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Abstract

The scarcity of comprehensive up-to-date
studies on evaluation metrics for text summari-
zation and the lack of consensus regarding
evaluation protocols continue to inhibit pro-
gress. We address the existing shortcomings of
summarization evaluation methods along five
dimensions: 1) we re-evaluate 14 automatic
evaluation metrics in a comprehensive and
consistent fashion using neural summarization
model outputs along with expert and crowd-
sourced human annotations; 2) we consistently
benchmark 23 recent summarization models
using the aforementioned automatic evaluation
metrics; 3) we assemble the largest collection
of summaries generated by models trained on
the CNN/DailyMail news dataset and share it
in a unified format; 4) we implement and share
a toolkit that provides an extensible and unified
API for evaluating summarization models
across a broad range of automatic metrics;
and 5) we assemble and share the largest
and most diverse, in terms of model types,
collection of human judgments of model-
generated summaries on the CNN/Daily Mail
dataset annotated by both expert judges and
crowd-source workers. We hope that this work
will help promote a more complete evalua-
tion protocol for text summarization as well
as advance research in developing evaluation
metrics that better correlate with human
judgments.

1 Introduction

Text summarization aims to compress long doc-
ument(s) into a short, fluent, and human-readable
form that preserves the most salient information
from the source document.

∗Equal contributions from authors

The field has benefited from advances in neural
network architectures (Sutskever et al., 2014;
Bahdanau et al., 2014; Vinyals et al., 2015;
Vaswani et al., 2017) as well as the availability
of large-scale datasets (Sandhaus, 2008; Hermann
et al., 2015; Grusky et al., 2018; Narayan et al.,
2018). Recent advances in pretrained language
models, such as BERT (Devlin et al., 2019), have
motivated a corresponding shift to pretraining
methods in summarization (Liu and Lapata, 2019;
Zhang et al., 2019b; Dong et al., 2019; Ziegler
et al., 2019; Raffel et al., 2019; Lewis et al., 2019).

A standard dataset for training summarization
models is the CNN/DailyMail corpus (Hermann
et al., 2015), originally a question answering task,
which was repurposed for summarization by
Nallapati et al. (2016). The dataset consists of
news articles and associated human-created bullet-
point summaries. The ROUGE (Lin, 2004b)
metric, which measures lexical overlap between
generated and target summaries, is then typically
used together with crowd-sourced human annota-
tions for model evaluation. While the current setup
has become standardized, we believe several fac-
tors prevent a more complete comparison of mod-
els, thus negatively impacting the progress of the
field.

As noted by Hardy et al. (2019), recent papers
vastly differ in their evaluation protocol. Existing
work often limits model comparisons to only
a few baselines and offers human evaluations
which are largely inconsistent with prior work.
Additionally, despite problems associated with
ROUGE when used outside of its original setting
(Liu and Liu, 2008; Cohan and Goharian, 2016)
as well as the introduction of many variations
on ROUGE (Zhou et al., 2006; Ng and Abrecht,
2015; Ganesan, 2015; ShafieiBavani et al., 2018)
and other text generation metrics (Peyrard, 2019;
Zhao et al., 2019; Zhang et al., 2020; Scialom
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et al., 2019; Clark et al., 2019), ROUGE has
remained the default automatic evaluation metric.
We believe that the shortcomings of the current
evaluation protocol are partially caused by the
lack of easy-to-use resources for evaluation, both
in the form of simplified evaluation toolkits and
large collections of model outputs.

In parallel, there is an issue with how evaluation
metrics are evaluated themselves. Many of the
currently used metrics were developed and as-
sessed using the Document Understanding Con-
ference (DUC) and Text Analysis Conference
(TAC) shared-tasksdatasets (Dang and Owczarzak
2008, 2009). However, it has recently been shown
that the mentioned datasets contain human judg-
ments for model outputs scoring on a lower
scale compared to current summarization systems
putting into question the true performance of those
metrics in the new setting (Peyrard, 2019).

We address these gaps in complementary ways:
1) We re-evaluate 14 automatic evaluation metrics
in a comprehensive and consistent fashion using
outputs from recent neural summarization mod-
els along with expert and crowd-sourced human
annotations; 2) We consistently benchmark 23
recent summarization models using the afore-
mentioned automatic evaluation metrics; 3) We
release aligned summarization model outputs from
23 papers (44 model outputs) published between
2017 and 2019 trained on the CNN/DailyMail
dataset to allow for large-scale comparisons of
recent summarization models; 4) We release a
toolkit of 14 evaluation metrics with an exten-
sible and unified API to promote the reporting
of additional metrics in papers; 5) We collect
and release expert, as well as crowd-sourced,
human judgments for 16 model outputs on 100
articles over 4 dimensions to further research
into human-correlated evaluation metrics. Code
and data associated with this work is avail-
able at https://github.com/Yale-LILY
/SummEval.

2 Related Work

Previous work examining the research setup of
text summarization can be broadly categorized
into three groups, based on the subject of analysis:
evaluation metrics, datasets, and models.

Dealing with evaluation methods, Lin (2004a)
examined the effectiveness of the ROUGE metric
in various DUC tasks. The authors concluded that

evaluating against multiple references results in
higher correlation scores with human judgments
—however, a single-reference setting is sufficient
for the metric to be effective. Owczarzak et al.
(2012) studied the effects of inconsistencies in
human annotations on the rankings of evalu-
ated summarization systems. Results showed that
system-level rankings were robust against annota-
tion inconsistencies, but summary-level rankings
were not stable in such settings and largely benefit
from improving annotator consistency. Rankel
et al. (2013) analyzed the performance of differ-
ent variants of the ROUGE metric using TAC
datasets. The authors found that higher-order and
less commonly reported ROUGE settings showed
a higher correlation with human judgments. In a
similar line of work, Graham (2015) conducted
a large-scale study of the effectiveness of dif-
ferent ROUGE metric variants and compared it
against the BLEU metric on the DUC datasets. Its
results highlighted several superior, non-standard
ROUGE settings that achieved strong correla-
tions with human judgments on model-generated
summaries. In Chaganty et al. (2018), the authors
investigated using an automatic metric to reduce
the cost of human evaluation without introducing
bias. Together with the study, the authors released
a set of human judgments over several model
outputs, limited to a small set of model types.
Peyrard (2019) showed that standard metrics are
in agreement when dealing with summaries in the
scoring range found in TAC summaries, but vastly
differ in the higher-scoring range found in cur-
rent models. The authors reported that additional
human annotations on modern model outputs
are necessary to conduct a conclusive study of
evaluation metrics. Hardy et al. (2019) underscore
the differences in approaches to human summary
evaluation while proposing a highlight-based
reference-less evaluation metric. Other work has
examined the problems with applying ROUGE in
settings such as meeting summarization (Liu and
Liu, 2008) and summarization of scientific articles
(Cohan and Goharian, 2016). We build upon this
line of research by examining the performance of
several automatic evaluation methods, including
ROUGE and its variants, against the performance
of expert human annotators.

