Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) under elevated CO2 concentration with low nutrient availability

Makoto Watanabe1,2, Yoko Watanabe3, Satoshi Kitaoka4, Hajime Utsugi4, Kazuhito Kita5 and Takayoshi Koike2,6

1Research Fellowship of Japan Society for the Promotion of Science, Chiyoda-ku, 102-8472, Japan; 2Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; 3Forest Research Station, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0809, Japan; 4Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo 062-8516, Japan; 5Forestry Research Institute, Hokkaido Research Organization, Bibai 079-0198, Japan; 6Corresponding author (tkoike@for.agr.hokudai.ac.jp)

Received December 27, 2010; accepted May 18, 2011; published online August 2, 2011; handling Editor David Tissue

The hybrid larch F1 (Larix gmelinii var. japonica × Larix kaempferi) is considered one of the most important tree species not only for timber production but also as an afforestation material for severe conditions such as infertile soil. To predict the ability of hybrid larch F1 as an afforestation material under potential climates in the future, it is important to understand the response of hybrid larch F1 to elevated CO2 concentration ([CO2]) under low nutrient availability. Three-year-old seedlings of hybrid larch F1 were grown under two different levels of [CO2], 360 (ambient) and 720 µmol mol−1 (elevated), in combination with two different levels of nitrogen (N) supply (0 and 30 kg ha−1) for one growing season. Elevated [CO2] reduced the maximum rates of carboxylation and electron transport in the needles. Net photosynthetic rates at growth [CO2] (i.e., 360 and 720 µmol mol−1 for ambient and elevated treatment, respectively) did not differ between the two CO2 treatments. Reductions in N content and N use efficiency to perform photosynthetic functions owing to the deficiency of nutrients other than N, such as P and K, and/or increase in cell wall mass were considered factors of photosynthetic down-regulation under elevated [CO2], whereas stomatal closure little affected the photosynthetic down-regulation. Although we observed strong down-regulation of photosynthesis, the dry matter increase of hybrid larch F1 seedlings was enhanced under elevated [CO2]. This is mainly attributable to the increase in the amount of needles on increasing the number of sylleptic branches. These results suggest that elevated CO2 may increase the growth of hybrid larch F1 even under low nutrient availability, and that this increase may be regulated by changes in both crown architecture and needle photosynthesis, which is mainly affected not by stomatal limitation but by biochemical limitation.

Keywords: acclimation to high CO2, Larix gmelinii var. japonica × Larix kaempferi, needle characteristics, nitrogen allocation, nutrient condition, photosynthetic adjustment.

Introduction

Larix species are widely distributed in cool temperate northern hemisphere regions (Gower and Richards 1990). In Japan, the Japanese larch (Larix kaempferi) was introduced from the central subalpine region of Japan to northern Japan as a candidate plantation species in the 1870s because it grows more rapidly and has more tolerance to cold than the other traditional silvicultural species. However, some serious disadvantages associated with the plantation of Japanese larch, such as susceptibility to diseases and grazing, raised concerns (Ito 1963, Igarashi and Takeuchi 1985, Koike et al. 2000, 2004). To overcome these difficulties, the hybrid larch, obtained by crossing Larix gmelinii var. japonica and L. kaempferi, was developed. Studies conducted subsequently have demonstrated that the selected
clones of hybrid larch F₁ had improved tolerance to grazing by redback voles and deer, and to wind and snow damage. Furthermore, it showed faster growth rate and high capacity of carbon accumulation as compared with Japanese larch (Miyaki 1990, Kita et al. 2009). Because larch species can survive in infertile soil, they have been recognized as a useful material for timber production, absorption of atmospheric CO₂ as a carbon sink and afforestation in severe conditions, e.g., low nutrient availability (Zhang et al. 2000, Ryu et al. 2009, 2010).

The atmospheric CO₂ concentration ([CO₂]) has dramatically increased since the industrial revolution, and this increase is continuing (Meehl et al. 2007). Because CO₂ is the primary substrate for photosynthesis, its increased concentration can act as a kind of fertilizer. However, a decrease in photosynthetic activity, called ‘down-regulation of photosynthesis’, is occasionally observed, especially under low-nutrient conditions (Tissue and Oechel 1987, Tissue et al. 1993, Eguchi et al. 2004, 2008, Ellsworth et al. 2004, Ainsworth and Long 2005, Tissue and Lewis 2010). Photosynthetic down-regulation was frequently observed along with a decrease in nitrogen (N) concentration in the leaves and whole plant, as well as an accumulation of non-structural carbohydrates in leaves (Stitt and Krapp 1999, Nowak et al. 2004, Ellsworth et al. 2004). Under low nutrient and elevated [CO₂] conditions, plants will suffer the dilution of nutrients owing to the nutrient imbalance between limited supply from the soil and the stimulated nutrient demand for growth. In addition, production of new organs, which acts as a sink for carbon, is limited under low nutrient conditions, non-structural carbohydrates will accumulate in leaves under elevated [CO₂] and photosynthetic activity will decrease by the feedback mechanism (Harold 1980). Therefore, there is a possibility that the benefit of elevated [CO₂] is small in the case of afforestation under infertile soil conditions with low nutrient availability.

