Vector Competence and Capacity of Culex erraticus (Diptera: Culicidae) for Eastern Equine Encephalitis Virus in the Southeastern United States

Andrea M. Bingham,1,2 Nathan D. Burkett-Cadena,3 Hassan K. Hassan,1 and Thomas R. Unnasch1,4

1Global Health Infectious Disease Program, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612 (Andrea.Bingham@flhealth.gov; hhassan@health.usf.edu; tunnasch@health.usf.edu), 2Present address: Florida Department of Health, Division of Disease Control and Health Protection, Bureau of Epidemiology, 4052 Bald Cypress Way, Bin A12 Tallahassee, FL 32399-1710, 3University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th St. SE, Vero Beach, FL 32962 (nburkettcadena@ufl.edu), and 4Corresponding author, e-mail: tunnasch@health.usf.edu

Received 19 August 2015; Accepted 12 November 2015

Abstract

Field studies of the ecology of eastern equine encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) in the southeastern United States have demonstrated that Culex erraticus (Dyar and Knab) is the most common mosquito at many enzootic sites and is often infected with the virus. However, the competence of Cx. erraticus for EEEV has not been explored in detail. Culex erraticus females were collected from the field and fed upon EEEV-infected chicks. The infected mosquitoes were provided honey for nutrition and to monitor for time to infectiveness. Of the mosquitoes that survived the 14-d postfeeding period, 89% were infected and 84% had evidence of a disseminated infection, though titers were generally low. EEEV was first detected in honey 6 d postinfection and was detected in samples collected from 94% of the mosquitoes with a disseminated infection overall. These data and others were then employed to estimate the relative vectorial capacity of Cx. erraticus at an EEEV enzootic site in Alabama. The vectorial capacity of Cx. erraticus at this site was 44% of Culiseta melanura (Coquillett), the accepted enzootic vector, suggesting Cx. erraticus may play a role in transmitting EEEV in areas where it is abundant and Cs. melanura rare.

Key words: Culex erraticus, eastern equine encephalitis, arbovirus, Alabama

The ecology of EEEV transmission in the southeastern United States may differ from that in the northeast. In the southeast, Cs. melanura is often rare in habitats supporting EEEV enzootic transmission (Cupp et al. 2003, 2004; Cohen et al. 2009, Mukherjee et al. 2012). Here, Culex erraticus (Dyar and Knab) is by far the most abundant mosquito species (Cupp et al. 2003, 2004; Cohen et al. 2009; Mukherjee et al. 2012), and is also the mosquito species most commonly infected with EEEV (Cupp et al. 2003, Mukherjee et al. 2012). Culex erraticus feeds primarily on avian hosts in the spring and summer months, then switches to feeding primarily upon mammalian hosts in the summer and fall (Burkett-Cadena et al. 2011, Oliveira et al. 2011). It has been hypothesized that Cx. erraticus may play an important role in the transmission of EEEV in the southeast (Cupp et al. 2003, Cohen et al. 2009, Mukherjee et al. 2012). However, apart from one early report listing Cx. erraticus as a “fair” vector for EEEV (Chamberlain et al. 1954), the competency of this species has not been explored. Here, we report studies investigating the vector competency and capacity of Cx. erraticus for EEEV in the southeastern United States.
Materials and Methods

Mosquito collections were carried out at John B. Sergeant Park and Lettuce Lake Park in Hillsborough County, FL. Details of these sites may be found in a previous publication (Bingham et al. 2014). Resting adult mosquitoes were collected from natural and artificial resting sites (Burkett-Cadena 2011) using a handheld aspirator (Burkett-Cadena et al. 2008a). Mosquitoes were transported to the laboratory and identified to species using standard morphological keys for mosquitoes of the southeastern United States (Burkett-Cadena 2013).

Culex erraticus females were divided evenly among host exposure chambers. The chambers were constructed of polypropylene light trap collection containers (Model 2801B, BioQuip Products, Rancho Dominguez, CA). The top of the chamber was fitted with netting to allow mosquito blood feeding, but prevent escape. The bottom of the chamber consisted of 40 by 40 aluminium mesh. A 10-mm-diameter hole was drilled into the side of each mosquito chamber to allow the insertion and removal of a 1.5-ml microcentrifuge tube with the bottom portion cut away. Mosquitoes were given access to carbohydrates via honey placed inside the microcentrifuge tube. In this way, honey could be replaced and tested for presence of EEEV. The honey drops present in each of the containers were tested for the presence of EEEV by reverse transcription-polymerase chain reaction (RT-PCR) as previously described (Bingham et al. 2014), to ensure that none of the mosquitoes included in the study were previously infected with EEEV. Mosquitoes were maintained at 28°C under a photoperiod of 13:11 (LD) h. Prior to transmission experiments, mosquitoes were fed honey for 4 d, then starved of honey for 48 h before being allowed to feed upon an infected chicken.