In relation to datasets, Dernoncourt et al. (2018)
presented a detailed taxonomy of existing sum-
marization datasets. The authors highlighted the
differences in formats of available corpora and
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called for creating a unified data standard. In
a similar line of research, Grusky et al. (2018)
offered a thorough analysis of existing corpora,
focusing their efforts on news summarization
datasets. The authors also introduced several met-
rics for evaluating the extractiveness of summaries
that are included in the toolkit implemented as
part of this work. Kryściński et al. (2020) showed
that news-related summarization datasets, such
as CNN/DailyMail, contain strong layout biases.
The authors revealed that datasets in the current
format, where each news article is associated with
a single reference summary, leave the task of
summarization underconstrained. The paper also
highlighted the problem of noisy, low-quality data
in automatically collected news datasets.

Looking into models, Zhang et al. (2018a)
analyzed the level of abstraction of several
recent abstractive summarization models. The
authors showed that word-level extractive mod-
els achieved a similar level of abstraction to
fully abstractive models. In Kedzie et al. (2018),
the authors examined the influence of various
model components on the quality of content
selection. The study revealed that in the cur-
rent setting the training signal is dominated by
biases present in summarization datasets pre-
venting models from learning accurate content
selection. Kryściński et al. (2020) investigate the
problem of factual correctness of text summa-
rization models. The authors concluded that the
issue of hallucinating facts touches up to 30% of
generated summaries and list common types of
errors made by generative models. Closely related
to that work, Maynez et al. (2020) conducted
a large-scale study of abstractive summariz-
ers from the perspective of faithfulness. The
authors reached similar conclusions, stating that
improving factual faithfulness is a critical issue
in summarization. The results also showed that
currently available evaluation methods, such as
ROUGE and BertScore, are not sufficient to study
the problem at hand. Durmus et al. (2020) and
Wang et al. (2020) similarly examine faithfulness
evaluation, both proposing question answering
frameworks as a means of evaluating factual
consistency.

Insights and contributions coming from our
work are complementary to the conclusions of
previous efforts described in this section. To the
best of our knowledge, this is the first work in
neural text summarization to offer a large-scale,

consistent, side-by-side re-evaluation of summa-
rization model outputs and evaluation methods.
We also share resources that we hope will prove
useful for future work in analyzing and improving
summarization models and metrics.

Shortly before publishing this paper, a library
for developing summarization metrics was re-
leased by Deutsch and Roth (2020). Our toolkit
is complementary to their work as their toolkit in-
cludes only 3 of our 12 evaluation metrics.

3 Evaluation Metrics and
Summarization Models

We briefly introduce metrics included in our
evaluation toolkit as well as the summarization
models for which outputs were collected at the
time of releasing this manuscript.

3.1 Evaluation Metrics

Our selection of evaluation methods includes
several recently introduced metrics that have been
applied to both text generation and summariza-
tion, standard machine translation metrics, and
other miscellaneous performance statistics.

ROUGE (Lin, 2004b), (Recall-Oriented
Understudy for Gisting Evaluation), measures
the number of overlapping textual units (n-grams,
word sequences) between the generated summary
and a set of gold reference summaries.

ROUGE-WE (Ng and Abrecht, 2015) extends
ROUGE by using soft lexical matching based
on the cosine similarity of Word2Vec (Mikolov
et al., 2013) embeddings.

S3 (Peyrard et al., 2017) is a model-based
metric that uses previously proposed evaluation
metrics, such as ROUGE, JS-divergence, and
ROUGE-WE, as input features for predicting the
evaluation score. The model is trained on human
judgment datasets from TAC conferences.

BertScore (Zhang et al., 2020) computes sim-
ilarity scores by aligning generated and reference
summaries on a token-level. Token alignments are
computed greedily to maximize the cosine simi-
larity between contextualized token embeddings
from BERT.

MoverScore (Zhao et al., 2019) measures the
semantic distance between a summary and refer-
ence text by making use of the Word Mover’s Dis-
tance (Kusner et al., 2015) operating over n-gram
embeddings pooled from BERT representations.
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Sentence Mover’s Similarity (SMS) (Clark
et al., 2019) extends Word Mover’s Distance to
view documents as a bag of sentence embeddings
as well as a variation which represents documents
as both a bag of sentences and a bag of words.

SummaQA (Scialom et al., 2019) applies a
BERT-based question-answering model to answer
cloze-style questions using generated summaries.
Questions are generated by masking named enti-
ties in source documents associated with evaluated
summaries. The metric reports both the F1 overlap
score and QA-model confidence.

BLANC (Vasilyev et al., 2020) is a reference-
less metric that measures the performance gains
of a pre-trained language model given access to a
document summary while carrying out language
understanding tasks on the source document’s text.

SUPERT (Gao et al., 2020) is a reference-less
metric, originally designed for multi-document
summarization, which measures the semantic
similarity of model outputs with pseudo-reference
summaries created by extracting salient sentences
from the source documents, using soft token
alignment techniques.

BLEU (Papineni et al., 2002) is a corpus-
level precision-focused metric that calculates
n-gram overlap between a candidate and reference
utterance and includes a brevity penalty. It is the
primary evaluation metric for machine translation.

CHRF (Popović, 2015) calculates character-
based n-gram overlap between model outputs and
reference documents.

METEOR (Lavie and Agarwal, 2007)
computes an alignment between candidate and
reference sentences by mapping unigrams in the
generated summary to 0 or 1 unigrams in the
reference, based on stemming, synonyms, and
paraphrastic matches. Precision and recall are
computed and reported as a harmonic mean.

CIDEr (Vedantam et al., 2015) computes
{1–4}-gram co-occurrences between the candi-
date and reference texts, down-weighting common
n-grams and calculating cosine similarity between
the n-grams of the candidate and reference texts.

Data Statistics: Grusky et al. (2018) define
three measures of the extractiveness of a dataset.
Extractive fragment coverage is the percentage of
words in the summary that are from the source
article, measuring the extent to which a summary
is a derivative of a text. Density is defined as the
average length of the extractive fragment to which

each summary word belongs. Compression ratio
is defined as the word ratio between the articles
and its summaries: In addition to these measures,
we also include the percentage of n-grams in
the summary not found in the input document as a
novelty score and the percentage of n-grams in the
summary which repeat as a score of redundancy.
For a comprehensive explanation of each metric,
please refer to the corresponding paper.