It has been reported that the growth and photosynthesis of Larix species were generally stimulated under elevated [CO₂] (Tjoelker et al. 1998a, 1998b, Handa et al. 2005, 2006). However, Eguchi et al. (2004) observed photosynthetic down-regulation of L. kaempferi seedlings under elevated [CO₂] with relatively low nutrient conditions. Yazaki et al. (2001) observed elevated [CO₂]-induced stimulation of stem diameter growth of Larix sibirica under relatively high nutrient conditions, but not under low nutrient conditions. On the other hand, Yazaki et al. (2004) reported minimal effects of [CO₂] on the biomass of L. kaempferi seedlings that are independent of soil fertility. These studies suggest that the responses of Larix species to elevated [CO₂] are different between different species, and are affected by environmental conditions. However, there was no information on the response of hybrid larch F₁ to elevated [CO₂].

Can the hybrid larch F₁ maintain high performance under elevated [CO₂] with low nutrient availability? To answer this question, we studied the growth and photosynthetic responses of hybrid larch F₁ to elevated [CO₂] under low nutrient availability. Because increase in N deposition is another important factor in the changing environment (Galloway et al. 2008, Ryu et al. 2009), we incorporated N supply to soil as a sub-factor of the present study to test whether this treatment enhances the responses of hybrid larch F₁ to elevated [CO₂].

Materials and methods

Plant materials

Three-year-old cutting seedlings of the hybrid larch F₁ clone (sp. ‘Gream’ as a nickname) were planted in 7-l pots filled with a 1:2 (v/v) mixture of Kanuma pumice soil and clay soil on 23 May 2008, and were placed in a room at ~15 °C without direct sunlight but close to windows until needle emergence. These pots were set in trays to prevent nutrient drainage. On 30 May, the seedlings were transferred into six phytotrons (Koito KG, Yokohama, Japan) at the Forestry and Forest Product Research Institute in Sapporo, Japan (43°N, 141°E; 180 m a.s.l.) in natural daylight (~90% of full sunlight) at 25/16 °C (day/night) and were grown for 139 days until 16 October. Plants were irrigated with tap water during the experiment. This potted soil mixture does not have sufficient nutrients to grow as compared with the one in field soil such as brown forest soil, this type of soil being the most widely distributed one in Japan (Koike 1995). In the present study, we applied the least amount of fertilizer to maintain low nutrient availability. On 4 July, 8 August and 4 September, we supplied liquid fertilizer (N:P:K = 5:10:5, Hypoxen, Japan, Osaka, Japan) to all potted soils, for a total N application of 4.8 kg ha⁻¹ (15 mg N pot⁻¹). At the end of the experiment, we collected the soil and determined N concentration using an NC analyzer (NC-900, Sumika Chemical Analysis Service, Osaka, Japan). The average N concentration of all soil samples was 0.08% and there was no significant difference between the treatments.