Five 8-d-old chickens were infected via subcutaneous injection with 1x10^8 plaque forming units (PFU) of EEEV strain M05-316, which was originally isolated from a pool of *Culex nigripalpus* Theobald collected in Volusia County, FL, in May 2005 and passaged twice in Vero cells (White et al. 2011). The infected birds were returned to isolation cages (Tecniplast, Buguggiate, Italy) and maintained at 28°C for 24 h to permit them to develop an infectious viremia. The infected birds were then immobilized on the containers containing the adult *Cx. erraticus* described above. The mosquitoes were permitted to feed ad libitum on the infected chickens. The infected birds were euthanized, and the concentration of EEEV in their blood was determined by RT-PCR and plaque assay as previously described (Beaty et al. 1989, Lambert et al. 2003). The mean titer of the five infected birds was 1.01x10^7 4x10^6 PFU/ml, a titer similar to that seen in wild avian reservoirs of the virus (Arrigo et al. 2010). Blood-engorged mosquitoes were identified by visual inspection of their abdomens, transferred to individual containers and incubated for 14 d postinfection. Fresh honey was supplied every 2 d, and used honey tested for the presence of EEEV by RT-PCR. Following the 14-d experimental period, mosquitoes were sacrificed, separated into legs and bodies, and tested for the presence of EEEV RNA by quantitative RT-PCR as previously described (Bingham et al. 2014). Samples were scored positive only if they gave a positive result (Ct value <40) in both initial and confirmatory assays. Viral titers in positive samples were calculated by reference to Ct values derived from a standard curve consisting of RNA extracted from dilutions of a standard culture whose titer was determined by plaque assay (Beaty et al. 1989). Vectorial capacity was calculated using the formula

\[
V = \frac{na^2p^b}{b}n
\]

following Garret-Jones (Garret-Jones 1964). The 95% confidence intervals (95% CI) surrounding the percent estimates were calculated as previously described (Apperson et al. 2002).

Animal experiments were performed under Protocol R4158 approved by the Institutional Animal Care and Use Committee and Protocol number 0972 approved by the Institutional Biosafety Committee of the University of South Florida. Experiments were performed in an ABSL3 facility approved for select agent use (EEEV) by the Centers for Disease Control (registration number C20112014-1298).

Results

In total, 35/37 *Cx. erraticus* successfully fed upon infected chicks. Of these, 19/35 (54%; 95% CI 38–70%) survived through the 14-d postinfection study period (Fig. 1). Of the mosquitoes that survived, 17/19 (89%; 95% CI 76–100%) had detectable EEEV in their bodies, indicating that they had become infected. Of the survivors, 16/19 (84%; 95% CI 68–100%) had detectable EEEV RNA in their legs, indicative of a disseminated infection. Of the mosquitoes that did not survive, 5/16 were recovered in a decomposed state and could not be tested. Of those that did not survive and could be assayed, 10/11 (91%; 95% CI 74–100%) contained detectible EEEV in their bodies and 2/11 (18%; 95% CI 0–41%) contained EEEV in both bodies and legs. Viral titers in surviving positive mosquitoes ranged from 1–7x10^5 PFU/ml in the positive bodies and 1–7x10^5 PFU/ml in the legs (Fig. 2). Two of the 19 survivors (10.5%; 95% CI 0–24%) exhibited titers in the legs of >1x10^5/ml, the mean titer seen in laboratory-infected *Cs. melanura* (Scott et al. 1984).

The honey drops provided to the individual mosquitoes were also collected and assayed for the presence of EEEV. EEEV RNA first appeared in the collected honey 6 d postinfection. Overall, 15/16 (94%; 95% CI 82–100%) of the mosquitoes with a disseminated infection expectorated detectable RNA into the honey drops at least once in days 6–14 postinfection. None of the honey drops collected from the mosquitoes that tested negative in both the body or leg assays were positive, nor were positive honey drops detected from the single mosquito found to have detectable virus in the body but not the legs.

These data were combined with data from previously published laboratory and field studies to estimate the relative vectorial capacity of *Cx. erraticus* and *Cs. melanura* at an EEEV enzootic site in the Tuskegee National Forest of Alabama (TNF), where *Cx. erraticus* is common and *Cs. melanura* is relatively rare (Cupp et al. 2003). Assuming that only individuals with titers >1x10^5/ml were...
balanced by the greater relative abundance of *Cx. erraticus* in the southeastern United States (Cupp et al. 2004, Mukherjee et al. 2012, Bingham et al. 2014). *Culex erraticus* is by far the most abundant mosquito at most of the EEEV enzootic sites in the southeastern United States examined, while *Cs. melanura* is often rare (Cupp et al. 2003, 2004; Mukherjee et al. 2012), especially during the peak epizootic transmission months of June, July, and August (Burkett-Cadena et al. 2011, Oliveira et al. 2011). Furthermore, due to the catholic feeding behavior, utilizing avian, mammalian, and ectothermic hosts (Burkett-Cadena et al. 2008b), *Cx. erraticus* may act both as the enzootic amplification and bridge vector for EEEV. *Culex erraticus* exhibits a shift in feeding behavior, frequently feeding upon avian species in the spring and summer and then shifting almost exclusively to feeding upon mammals in midsummer through the autumn (Burkett-Cadena et al. 2011, Oliveira et al. 2011). This pattern corresponds to patterns of EEEV infection observed in mammals (particularly horses) throughout most of the virus’ range (Scott and Weaver 1989). Interestingly, the favored avian hosts of *Cx. erraticus* are wading birds (Hassan et al. 2003, Bingham et al. 2014), a group that has been shown to be quite susceptible to EEEV infection and may thus represent important enzootic amplification hosts for the virus (McLean et al. 1995). Taken together, these studies suggest, their high abundance at many sites in the southeastern United States, *Cx. erraticus* is likely to play a role in EEEV transmission in this region.

Acknowledgments

This research was supported by a grant from the National Institutes of Health to TRU (Grant R56AI01372).

References Cited