3.2 Summarization Models
We broadly categorize the models included in this
study into extractive and abstractive approaches.
For each model, we provide a model code (M*)
as well as a descriptive model name, which will
allow for easy matching with the released data.

Extractive Methods
M1 - NEUSUM (Zhou et al., 2018) jointly
scores and selects sentences by first building a
hierarchical representation of a document and
considering the partially outputted summary at
each time step.

M2 - BanditSum (Dong et al., 2018) treats
extractive summarization as a contextual bandit
problem where the document is the context and the
sequence of sentences to include in the summary
is the action.

M3 - LATENT Zhang et al. (2018b) propose
a latent variable extractive model which views
rele-vance labels of sentences in a document as
binarylatent variables.

M4 - REFRESH Narayan et al. (2018)
propose using REINFORCE (Williams, 1992)
to extract summaries, approximating the search
space during training by limiting to combinations
of individually high-scoring sentences.

M5 - RNES Wu and Hu (2018) propose
a coherence model to capture cross-sentence
coherence, combining output from the coherence
model and ROUGE scores as a reward in a
REINFORCE framework.

M6 - JECS (Xu and Durrett, 2019) first extracts
sentences from a document and then scores
possible constituency-based compressed units to
produce the final compressed summary.

M7 - STRASS (Bouscarrat et al., 2019)
extracts a summary by selecting the sentences
with the closest embeddings to the document
embedding, learning a transformation to maximize
the similarity between the summary and the
ground truth reference.
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Abstractive Methods
M8 - Pointer Generator See et al. (2017) propose
a variation of encoder-decoder models, the Pointer
Generator Network, where the decoder can choose
to generate a word from the vocabulary or copy
a word from the input. A coverage mechanism is
also proposed to prevent repeatedly attending to
the same part of the source document.

M9 - Fast-abs-rl Chen and Bansal (2018)
propose a model which first extracts salient sen-
tences with a Pointer Network and rewrites these
sentences with a Pointer Generator Network.
In addition to maximum likelihood training, a
ROUGE-L reward is used to update the extractor
via REINFORCE (Williams, 1992).

M10 - Bottom-Up Gehrmann et al. (2018)
introduce a bottom–up approach whereby a con-
tent selection model restricts the copy attention
distribution of a pretrained Pointer Generator
Network during inference.

M11 - Improve-abs Kryściński et al. (2018)
extend the model of Paulus et al. (2017) by
augmenting the decoder with an external LSTM
language model and add a novelty RL-based
objective during training.

M12 - Unified-ext-abs Hsu et al. (2018) pro-
pose to use the probability output of an extractive
model as sentence-level attention to modify word-
level attention scores of an abstractive model,
introducing an inconsistency loss to encourage
consistency between these two levels of attention.

M13 - ROUGESal Pasunuru and Bansal (2018)
propose a keyphrase-based salience reward as
well as an entailment-based reward in addition to
using a ROUGE-based reward in a REINFORCE
setting, optimizing rewards simultaneously in
alternate mini-batches.

M14 - Multi-task (Ent + QG) Guo et al. (2018)
propose question generation and entailment
generation as auxiliary tasks in a multi-task
framework along with a corresponding multi-task
architecture.

M15 - Closed book decoder Jiang and Bansal
(2018) build upon a Pointer Generator Network
by adding copy-less and attention-less decoder
during training time to force the encoder to be
more selective in encoding salient content.

M16 - SENECA Sharma et al. (2019) propose
to use entity-aware content selection module and
an abstractive generation module to generate the
final summary.

M17 - T5 Raffel et al. (2019) perform a sys-
tematic study of transfer learning techniques and
apply their insights to a set of tasks all framed
as text-input to text-output generation tasks,
including summarization.

M18 - NeuralTD Böhm et al. (2019) learn
a reward function from 2,500 human judgments
that is used in a reinforcement learning setting.

M19 - BertSum-abs Liu and Lapata (2019)
introduce a novel document-level encoder on top
of BERT (Devlin et al., 2019), over which they
introduce both an extractive and an abstractive
model.

M20 - GPT-2 Ziegler et al. (2019) build off
of GPT-2 (Radford et al., 2019) and fine-tune the
model by using human labels of which of four
sampled summaries is the best to direct fine-tuning
in a reinforcement learning framework.

M21 - UniLM Dong et al. (2019) introduce
a model pretrained on three language modeling
tasks: unidirectional, bidirectional, and sequence-
to-sequence prediction. It is thus applicable to
natural language understanding tasks and genera-
tion tasks such as abstractive summarization.

M22 - BART Lewis et al. (2019) introduce a
denoising autoencoder for pretraining sequence to
sequence tasks which is applicable to both natural
language understanding and generation tasks.

M23 - Pegasus Zhang et al. (2019a) introduce a
model pretrained with a novel objective function
designed for summarization by which important
sentences are removed from an input document
and then generated from the remaining sentences.

4 Resources

We now describe the resources collected and
released together with this manuscript.

4.1 Model Outputs

The model output collection contains summaries
associated with 23 recent papers on neural text
summarization described in Section 3.2. We
obtained a total of 44 model outputs, as many
papers include variations of the main model.
All models were trained on the CNN/DailyMail
news corpus and the collected summaries were
generated using the test split of the dataset with-
out constraints limiting the output length. Outputs
were solicited from the authors of papers to ensure
comparability between results presented in this
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paper with those in the original works. They are
shared publicly with the consent of the authors.

Model outputs were transformed into a unified
format and are shared with IDs of the origi-
nal CNN/DailyMail examples so that generated
summaries can be matched with corresponding
source articles. Pairing model outputs with orig-
inal articles was done using a heuristic approach
that relied on aligning reference summaries. The
pairing process revealed that 38 examples in the
CNN/DailyMail test split contained duplicate ref-
erence summaries preventing those examples to be
correctly aligned. However, this problem involves
only 0.3% of the available data and should not
have a significant impact on downstream results.
IDs of duplicate examples are provided together
with the data.

4.2 Evaluation Toolkit
The evaluation toolkit contains 14 automatic
evaluation metrics described in Section 3.1 con-
solidated into a Python package. The package
provides a high-level, easy-to-use interface unify-
ing all of the underlying metrics. For each metric,
we implement both evaluate example and
evaluate batch functions that return the
metric’s score on example- and corpus-levels
accordingly. Function inputs and outputs are also
unified across all metrics to streamline multi-
metric evaluation and result processing. The
toolkit comes with a standard configuration resem-
bling the most popular settings for each of the
metrics to enable easy, out-of-the-box use. How-
ever, each metric can be further configured using
external gin configuration files. We also provide
a command-line tool to evaluate a summarization
model with several metrics in parallel.