Experimental design

The present experiment had a split-plot factorial design and employed a randomized block method. The whole-plot treatment comprised two levels of CO₂ with three chamber replications, totally six chambers. The sub-plot treatment consisted of two levels of N treatment in each chamber. We measured the height and diameter at ground level of all seedlings and then six seedlings (three seedlings in each N treatment) were assigned to each chamber (total 36 seedlings). The averages of stem volume, calculated as height × diameter × diameter (D²H), in each treatment were uniformed. The averages ± standard deviations of height, diameter and D²H of all seedlings were 65.7 ± 8.3 cm, 8.6 ± 1.1 mm and 50.6 ± 16.8 cm³, respectively.
The seedlings were grown at 360 μmol mol\(^{-1}\) (ambient) or 720 μmol mol\(^{-1}\) (elevated) CO\(_2\). The details of the CO\(_2\) treatments were described previously (Koike 1995, Koike et al. 1996, Yazaki et al. 2001, 2004). We supplied an ammonium sulfate solution to the potted soil in half of the seedlings (high N) on 24 and 27 June. The total amounts of N added to the potted soil were 30 kg N ha\(^{-1}\) on the basis of the potted soil surface area (94 mg N pot\(^{-1}\)). The remaining seedlings were supplemented with tap water instead of ammonium sulfate solution (low N). The amount of N supply was based on the field observations of N deposition by wet deposition (bulk precipitation) and that by throughfall and stemflow ranging from 10 to 25 kg ha\(^{-1}\) year\(^{-1}\) (Baba and Okazaki 1998, Baba et al. 2001, Okochi and Iwaga 2001) and from 10 to 40 kg ha\(^{-1}\) year\(^{-1}\) (Kobayashi et al. 1995, Baba and Okazaki 1998, Baba et al. 2001), respectively. The vapor pressure deficit was kept below 1.5 kPa. To maintain the needle temperature and photon flux density between 0900 and 1500 h, the needle temperature and photon flux density were measured at 25 ± 0.5 °C and 1600 μmol m\(^{-2}\)s\(^{-1}\), respectively. The vapor pressure deficit was kept below 1.5 kPa. To obtain the intercellular CO\(_2\) concentration (C\(_i\))–response curve of the net photosynthetic rate (A), i.e., the A/C\(_i\) curve, A was determined at 14 steps of CO\(_2\) concentration in the chamber (C\(_a\), 50–1700 μmol mol\(^{-1}\)). We determined A at growth [CO\(_2\)] (i.e., 360 and 720 μmol mol\(^{-1}\) for ambient and elevated treatment, respectively, A\(_{\text{grown}}\)) and at 1700 μmol mol\(^{-1}\) (A\(_{\text{max}}\)), and the stomatal conductance at growth [CO\(_2\)] (G\(_s\)). The maximum rate of carboxylation (V\(_{\text{max}}\)) and the maximum rate of electron transport (J\(_{\text{max}}\)) were calculated from the A/C\(_i\) curve (Farquhar et al. 1980, Long and Bernacchi 2003). The values of Rubisco Michaelis constants for CO\(_2\) (K\(_C\)) and O\(_2\) (K\(_O\)) and the CO\(_2\) compensation point in the absence of dark respiration (I\(^*\)) for the analysis of the A/C\(_i\) curve were according to Bernacchi et al. (2001). All the gas exchange parameters were expressed on the basis of the projected needle area measured with an image scanner.

Measurement of needle traits

After the measurement of the gas exchange rate, the needles were collected to determine the leaf mass per area (LMA), and amounts of chlorophyll, cell wall, starch and nutrient elements. After the measurement of the needle projected area using an image scanner, the samples for chlorophyll and cell wall were frozen and stored in a freezer at −80 °C. Chlorophyll in needles was extracted with dimethyl sulfoxide according to Barnes et al. (1992) and determined using a spectrophotometer (Gene spec III; Hitachi, Tokyo, Japan). The cell wall mass was measured according to the method described by Hikosaka and Shigeno (2009). Frozen needles were powdered with liquid N in a mortar with a pestle, and homogenized in 1.5 ml of buffer containing 100 mM 4-((2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 8.0), 5 mM ethylenediaminetraacetic acid, 0.7% (w/v) polyethylene glycol 20000, 2% sodium dodecyl sulfate (SDS), 1% polyvinylpyrrolidone and 24 mM 2-mercaptoethanol. The homogenate was centrifuged at 15,000g for 10 min. The pellet was washed with the same buffer two times and then washed with deionized water to remove SDS. After this procedure, the pellet was treated with PAW (phenol:acetic acid:water = 2:1:1, w:v:v) three times (1 h, overnight and 1 h, respectively). The pellet was then washed with ethanol until there was no smell of phenol. The dry mass of the remaining pellet was regarded as the mass of cell walls. The other samples for determination of LMA and content of starch and nutrient elements were dried in an oven at 70 °C for 5 days. The LMA was calculated as the ratio of dry mass to the area of the needles. Dried needles were ground to a fine powder with a sample mill. Fifty milligrams of powdered dry samples were used for the analyses of starch and nutrient elements. The starch content was determined according to Yonekura et al. (2004) using F-Kit Starch (Boehringer-Mannheim K.K., Tokyo, Japan). The N content of the needle sample was determined using an NC analyzer described above. We calculated the ratios of V\(_{\text{max}}\) (μmol m\(^{-2}\)s\(^{-1}\)), J\(_{\text{max}}\) (μmol m\(^{-2}\)s\(^{-1}\)) and chlorophyll content (g m\(^{-2}\)) to N content (N\(_{\text{area}}\), g m\(^{-2}\)) (V\(_{\text{max}}\)/N, J\(_{\text{max}}\)/N and Chl/N, respectively) for evaluating N use efficiency for carboxylation, electron transport and light harvesting in photosynthesis, respectively. To measure the concentrations of phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) in the needles, the needle sample was digested with HNO\(_3\), HCl and H\(_2\)O\(_2\). The concentration of elements in the sample solutions was determined using inductively coupled plasma optical emission spectrometry (IRIS, Jarrel Ash, Franklin, MA, USA). **Anatomical analysis**

