, we can train a model using the objective

function of Equations 2, 3, 4, and 5.

2.4 Characteristics

Time complexity. Regarding the time complexity

of decoder, the worst case for our method is when

our decoder narrows down the spans one by one,

from n tokens (a whole sentence) to 2 tokens. The

time complexity for the worst case is therefore

O (n+ � � � + 2) = O
�

n2
�

for each entity type,

O
�

mn2
�

in total, where m denotes the number

of entity types. However, this rarely happens.

The ideal average processing time in the case

where our decoding method narrows down spans

successfully according to gold labels is O(dmn),
where d is the average number of gold IOBES

tags of each entity type assigned to a word. The

average numbers calculated from the gold labels

of ACE-2004, ACE-2005, and GENIA are 1.06,

1.06, and 1.05, respectively.

Usability. Some existing methods have hyper-

parameters, such as the maximal length of con-

sidered entities or the threshold that affects the

number of detected entities, beyond those of the

conventional CRF-based model used for flat NER

tasks. These hyperparameters must be tuned de-

pending on datasets. On the other hand, our

method does not have such hyperparameters and

is easy to use from this viewpoint. In addition, our

method focuses on the output layer of neural archi-

tectures; therefore our method can be combined

with any neural model.

We verify the empirical performances of our

methods in the successive sections.

3 Experimental Settings

3.1 Datasets

We perform nested entity extraction experiments

intensively on ACE-2005 (Doddington et al., 2004)

and GENIA (Kim et al., 2003). For ACE-2005, we

610

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00334/1879868/tacl_a_00334.pdf by guest on 16 M
ay 2021

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00334/1879868/tacl_a_00334.pdf by guest on 16 M
ay 2021

	Introduction
	Method
	Usage of CRF
	Decoding
	Training
	Characteristics

	Experimental Settings
	Datasets
	Model and Training

	Experimental Results
	Comparison with Existing Methods
	Ablation Study
	Analysis of Behavior
	Error Analysis
	Running Time
	Comparison on ACE-2004
	Flat NER

	Related Work
	Conclusion