4.3 Human Annotations
The collection of human annotations contains
summary evaluations of 16 recent neural sum-
marization models solicited from crowd-sourced
and expert judges. Annotations were collected
for 100 articles randomly picked from the
CNN/DailyMail test set. To ensure high qual-
ity of annotations, each summary was scored by
5 crowd-sourced and 3 expert workers, amount-
ing to 12800 summary-level annotations. Model
outputs were evaluated along the following four
dimensions, as in Kryściński et al. (2019):

Coherence - the collective quality of all sen-
tences. We align this dimension with the DUC

quality question (Dang, 2005) of structure and
coherence whereby ‘‘the summary should be
well-structured and well-organized. The summary
should not just be a heap of related information,
but should build from sentence to sentence to a
coherent body of information about a topic.’’

Consistency - the factual alignment between
the summary and the summarized source. A factu-
ally consistent summary contains only statements
that are entailed by the source document. Anno-
tators were also asked to penalize summaries that
contained hallucinated facts.

Fluency - the quality of individual sentences.
Drawing again from the DUC quality guidelines,
sentences in the summary ‘‘should have no format-
ting problems, capitalization errors or obviously
ungrammatical sentences (e.g., fragments, missing
components) that make the text difficult to read.’’

Relevance - selection of important content
from the source. The summary should include
only important information from the source docu-
ment. Annotators were instructed to penalize sum-
maries that contained redundancies and excess
information.

The data collection interface provided judges
with the source article and associated summaries
grouped in sets of 5. Each group of summaries
contained the reference summary associated with
the source article to establish a common point
of reference between groups. Summary grouping
and order within groups were randomized for
each annotator. Judges were asked to rate the
summaries on a Likert scale from 1 to 5 (higher
better) along the four mentioned dimensions.

Crowd-sourced annotators were hired through
the Amazon Mechanical Turk platform. The hiring
criteria were set to a minimum of 10000 approved
HITs and an approval rate of 97% or higher. Geo-
graphic constraints for workers were set to United
States, United Kingdom, and Australia to ensure
that summaries were evaluated by native English
speakers. Compensation was carefully calculated
to ensure an average wage of 12 USD per hour.

Gillick and Liu (2010) showed that summary
judgments obtained through non-experts may
differ greatly from expert annotations and could
exhibit worse inter-annotator agreement. As a
result, in addition to the hired crowd-sourced
workers, we enlisted three expert annotators who
have written papers on summarization either for
academic conferences (2) or as part of a senior
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thesis (1). The expert annotators were asked to
evaluate the same set of summaries under the same
instructions as the hired crowd-sourced workers.
For expert judgments, we proceeded with two
rounds of annotation to correct any obvious mis-
takes as well as to confirm judgments and ensure a
higher quality of annotations. In the second round,
annotators were asked to check all examples for
which their score of a dimension differed from
another annotator by more than 2 points and where
the other annotators were within 1 point of each
other. In cases where a score differed by more than
2 points for which such a pattern did not exist,
all annotators examined the annotation. When
re-evaluating examples, judges were allowed to
see scores assigned by other expert annotators in
the first round of annotations. While such a setting
could undermine the wisdom of the crowd and
shift the re-assigned scores towards the average
judgment from the first round, we encouraged
experts to remain critical and discuss contested
examples when necessary. For completeness,
the data collection user interface and additional
details regarding the data collection process are
presented in the Appendix.

5 Metric Re-evaluation

5.1 Human Annotations
Considering the concerns raised in previous
work (Gillick and Liu, 2010) about the quality
differences between crowd-sourced and expert
annotations we study this issue using the human
annotations collected as part of this work.

To evaluate the inter-annotator agreement
of collected crowd-sourced and expert anno-
tations we computed the Krippendorff’s alpha
coefficient (Krippendorff, 2011). We found the
inter-annotator interval kappa to be below an
acceptable range—0.4920 and 0.4132 for the
crowd-sourced workers and the first round of
expert annotations, respectively. However, the
second round of expert annotations improved the
inter-annotator agreement, achieving a kappa
coefficient of 0.7127. For further insights,
we computed standard deviations of annota-
tor scores within the respective groups and
present histograms of those statistics in Figure 1.
Plots of crowd-sourced annotations show strong
similarities across all evaluated dimensions. Such
an effect could be caused by an insufficient dis-
tinction made by the annotators between the 4

scored axes, where the overall quality of a sum-
mary biased scores of the individual dimensions.
The histograms also show that while the second
round of expert annotations lowered the standard
deviation of scores and substantially increased
inter-annotator agreement, relevance and coher-
ence remained the most disagreed on dimensions
between experts. This could be attributed to the
subjective nature of relevance and coherence as an
evaluation dimensions (Kryściński et al., 2020).

To assess the similarity of annotations between
the crowd-sourced and expert annotators, we aver-
aged the assigned scores per example within the
respective annotator groups and computed Pear-
son’s correlation coefficient. The statistic returned
a value close to 0, indicating no correlation
between expert and crowd-sourced judges.

We also manually inspected the human anno-
tations and present examples of annotated
summaries, both generated and reference, as
well as the differences in human judgments in
Table 1a. The first row shows a well written,
comprehensive summary. The high quality of the
summary is reflected by top scores assigned by
expert annotators, while being rated as average by
crowd-sourced workers. The second row shows a
summary with ambiguous pronoun usage and fac-
tual inconsistencies. The errors result in a decrease
in coherence, consistency, and relevance scores
in the expert annotations, but do not see a corre-
sponding decrease in crowd-worker annotations.
The third row presents a factually correct summary
that contains token and phrase repetitions. The
errors were caught by the expert annotators result-
ing in a low fluency score, while crowd-sourced
annotators incorrectly classified them as issues
with factual consistency. These examples again
illustrate the disparities in the understanding of
evaluated dimensions between judges and under-
score our observation above about the uniformity
of crowd-sourced annotations; the crowd-sourced
annotations tend to be similar across quality
dimensions even when distinctions exist, which
are captured in the expert annotations.

Results presented in this section highlight the
difficulties of crowd-sourcing high-quality anno-
tations and the necessity for protocols for improv-
ing human evaluation in text summarization.