Samples collected after the gas exchange measurement were fixed with 4% glutaraldehyde buffered with 0.1 M phosphate buffer (pH 7.2). After these samples were washed, they were cut into small pieces, dehydrated through a graded alcohol series and embedded in epoxy resin (Epok 812; Okenshoji Co., Ltd., Tokyo, Japan). One-μm-thick transverse sections were cut using an ultramicrotome (Ultracut N; Reichert-Nissei, Leica, Vienna, Austria), and were stained with toluidine blue (1% w/v) for 10 min. Toluidine blue has a low specificity of staining and stains cell wall, cell nucleus, DNA, RNA, vacuole with abundant phenolic compounds such as tannin, and polysaccharide with...
abundant carboxyl and sulfate groups. We photographed the sections using a light microscope (Axioskop 2 plus; Zeiss, Oberkochen, Germany) equipped with a digital camera (Nikon Digital Sight; Nikon, Tokyo, Japan). The needle shape ratio, defined as the ratio of needle thickness to width, was calculated from the photographs.

Growth measurements

On the 139th day after the start of CO2 treatments, all the seedlings were harvested to determine the dry mass of the plant organs. We took a 3-week interval between the dates of measurement for needle traits and that for dry mass to reflect the evaluated photosynthetic traits in needles to the growth. The seedlings were separated into needles, branches, stems and roots. Because sylleptic branches were identified, we separated the current year branches into branches elongated and roots. Because sylleptic branches were identified, we separated the current year branches into branches elongated from the previous year’s bud (primary branch) and sylleptic branches (secondary branch), and counted them. The plant organs were dried at 70 °C for 1 week and weighed. Although the roots reached the bottom of the pot and circled a little, we did not find intertwining roots at the end of the experiment.

Statistical analysis

Statistical analyses were performed using SPSS software (SPSS, Inc., Chicago, IL, USA). Analysis of variance (ANOVA) was used to test the effects of CO2 and N treatment. Hypotheses concerning CO2 effects (1 df) were tested against whole-plot chamber variation (4 df), whereas the main effects of N and CO2 against whole-plot chamber variation (4 df), whereas the ANOVA: *A cled a little, we did not find intertwining roots at the end of the experiment.

Results

CO2 effects on needle gas exchange parameters and traits

Elevated [CO2] significantly decreased $A_{\text{max}}, V_{\text{cmax}}, J_{\text{max}}$ and G_s in the needles of hybrid larch F1 seedlings (Table 1). No significant increase was detected in A_{growth} under elevated [CO2]. Neither the N supply nor the interaction between elevated [CO2] and N supply has any significant effects on any parameters. Elevated [CO2] resulted in a significant increase in the LMA, cell wall mass per area and starch content, but a decrease in chlorophyll, phosphorus (P) and potassium (K) content in the needles (Table 2). The N supply significantly increased Ca and Mg content in the needles. There was no significant interaction between elevated [CO2] and N supply for any parameters.

Figures 1–4 show the relationships between $A_{\text{max}}, N_{\text{area}}$ and starch content (Figure 1), V_{cmax}/N, J_{max}/N and Chl/N, and LMA (Figure 2), V_{cmax}/N, J_{max}/N and Chl/N, and P and K content (Figure 3), and LMA and cell wall mass per area (Figure 4). A significant correlation was detected between N_{area} and A_{max} ($P < 0.001$); A_{max} decreased with decreasing N_{area} (Figure 1). A similar trend was also observed between N_{area} and A at 360 and 720 µmol mol$^{-1}$ CO2, V_{cmax} and J_{max} (data not shown). There was no correlation between starch content and A_{max}. As shown in Figure 2, V_{cmax}/N, J_{max}/N and Chl/N were negatively correlated with LMA ($P < 0.01$, in all parameters). We found positive correlations of J_{max}/N and Chl/N with P content ($P < 0.05$ and $P = 0.094$, respectively) (Figure 3). V_{cmax}/N, J_{max}/N and Chl/N showed a significant positive correlation with K content. LMA increased with cell wall mass per area ($P < 0.01$), and the slope of the regression line was 1.0 (Figure 4).