5.2 Automatic Metrics

Many automatic metrics have been proposed for
evaluating both summarization and other text
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Generated Summaries Expert Crowd-worker
scores (avg.) scores (avg.)

the queen’s guard was left red-faced after he slipped on a he Coh: 5.0 Coh: 3.4
manhole cover lost his footing and slid sideways, knocking his Con: 5.0 Con: 3.8
bearskin on the side . the embarrassed soldier quickly scrambled Flu: 5.0 Flu: 3.4
to his feet as his colleagues marched past as if nothing had Rel: 5.0 Rel: 3.8
happened . tourist david meadwell recorded the unscheduled
manouevre outside buckingham palace on thursday afternoon .
holidaymaker david meadwell recorded the unscheduled Coh: 2.7 Coh: 3.2
manouevre outside buckingham palace . he lost his footing and Con: 2.0 Con: 3.4
slid sideways, knocking bearskin on the side of the box . queen ’s Flu: 4.7 Flu: 3.4
guard was left red-faced after he slipped on manhole cover . Rel: 3.7 Rel: 4.0
the entire incident was caught on a manhole cover . the embarrassed
soldier quickly scrambled to his feet as his colleagues marched past .
buckingham palace guard slipped on manhole cover in front Coh: 3.3 Coh: 3.0
of hundreds of horrified tourists. the queen ’s guard was left Con: 5.0 Con: 3.2
red-faced after he slipped on a manhole cover . he lost his footing Flu: 1.7 Flu: 2.8
and dropped his rifle on the side of the box and dropping his rifle . Rel: 4.3 Rel: 3.2
the incident was caught on camera camera camera . the guard is
thought to have slipped because of metal shutters nailed to the
soles of his boots .

(a) Generated summary examples illustrate common problems found in model outputs, such as ambiguous
pronouns, incorrect references, and repetitive content.

Reference Summaries Expert Crowd-worker
scores (avg.) scores (avg.)

river plate admit they ‘ dream ’ of manchester united striker Coh: 3.0 Coh: 3.0
radamel falcao . the colombia international spent eight years Con: 2.0 Con: 3.6
with the argentine club . falcao has managed just four goals in Flu: 5.0 Flu: 3.0
19 premier league appearances . read : falcao still ‘ has faith ’ Rel: 2.3 Rel: 4.4
that he could continue at man utd next season . click here for
the latest manchester united news.
the incident occurred on april 7 north of poland in the baltic Coh: 2.0 Coh: 4.0
sea . u.s. says plane was in international airspace . russia says Con: 1.7 Con: 3.4
it had transponder turned off and was flying toward russia Flu: 3.0 Flu: 4.2

Rel: 2.3 Rel: 3.6

(b) Reference summaries highlight issues found in theCNN/DailyMail dataset, such as click-baits and
references to other articles as well as unreferenced dates and lowcoherence caused by concatenating
bullet-point summaries.

Table 1: Example summaries with the corresponding averaged expert and crowd-sourced annotations
for coherence, consistency, fluency, and relevance. Expert annotations better differentiate coherence,
consistency, and fluency among the examples when compared to the crowd-sourced annotations.

generation models. However, the field lacks a
comprehensive study that would offer a consistent
side-by-side comparison of their performance. We
address this issue with the following experiments.

In Table 2 we show Kendall’s tau rank cor-
relations between automatic metrics and human

judgments calculated on a system-level following
Louis and Nenkova (2013). The statistics were
computed using the available expert annotations
to avoid possible quality problems associated with
crowd-sourced ratings, as highlighted in the previ-
ous subsection. Automatic metrics were computed
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Figure 1: Histogram of standard deviations of inter-annotator scores between: crowd-sourced
annotations, first round expert annotations, and second round expert annotations, respectively.

Figure 2: Pairwise Kendall’s tau correlations for all automatic evaluation metrics.

in a multi-reference setting, using the original ref-
erence summary included in the CNN/DailyMail
dataset and 10 additional summaries coming from
Kryściński et al. (2020), and the length of model
outputs was not constrained. We report correla-
tions without differentiating between abstractive
and extractive models, as most metrics did not
exhibit large differences in correlation when
reported separately.

Correlation results show several trends. We
find that most metrics have the lowest correla-
tion within the coherence dimension, where the
correlation strength can be classified as weak or
moderate. This finding follows intuition as the

majority of metrics rely on hard or soft subse-
quence alignments, which do not measure well the
interdependence between consecutive sentences.
Low and moderate correlation scores were also
found for the relevance dimension. As discussed
in the previous subsection, such trends could result
from the inherent subjectiveness of the dimen-
sion and the difficulty of collecting consistent
human annotations. Model correlations increase
considerably across the consistency and fluency
dimensions. Although unexpected, the strong cor-
relation with consistency could be attributed to the
low abstractiveness of most neural models, which
could increase the effectiveness of metrics using
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Metric Coherence Consistency Fluency Relevance
ROUGE-1 0.2500 0.5294 0.5240 0.4118
ROUGE-2 0.1618 0.5882 0.4797 0.2941
ROUGE-3 0.2206 0.7059 0.5092 0.3529
ROUGE-4 0.3088 0.5882 0.5535 0.4118
ROUGE-L 0.0735 0.1471 0.2583 0.2353
ROUGE-su* 0.1912 0.2941 0.4354 0.3235
ROUGE-w 0.0000 0.3971 0.3764 0.1618
ROUGE-we-1 0.2647 0.4559 0.5092 0.4265
ROUGE-we-2 −0.0147 0.5000 0.3026 0.1176
ROUGE-we-3 0.0294 0.3676 0.3026 0.1912
S3-pyr −0.0294 0.5147 0.3173 0.1324
S3-resp −0.0147 0.5000 0.3321 0.1471
BertScore-p 0.0588 −0.1912 0.0074 0.1618
BertScore-r 0.1471 0.6618 0.4945 0.3088
BertScore-f 0.2059 0.0441 0.2435 0.4265
MoverScore 0.1912 −0.0294 0.2583 0.2941
SMS 0.1618 0.5588 0.3616 0.2353
SummaQAˆ 0.1176 0.6029 0.4059 0.2206
BLANCˆ 0.0735 0.5588 0.3616 0.2647
SUPERTˆ 0.1029 0.5882 0.4207 0.2353
BLEU 0.1176 0.0735 0.3321 0.2206
CHRF 0.3971 0.5294 0.4649 0.5882
CIDEr 0.1176 −0.1912 −0.0221 0.1912
METEOR 0.2353 0.6324 0.6126 0.4265
Lengthˆ −0.0294 0.4265 0.2583 0.1618
Novel unigramˆ 0.1471 −0.2206 −0.1402 0.1029
Novel bi-gramˆ 0.0294 −0.5441 −0.3469 −0.1029
Novel tri-gramˆ 0.0294 −0.5735 −0.3469 −0.1324
Repeated unigramˆ −0.3824 0.1029 −0.0664 −0.3676
Repeated bi-gramˆ −0.3824 −0.0147 −0.2435 −0.4559
Repeated tri-gramˆ −0.2206 0.1471 −0.0221 −0.2647
Stats-coverageˆ −0.1324 0.3529 0.1550 −0.0294
Stats-compressionˆ 0.1176 −0.4265 −0.2288 −0.0147
Stats-densityˆ 0.1618 0.6471 0.3911 0.2941