The micrographs of needle cross-sections of hybrid larch F1 seedlings are shown in Figure 5. We did not observe any change in the thickness of needles and mesophyll cell layers in the adaxial side in response to the elevated [CO2] and N.

Table 1. Gas exchange traits in the needles of hybrid larch F1 seedlings grown under CO2 concentrations at 360 and 720 µmol mol$^{-1}$ in combination with 0 (Low N) and 30 kg N ha$^{-1}$ (High N).

<table>
<thead>
<tr>
<th>Trait</th>
<th>360 µmol mol$^{-1}$ CO2</th>
<th>720 µmol mol$^{-1}$ CO2</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low N</td>
<td>High N</td>
<td>Low N</td>
</tr>
<tr>
<td>A_{growth} (µmol m$^{-2}$ s$^{-1}$)</td>
<td>5.7 (1.3)</td>
<td>6.1 (0.2)</td>
<td>6.2 (2.1)</td>
</tr>
<tr>
<td>A_{max} (µmol m$^{-2}$ s$^{-1}$)</td>
<td>13.7 (1.6)</td>
<td>15.4 (2.6)</td>
<td>9.9 (2.4)</td>
</tr>
<tr>
<td>V_{cmax} (µmol m$^{-2}$ s$^{-1}$)</td>
<td>33.5 (1.5)</td>
<td>33.7 (4.5)</td>
<td>24.5 (7.4)</td>
</tr>
<tr>
<td>J_{max} (µmol m$^{-2}$ s$^{-1}$)</td>
<td>62.2 (8.1)</td>
<td>72.6 (15.8)</td>
<td>45.9 (3.9)</td>
</tr>
<tr>
<td>G_s (mmol m$^{-2}$ s$^{-1}$)</td>
<td>95.2 (25.2)</td>
<td>110.2 (30.3)</td>
<td>70.1 (8.4)</td>
</tr>
</tbody>
</table>

Each value is the mean of three replications, and the standard deviation is shown in parenthesis. A_{growth}, net photosynthetic rate at growing CO2 concentration; A_{max}, net photosynthetic rate at 1700 µmol mol$^{-1}$ CO2; V_{cmax}, maximum rate of carboxylation; J_{max}, maximum rate of electron transport; G_s, stomatal conductance to water vapor.

ANOVA: *$P < 0.05$; **$P < 0.01$; ***$P < 0.001$; n.s. not significant.
supply. Cells of the needles under elevated [CO2] were strongly stained by toluidine blue compared with those under ambient [CO2], irrespective of N treatment, indicating that phenolic compounds such as tannins accumulated in the central vacuole of mesophyll cells.

CO2 effects on growth and branch number

A significant increase in needle, branch, root and whole-plant dry mass under elevated [CO2] was observed (Table 3). Needle, root and whole-plant dry mass were significantly increased by N supply. Elevated [CO2] significantly increased the secondary branch number, whereas N supply had no effect. There was no significant interaction between elevated [CO2] and N supply for any parameters related to growth and branch number.

Discussion

Down-regulation of photosynthesis under elevated [CO2]

We found a strong down-regulation of photosynthesis in the needle of hybrid larch F1 seedlings under elevated [CO2] (Table 1). As a result, A\text{growth}, in elevated [CO2] was not significantly different from that in ambient [CO2]. We also found a decrease in G\text{S} under elevated [CO2]. The reducing photosynthetic rate may be due to elevated [CO2]-induced stomatal closure, a frequently reported observation (Ainsworth and Rogers 2007). However, the ratio of C\text{S} to C\text{a} of the needles in seedlings grown under elevated [CO2] was significantly higher than under ambient [CO2] (data not shown), indicating that the main factor for photosynthetic down-regulation is not stomatal closure but a reduction in the assimilation capacity in the needles.

Photosynthetic down-regulation was frequently observed along with an accumulation of non-structural carbohydrates in the leaf and a decrease in N concentration in the leaves and whole plant (Stitt and Krapp 1999, Ellsworth et al. 2004, Nowak et al. 2004). In the present study, we found a significant increase in starch content in the needles under elevated [CO2] (Table 2). However, the extent of starch accumulation was not pronounced compared with other studies (Tissue

Table 2. Needle traits of hybrid larch F1 seedlings grown under CO2 concentrations at 360 and 720 µmol mol\(^{-1}\) in combination with 0 (low N) and 30 kg N ha\(^{-1}\) (high N).

<table>
<thead>
<tr>
<th>360 µmol mol(^{-1}) CO2</th>
<th>720 µmol mol(^{-1}) CO2</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low N</td>
<td>High N</td>
</tr>
<tr>
<td></td>
<td>Low N</td>
<td>High N</td>
</tr>
<tr>
<td>LMA (g m(^{-2}))</td>
<td>92.8 (5.5)</td>
<td>93.8 (4.2)</td>
</tr>
<tr>
<td>CWMA (g m(^{-2}))</td>
<td>53.5 (1.0)</td>
<td>49.0 (1.8)</td>
</tr>
<tr>
<td>Needle shape ratio</td>
<td>0.42 (0.01)</td>
<td>0.44 (0.03)</td>
</tr>
<tr>
<td>Starch (g m(^{-2}))</td>
<td>7.32 (2.75)</td>
<td>7.46 (1.47)</td>
</tr>
<tr>
<td>Chlorophyll (g m(^{-3}))</td>
<td>0.23 (0.03)</td>
<td>0.23 (0.03)</td>
</tr>
<tr>
<td>N (g m(^{-3}))</td>
<td>1.05 (0.02)</td>
<td>1.20 (0.20)</td>
</tr>
<tr>
<td>P (mg m(^{-3}))</td>
<td>53.9 (6.1)</td>
<td>56.4 (6.2)</td>
</tr>
<tr>
<td>K (mg m(^{-3}))</td>
<td>647.6 (99.2)</td>
<td>637.2 (86.1)</td>
</tr>
<tr>
<td>Ca (mg m(^{-3}))</td>
<td>264.6 (36.2)</td>
<td>318.5 (26.3)</td>
</tr>
<tr>
<td>Mg (mg m(^{-3}))</td>
<td>104.2 (8.5)</td>
<td>120.5 (9.8)</td>
</tr>
</tbody>
</table>

Each value is the mean of three replications, and the standard deviation is shown in parenthesis.

ANOVA: *P < 0.05; **P < 0.01; ***P < 0.001; n.s. not significant.
et al. 1997, Tissue and Lewis 2010), and there was no significant correlation between A_{max} and starch content (Figure 1). On the other hand, A_{max} decreased linearly with N_{area}. The elevated [CO$_2$]-induced decrease in N_{area} was closely related to the dilution of N with increasing plant body size (Table 3), as observed by Coleman et al. (1993). Therefore, we consider that the reduction in N content in needles with increasing amounts of whole-plant needles is one of the reasons for the photosynthetic down-regulation of hybrid larch F$_1$ seedlings under elevated [CO$_2$].

The slope of the regression line between A_{max} and N_{area} was steep and had a positive value of the x-axis intercept (Figure 1), indicating a decrease in photosynthetic N use efficiency (PNUE) under elevated [CO$_2$]. We found a marginal decrease in N_{area} under elevated [CO$_2$] ($P = 0.068$), because the significant decrease in mass-based N content (data not shown) was outweighed by a significant increase in LMA (Table 2). Similar results were reported in the needles of Pinus ponderosa showing photosynthetic down-regulation under elevated [CO$_2$].
We consider that N utilization in the needles of hybrid larch F_1 seedlings grown under elevated [CO_2] was different as compared with that under ambient [CO_2] owing to the elevated [CO_2]-induced increase in LMA even though N area is similar. In fact, decreases in $V_{\text{c max}}/\text{N}$, J_{max}/N and Chl/N with increasing LMA were observed, as shown in Figure 2. These results indicate a decrease in N use efficiency with respect to photosynthetic function under elevated [CO_2]. Therefore, we consider that the decrease in N content in the needles and the decrease in N use efficiency to perform photosynthetic functions contributed to the down-regulation of photosynthesis under elevated [CO_2]. We discuss the decrease in N use efficiency to perform photosynthetic functions from the viewpoint of nutrient conditions other than N and needle structure.

We found several significant correlations between the ratios of $V_{\text{c max}}/\text{N}$, J_{max}/N and Chl/N, and the content of P and K in the needles, which showed a significant decrease under elevated [CO_2] (Figure 3; Table 2). The deficiency of P and K under elevated [CO_2] may lead to a decrease in N use efficiency to perform photosynthetic functions. Triose phosphate utilization (TPU) in the chloroplast has been reported as one of the

Table 3. Dry mass of plant organs and branch numbers of hybrid larch F_1 seedlings grown under CO_2 concentration at 360 and 720 µmol mol\(^{-1}\) in combination with 0 (low N) and 30 kg N ha\(^{-1}\) (high N).