Table 2: Kendall’s tau correlation coefficients of
expert annotations computed on a system-level
along four quality dimensions with automatic
metrics using 11 reference summaries per
example. ˆ denotes metrics which use the source
document. The five most-correlated metrics in
each column are bolded.

higher-order n-gram overlap, such as ROUGE-3
or Extractive Density. Referring back to the previ-
ous subsection, both of the mentioned dimensions
achieved high inter-annotator agreement between
expert judges which could also positively affect
the correlation scores. Additionally, the results
show a substantially higher correlation between
all evaluated dimensions and ROUGE scores com-
puted for higher-order n-grams in comparison to
ROUGE-L, which corroborates with findings of
Rankel et al. (2013).

To examine the dependencies between different
metrics, we computed Kendall’s tau rank corre-
lation coefficients, pairwise, between all metrics.
Results are presented as a correlation matrix
in Figure 2. Following intuition, we observe a

strong correlation between all metrics that com-
pute, implicitly or explicitly, the lexical overlap
between generated and reference summaries.
Metrics measuring the n-gram novelty and repet-
itiveness show a weak negative correlation with
all ROUGE-related metrics. Length as a feature
is weakly correlated with most metrics apart from
S3, BLANC, and SuPERT, which might suggest
the mentioned metrics favor longer summaries.
Worth noting is also the weak correlation of
reference-less SummaQA, BLANC, and SuPERT
metrics with most other evaluated metrics.

Results presented in this section highlight the
evaluation dimensions that are not reliably cov-
ered by currently available metrics and pave the
way for future work in model evaluation.

6 Model Re-evaluation

We now turn to an analysis of model scores
across human evaluations and automatic metrics.
The evaluated models were released between
2017 and 2019, represent different approaches
to summarization: abstractive, extractive, and
hybrid, and their architectures reflect the trends in
summarization research. Although in many cases
we obtained multiple variants of the same model,
in the study we focus on the versions with the
highest ROUGE-L scores.

Table 3 contains the results of human eval-
uation across the four dimensions described in
Section 4.3. Scores for ground truth summaries
are included as a point of reference. We find that
pretrained models such as Pegasus, BART, and T5
consistently performed best on most dimensions.
Notably, the mentioned models scored highest on
consistency and fluency while obtaining lower
scores for relevance and coherence. Scores for
extractive models highlight the known short-
comings of such approaches, which are lack of
coherence of summaries and issues with selecting
relevant content. Abstractive model ratings show
an increasing trend with respect to the date of
publication. This is a promising result as it sug-
gests that the quality of models is improving with
time. Worth noting is also the fact that reference
summaries did not score well on consistency,
coherence, and relevance. Upon examination of
the annotations, we found that the reference sum-
maries often contained extraneous information,
such as hyperlinks and click-bait descriptions of
other articles. As this information was not present
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Method Coherence Consistency Fluency Relevance
CNN/DM Reference Summary 3.26 4.47 4.79 3.77

Extractive Models
M0 - LEAD-3 4.16 4.98 4.94 4.14
M1 - NEUSUM 3.22 4.98 4.90 3.82
M2 - BanditSum 3.28 4.99 4.83 3.81
M5 - RNES 3.71 4.97 4.81 4.06

Abstractive Models
M8 - Pointer Generator 3.29 4.65 4.79 3.55
M9 - Fast-abs-rl 2.38 4.67 4.50 3.52
M10 - Bottom-Up 2.73 4.25 4.42 3.38
M11 - Improve-abs 2.28 3.27 3.65 3.15
M12 - Unified-ext-abs 3.60 4.96 4.85 3.85
M13 - ROUGESal 3.44 4.82 4.86 3.83
M14 - Multi-task (Ent + QG) 3.20 4.90 4.74 3.63
M15 - Closed book decoder 3.35 4.95 4.80 3.67
M17 - T5 4.00 4.93 4.93 4.23
M20 - GPT-2 (zero shot)1 3.63 3.40 3.97 3.30
M22 - BART 4.18 4.94 4.90 4.25
M23 - Pegasus (C4) 4.16 4.91 4.88 4.26
M23 - Pegasus (dynamic mix) 4.09 4.85 4.79 4.27

Table 3: Human ratings of summaries along four evaluation dimensions,
averaged over three expert annotators, broken down by extractive and abstractive
models. The M* codes follow the notation described in Section 3.2. The three
highest-rated models in each column are in bold.

in the source documents nor relevant for the
summaries, the annotators interpreted it as hal-
lucinations and assigned lower consistency and
relevance scores. Additionally, many reference
summaries in the CNN/DailyMail dataset were
constructed by naively concatenating bullet-point
summaries into contiguous sequences. Such pro-
cessing steps negatively affected the coherence of
examples. Similar trends in human studies of ref-
erence summaries were reported by Stiennon et al.
(2020). Examples of noisy reference summaries
are shown in Table 1b. Table 4 shows scores
for model outputs across all automatic evaluation
metrics. Parameters of metrics used in this study
can be found in the evaluation toolkit repository
listed in Section 1. The results align with insights
coming from the human evaluation of models.
We found that for most metrics, the highest scores
were assigned to large models pretrained on vast
quantities of data. However, several metrics, such
as S3, SummaQA, SMS, CHRF, and METEOR
tended to favor extractive models, assigning the
highest scores to their outputs.

1The zero-shot model was used for evaluation.

Presented results provide a comprehensive
perspective on the current state of the field and
highlight directions for future modeling work.