<table>
<thead>
<tr>
<th>360 µmol mol(^{-1}) CO_2</th>
<th>720 µmol mol(^{-1}) CO_2</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low N</td>
<td>High N</td>
<td>CO_2</td>
</tr>
<tr>
<td>Dry mass (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needle</td>
<td>10.3 (2.9)</td>
<td>17.8 (1.6)</td>
</tr>
<tr>
<td>Branch</td>
<td>5.2 (1.3)</td>
<td>9.3 (0.2)</td>
</tr>
<tr>
<td>Stem</td>
<td>13.8 (4.2)</td>
<td>17.1 (3.6)</td>
</tr>
<tr>
<td>Root</td>
<td>25.9 (8.9)</td>
<td>35.3 (3.1)</td>
</tr>
<tr>
<td>Whole plant</td>
<td>55.2 (15.7)</td>
<td>79.5 (5.9)</td>
</tr>
<tr>
<td>Branch number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary branch</td>
<td>15.0 (5.8)</td>
<td>15.0 (2.7)</td>
</tr>
<tr>
<td>Secondary branch</td>
<td>22.1 (11.3)</td>
<td>69.1 (14.6)</td>
</tr>
</tbody>
</table>

Each value is the mean of three replications, and the standard deviation is shown in parenthesis. ANOVA: * $P < 0.05$; ** $P < 0.01$; n.s. not significant.
important biochemical limitations in photosynthesis (e.g., Sharkey 1985). Triose phosphate utilization limitation will become serious with decreasing P concentration in leaves. Potassium has been suggested to be an important regulatory cation in maintaining the pH of cytoplasm and stroma (Kurkdjian and Guern 1989, Wu and Berkowitz 1992). K deficiency induces a decrease in stromal pH, resulting in a decrease in photosynthetic activity (Werdan et al. 1975, Marschner 1995). The effects of P and K deficiency on N use efficiency to perform photosynthetic functions would be the results of feedback effect to balance the reduction in photosynthetic activity by direct effects of P and K limitation. However, it should be noted that because we did not control soil P and K availability, it is hard to conclude whether P and/or K content drove the relationships between needle physiology and N content, or was simply correlated with these relationships.

An increase in the cell wall mass per area with the increase in LMA is illustrated in Figure 4. This result may suggest that an increase in N allocation to the cell wall led to the decrease in N allocation to photosynthetic functions (Takashima et al. 2004, Feng et al. 2009). According to Hikosaka and Shigeno (2009), the concentration of N in the cell wall of deciduous tree species is 0.19–0.37%. Applying these values to our case, the increase of 11.7 g m⁻² cell wall mass per area under elevated [CO₂] in the present study (averaged in two N treatments, Table 2) results in an increase of 0.02–0.04 g N m⁻² allocated to the cell wall. We then calculated the content of N allocated to photosynthesis in the needle based on the values of Vcmax, Jmax and chlorophyll content (Niinemets and Tenhunen 1997, Kitaoka and Koike 2004, Tissue and Lewis 2010). The average values of two N treatments at ambient and elevated [CO₂] were 0.46 and 0.31 g N m⁻², respectively. The increase in N allocated to the cell wall (0.02–0.04 g N m⁻²) seems a significant decrease in the N allocated to photosynthesis under elevated [CO₂] (0.15 g N m⁻²). Therefore, the hypothesis that a trade-off exists between N allocation to photosynthesis and the cell wall might partly explain the decreased N use efficiency to perform photosynthetic functions under elevated [CO₂].

Because we did not observe any increase in the thickness of needles and mesophyll cell layers in the adaxial side under elevated [CO₂] (Table 2; Figure 5), the increase in cell wall mass per area is not due to the change in the structure of the needles, but due to the increase in density and/or thickness of the cell wall itself. An alternative possibility of the decreased N use efficiency to perform photosynthetic functions under elevated [CO₂] could be that the diffusion of CO₂ from intercellular space to chloroplast stroma is inhibited by a dense and/or thick cell wall under elevated [CO₂], although the main location for resistance of CO₂ diffusion is considered to be plasma membranes including aquaporins (Terashima and Ono 2002, Hanba et al. 2004).

Consequently, we attribute the reduction in the PNUE of hybrid larch F₁ seedlings under elevated [CO₂] in the present study to one or more of the following factors: (i) a deficiency of nutrients other than N, such as P and K; (ii) an increase in N allocation to the cell wall; and (iii) an increase in resistance to CO₂ diffusion from intercellular space to chloroplast stroma.

Growth response to elevated [CO₂]

Although we found a strong down-regulation of photosynthesis, dry matter growth of hybrid larch F₁ seedlings was stimulated under elevated [CO₂] (Tables 1 and 3). This is due to an increase in the amount of needles. We expect that A₉ growth under elevated [CO₂] would be higher than that under ambient [CO₂] during the early period of the experiment (short-term response to elevated [CO₂]), in turn causing the seedlings under elevated [CO₂] to use more carbohydrates to produce needles. This may lead to an increase in the assimilation of the whole-plant scale even after down-regulation of photosynthesis. An increase in the total needle amount under elevated [CO₂] resulted in an increase in the secondary (sylleptic) branch number (Table 3). Such an increase under elevated [CO₂] was also observed in Solix species (Koike et al. 1995). Furthermore, Tissue and Oechel (1987) reported an increased production of new tillers of Eriophorum vaginatum under elevated [CO₂]. These results indicate that ordinal emergence of new leaves from the top of the branch may not be sufficient to act as the sink for increased carbohydrates under elevated [CO₂]. Although we can expect stimulation of the growth performance of hybrid larch F₁ under elevated [CO₂] in the future even under low nutrient availability, the crown structure in the future may change as compared with the current form. Crown structure is highly regulated to effectively obtain the light resource (Sterck 2005). The elevated [CO₂]-induced change in crown structure may reduce the efficiency of light capture (e.g., self-shading) and thereby gradually down-regulate growth in the long term.

We found an accumulation of phenolic compounds in the central vacuole of mesophyll cells (Figure 5). This accumulation may be provided by extra carbon under elevated [CO₂] in agreement with other studies (Pritchard et al. 1997, Knepp et al. 2005, Peltonen et al. 2005). We suggest that the accumulation of phenolic compounds may increase resistance to herbivores and thereby prevent growth reduction by herbivory under field conditions.

Effects of N supply

N supply on the soil did not affect the response of hybrid larch F₁ seedlings to elevated [CO₂]. A similar result was observed in P. ponderosa to elevated [CO₂] with N supply at 20 kg N ha⁻¹ year⁻¹ (Tissue et al. 1999). In the present study, N supply stimulated growth of the seedlings (Table 3). The additional N was used for the production of new needles as it did not increase the N concentration in the needles (Tables 2 and 3). We also found
that the area of individual needles marginally increased with the N supply ($P = 0.064$, data not shown). The change in leaf size may be a result of improvement in the nutrient status in the seedlings (e.g., Westoby et al. 2002); this may partly contribute to the needle amount of the whole plant.

Conclusion

Although a strong down-regulation of photosynthesis was induced, we can conclude that the growth of hybrid larch F$_1$ may be stimulated under future elevated [CO$_2$] even in soil with low nutrient availability. A reduction in N content and N use efficiency to perform photosynthetic functions was the main factor of photosynthetic down-regulation, whereas stomatal limitation little affected it. The increase in N allocation to the cell wall and the increase in the resistance of CO$_2$ diffusion from the intercellular space to the chloroplast stroma are new possibilities of photosynthetic down-regulation under elevated [CO$_2$] in infertile soil conditions. We also highlight the possibility of the deficiency of other nutrients such as P and K with regard to N use efficiency in the down-regulation of photosynthesis under elevated [CO$_2$]. These possibilities should be confirmed in future studies.

Acknowledgments

The authors are greatly indebted to Dr H. Tobita, Dr M. Kitao and Dr A. Uemura (Forestry and Forest Products Research Institute), Dr M. Kayama (Kyushu Research Center, Forestry and Forest Products Research Institute) and Mr. M. Kanetoshi and Miss K. Hinata (Hokkaido University) for their technical support.

Funding

This study was partly supported by a Grant-in-Aid from the Japan Society for the Promotion of Science through its Research Fellowships for Young Scientists program (20–1143, to M.W.) and Scientific Research on Innovative Areas (21114008, to T.K.), by the Ministry of the Environment through its Program of Global Environmental Research Fund (No. 1105, to T.K.), by the Ministry of the Environment through its Program on the Ministry of the Environment through its Program of Scientific Research on Innovative Areas (21114008, to T.K.), by the Global Environmental Research Fund (No. 42:173–178.

References