7 Conclusions

We introduced SummEval, a set of resources
for summarization model and evaluation research
that include: a collection of summaries generated
by recent summarization models on the
CNN/DailyMail dataset, an extensible and unified
toolkit for summarization model evaluation, and
a diverse collection of human annotations of
model outputs collected from the crowd-source
and expert annotators. Using the accumulated
resources we re-evaluated a broad selection of
current models and evaluation metrics in a
consistent and comprehensive manner. We hope
that this work will prove to be a valuable
resource for future research on text summarization
evaluation and models. We also encourage the
research community to join our efforts by
contributing model outputs and extending the
evaluation toolkit with new metrics.
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Method ROUGE-1/2/3/4/L/su*/w ROUGE-WE-(1/2/3) S3 (pyr/resp) BertScore MoverScore SummaQA SMS BLANC SUPERT
Extractive Models

M0 - LEAD-3 0.3994 / 0.1746 / 0.0990 / 0.0647 / 0.3606 / 0.1377 / 0.2072 0.4049 / 0.2260 / 0.2172 0.5395 / 0.6328 0.3742 0.1679 0.1652 0.1050 0.0480 0.7259
M1 - NEUSUM 0.4130 / 0.1893 / 0.1109 / 0.0742 / 0.3768 / 0.1495 / 0.2156 0.4186 / 0.2402 / 0.2310 0.5562 / 0.6509 0.3955 0.1839 0.1700 0.1062 0.1087 0.7010
M2 - BanditSum 0.4137 / 0.1868 / 0.1086 / 0.0721 / 0.3759 / 0.1513 / 0.2139 0.4195 / 0.2385 / 0.2300 0.5339 / 0.6306 0.3938 0.1815 0.1324 0.1058 0.0909 0.7018
M3 - LATENT 0.4136 / 0.1867 / 0.1085 / 0.0721 / 0.3757 / 0.1512 / 0.2138 0.4194 / 0.2384 / 0.2299 0.5337 / 0.6305 0.3936 0.1814 0.1645 0.1058 0.0910 0.7020
M4 - REFRESH 0.3972 / 0.1807 / 0.1042 / 0.0690 / 0.3621 / 0.1340 / 0.2129 0.4023 / 0.2318 / 0.2238 0.6395 / 0.7124 0.3903 0.1720 0.1944 0.1088 0.1406 0.7526
M5 - RNES 0.4088 / 0.1878 / 0.1102 / 0.0736 / 0.3719 / 0.1446/ 0.2163 0.4153 / 0.2395 / 0.2317 0.6082 / 0.6894 0.3997 0.1802 0.1794 0.1107 0.1232 0.7434
M6 - JECS 0.4144 / 0.1846 / 0.1063 / 0.0699 / 0.3760 / 0.1485 / 0.2135 0.4200 / 0.2371 / 0.2283 0.5337 / 0.6284 0.3925 0.1805 0.1644 0.1048 0.1044 0.6946
M7 - STRASS 0.3377 / 0.1237 / 0.0650 / 0.0416 / 0.2790 / 0.1052 / 0.1559 0.3477 / 0.1757 / 0.1656 0.3632 / 0.4939 0.3090 0.1079 0.1367 0.1023 0.1042 0.6566

Abstractive Models
M8 - Pointer Generator 0.3921 / 0.1723 / 0.1003 / 0.0674 / 0.3599 / 0.1435 / 0.1999 0.3990 / 0.2226 / 0.2128 0.4328 / 0.5561 0.3763 0.1643 0.1398 0.0974 0.0704 0.6501
M9 - Fast-abs-rl 0.4057 / 0.1774 / 0.0975 / 0.0616 / 0.3806 / 0.1439 / 0.2112 0.4123 / 0.2302 / 0.2184 0.4818 / 0.5865 0.3918 0.1748 0.1431 0.0847 0.0855 0.6125
M10 - Bottom-Up 0.4124 / 0.1870 / 0.1064 / 0.0695 / 0.3815 / 0.1543 / 0.2084 0.4192 / 0.2400 / 0.2313 0.4450 / 0.5655 0.3964 0.1830 0.1408 0.0925 0.0570 0.6092
M11 - Improve-abs 0.3985 / 0.1720 / 0.0927 / 0.0567 / 0.3730 / 0.1431 / 0.2073 0.4045 / 0.2300 / 0.2228 0.4899 / 0.5897 0.3826 0.1652 0.1341 0.0816 0.0777 0.5972
M12 - Unified-ext-abs 0.4038 / 0.1790 / 0.1039 / 0.0695 / 0.3675 / 0.1484 / 0.2074 0.4097 / 0.2299 / 0.2204 0.4936 / 0.5995 0.3832 0.1739 0.1530 0.1038 0.0962 0.6826
M13 - ROUGESal 0.4016 / 0.1797 / 0.1053 / 0.0709 / 0.3679 / 0.1497 / 0.2058 0.4078 / 0.2294 / 0.2190 0.4643 / 0.5799 0.3837 0.1722 0.1475 0.1009 0.0882 0.6570
M14 - Multi-task (Ent + QG) 0.3952 / 0.1758 / 0.1037 / 0.0705 / 0.3625 / 0.1476 / 0.2007 0.4015 / 0.2253 / 0.2149 0.4246 / 0.5513 0.3759 0.1670 0.1360 0.0982 0.0648 0.6380
M15 - Closed book decoder 0.3976 / 0.1760 / 0.1031 / 0.0696 / 0.3636 / 0.1472 / 0.2033 0.4039 / 0.2263 / 0.2160 0.4591 / 0.5757 0.3783 0.1699 0.1456 0.1009 0.0896 0.6612
M16 - SENECA 0.4151 / 0.1836 / 0.1052 / 0.0681 / 0.3806 / 0.1520 / 0.2112 0.4211 / 0.2369 / 0.2282 0.4735 / 0.5836 0.3907 0.1811 0.1404 0.1005 0.0692 0.6519
M17 - T5 0.4479 / 0.2205 / 0.1336 / 0.0920 / 0.4172 / 0.1879 / 0.2291 0.4543 / 0.2723 / 0.2631 0.5168 / 0.6294 0.4450 0.2376 0.1437 0.1046 0.0773 0.6094
M18 - NeuralTD 0.4004 / 0.1762 / 0.1000 / 0.0650 / 0.3723 / 0.1452 / 0.2085 0.4063 / 0.2277 / 0.2187 0.4946 / 0.5975 0.3949 0.1697 0.1440 0.0916 0.0859 0.6290
M19 - BertSum-abs 0.4163 / 0.1944 / 0.1156 / 0.0785 / 0.3554 / 0.1625 / 0.1979 0.4230 / 0.2454 / 0.2351 0.4664 / 0.5855 0.3855 0.1894 0.1385 0.1071 0.0815 0.6116
M20 - GPT-2 (supervised) 0.3981 / 0.1758 / 0.0993 / 0.0649 / 0.3674 / 0.1470 / 0.2006 0.4048 / 0.2268 / 0.2170 0.4069 / 0.5373 0.3915 0.1750 0.1299 0.0930 0.0705 0.6053
M21 - UniLM 0.4306 / 0.2044 / 0.1218 / 0.0824 / 0.4013 / 0.1714 / 0.2228 0.4369 / 0.2567 / 0.2483 0.5143 / 0.6210 0.4122 0.2112 0.1455 0.0957 0.0841 0.6100
M22 - BART 0.4416 / 0.2128 / 0.1285 / 0.0880 / 0.4100 / 0.1818 / 0.2266 0.4472 / 0.2646 / 0.2556 0.5116 / 0.6215 0.4264 0.2259 0.1457 0.1037 0.0822 0.6184
M23 - Pegasus (dynamic mix) 0.4407 / 0.2155 / 0.1307 / 0.0901 / 0.4101 / 0.1825 / 0.2260 0.4471 / 0.2668 / 0.2575 0.5099 / 0.6233 0.4369 0.2283 0.1422 0.1040 0.0797 0.6046
M23 - Pegasus (huge news) 0.4408 / 0.2147 / 0.1295 / 0.0889 / 0.4103 / 0.1821 / 0.2273 0.4473 / 0.2663 / 0.2568 0.5295 / 0.6372 0.4377 0.2286 0.1497 0.1049 0.0845 0.6148

(a) Model scores from summarization-specific evaluation metrics.

Method BLEU CHRF CIDEr METEOR Length Stats (cov/comp/den) Repeated (1/2/3)
Extractive Models

M0 - LEAD-3 11.4270 0.3892 0.2125 0.2141 87.4475 0.9825 / 9.6262 / 57.8001 0.2086 / 0.0310 / 0.0310
M1 - textbfNEUSUM 12.7784 0.3946 0.2832 0.2183 84.4075 0.9819 / 9.8047 / 32.8574 0.2325 / 0.0531 / 0.0531
M2 - BanditSum 12.9761 0.3897 0.3305 0.2124 78.5279 0.9836 / 10.2810 / 40.4265 0.2384 / 0.0573 / 0.0573
M3 - LATENT 12.9725 0.3897 0.3305 0.2123 78.5279 0.9834 / 10.2809 / 40.4095 0.2384 / 0.0573 / 0.0573
M4 - REFRESH 10.6568 0.4526 0.0677 0.2395 114.5684 0.9850 / 7.1059 / 53.1928 0.2127 / 0.0289 / 0.0289
M5 - RNES 11.2203 0.4062 0.1559 0.2300 99.9199 0.9938 / 7.9032 / 67.7089 0.2451 / 0.0540 / 0.0540
M6 - JECS 12.5659 0.4310 0.3090 0.2122 79.7797 0.9874 / 10.1111 / 26.6943 0.2041 / 0.0327 / 0.0327
M7 - STRASS 7.8330 0.3330 0.2945 0.1607 76.4859 0.9969 / 12.7835 / 59.9498 0.1864 / 0.0343 / 0.0343

Abstractive Models
M8 - Pointer Generator 13.8247 0.3567 0.5065 0.1860 63.5211 0.9957 / 13.1940 / 26.0880 0.2015 / 0.0375 / 0.0375
M9 - Fast-abs-rl 12.9812 0.3778 0.4329 0.2014 70.8600 0.9860 / 11.0141 / 9.9859 0.2157 / 0.0370 / 0.0370
M10 - Bottom-Up 15.1293 0.3523 0.6176 0.1887 56.5715 0.9811 / 14.7771 / 12.6181 0.1856 / 0.0211 / 0.0211
M11 - Improve-abs 11.9816 0.3715 0.3356 0.2005 75.9512 0.9674 / 10.6043 / 8.9755 0.2499 / 0.0542 / 0.0542
M12 - Unified-ext-abs 12.8457 0.3786 0.3851 0.2017 74.4663 0.9868 / 10.7510 / 33.1106 0.2177 / 0.0493 / 0.0493
M13 - ROUGESal 13.8882 0.3668 0.4746 0.1936 66.5575 0.9853 / 13.0369 / 25.2893 0.2102 / 0.0458 / 0.0458
M14 - Multi-task (Ent + QG ) 14.5276 0.3539 0.5749 0.1831 60.0294 0.9853 / 14.1828 / 22.2296 0.1985 / 0.0411 / 0.0411
M15 - Closed book decoder 13.4158 0.3675 0.4648 0.1925 68.2858 0.9866 / 12.0588 / 27.3686 0.2074 / 0.0444 / 0.0444
M16 - SENECA 13.7676 0.3660 0.5233 0.1966 64.9710 0.9880 / 12.3610 / 16.7640 0.2146 / 0.0303 / 0.0303
M17 - T5 19.3891 0.3833 0.7763 0.2140 59.5288 0.9775 / 14.2002 / 12.9565 0.1810 / 0.0209 / 0.0209
M18 - NeuralTD 12.9241 0.3783 0.3543 0.2038 74.4033 0.9830 / 10.7768 / 12.4443 0.2645 / 0.0901 / 0.0901
M19 - BertSum-abs 14.9525 0.3649 0.6240 0.1876 60.8893 0.9517 / 13.9197 / 12.3254 0.1697 / 0.0156 / 0.0156
M20 - GPT-2 (supervised) 13.9364 0.3678 0.5787 0.1759 51.8352 0.9791 / 15.9839 / 15.4999 0.1875 / 0.0362 / 0.0362
M21 - UniLM 15.5736 0.4230 0.5294 0.2084 67.1960 0.9685 / 11.5672 / 11.7908 0.1722 / 0.0180 / 0.0180
M22 - BART 17.1005 0.4271 0.7573 0.2105 62.2989 0.9771 / 12.8811 / 15.2999 0.1627 / 0.0127 / 0.0127
M23 - Pegasus (dynamic mix) 18.6517 0.4261 0.7280 0.2131 64.1348 0.9438 / 13.7208 / 11.6003 0.1855 / 0.0355 / 0.0081
M23 - Pegasus (huge news) 17.8102 0.3912 0.6595 0.2189 66.7559 0.9814 / 12.9473 / 14.9850 0.1883 / 0.0251 / 0.0251

(b) Model scores from other text generation evaluation metrics.

Table 4: Model scores from automatic evaluation metrics available in the evaluation toolkit. The five
highest scores for each metric (and lowest for Length and Repeated-1/2/3) are bolded.
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9 Appendix

Data Collection The data collection interface
used by both crowd-source and expert annotators
is presented in Figure 3. In the annotation process,
judges were first asked to carefully read the con-
tent of the source article and next proceed to eval-
uating the associated summaries along four axes:
relevance, consistency, fluency, and coherence.
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Figure 3: Example of the data collection interface used by crowd-source and expert annotators.
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