Growth phenology of coast Douglas-fir seed sources planted in diverse environments

Peter J. Gould1,3, Constance A. Harrington1 and J. Bradley St. Clair2

1Pacific Northwest Research Station, 3625 93rd Ave SW, Olympia, WA 98512, USA; 2Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; 3Corresponding author (pgould@fs.fed.us)

The timing of periodic life cycle events in plants (phenology) is an important factor determining how species and populations will react to climate change. We evaluated annual patterns of basal-area and height growth of coast Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seedlings from four seed sources that were planted in four diverse environments as part of the Douglas-fir Seed-Source Movement Trial. Stem diameters and heights were measured periodically during the 2010 growing season on 16 open-pollinated families at each study installation. Stem diameters were measured on a subset of trees with electronic dendrometers during the 2010 and 2011 growing seasons. Trees from the four seed sources differed in phenology metrics that described the timing of basal-area and height-growth initiation, growth cessation and growth rates. Differences in the height-growth metrics were generally larger than differences in the basal-area growth metrics and differences among installations were larger than differences among seed sources, highlighting the importance of environmental signals on growth phenology. Variations in the height- and basal-area growth metrics were correlated with different aspects of the seed-source environments: precipitation in the case of height growth and minimum temperature in the case of basal-area growth. The detailed dendrometer measurements revealed differences in growth patterns between seed sources during distinct periods in the growing season. Our results indicate that multiple aspects of growth phenology should be considered along with other traits when evaluating adaptation of populations to future climates.

Keywords: adaptation, assisted migration, budburst, cambium, dormancy, genecology.

Introduction

Understanding how environmental signals affect the timing of periodic life cycle events in plants (phenology) is a key factor in predicting the effects of climate change. Shifts in plant phenology, such as the timing of budburst, present some of the most visible evidence of the impacts of climate change in recent decades (Walther et al. 2002, Menzel et al. 2006). Phenological events are closely tied to environmental signals such as seasonal changes in temperature (Menzel and Sparks 2006). Plants have evolved mechanisms to coordinate the timing of phenological events so that periodic growth and other events occur when environmental conditions are optimal with respect to resource availability and minimizing the likelihood of damage from cold, drought or other factors (Rehfeldt 1978, Howe et al. 2003, Chuine 2010, Wilczek et al. 2010). Adaptation to different environments has produced genetic variation in phenological traits within plant species. This variation is a valuable resource for adapting to climate change as it may provide opportunities to select populations that are well suited to future climates (Millar et al. 2007, St. Clair and Howe 2007, Hamann et al. 2011). Understanding genetic variation in a wide range of phenological traits, and the environmental signals that trigger phenological events, is critical to evaluating both climate change impacts and the value of assisted migration or other mitigation strategies (Wilczek et al. 2010).
We use the term growth phenology to describe seasonal pattern of primary (apical) and secondary (cambial) growth in woody species. Primary growth is often measured in terms of height growth and secondary growth is often measured in terms of diameter or basal-area growth. Height growth begins with budburst and ends shortly after budset (i.e., after the last formed stem units elongate). Genetic variation in the timing of budburst and budset in coast Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) has been documented in numerous studies (Campbell and Sorensen 1973, Campbell 1974, Campbell and Sugano 1975, Sorensen 1983, St. Clair et al. 2005). Other traits that describe growth phenology, such as the initiation and cessation of diameter growth, are less obvious and more difficult to measure than budburst. Consequently, there is relatively little information on genetic variation in these traits. The timing of diameter growth initiation and cessation has been found to differ among populations within several tree species (Daubenmire 1950, Dietrichson 1964, Emmingham 1977, Jayawickrama et al. 1998). Clinal variation in these traits has been reported with early initiation and early cessation of diameter growth among populations from colder environments (Dietrichson 1964, Worrall 1975, Jayawickrama et al. 1998). Cambial cells are susceptible to cold damage during active growth (e.g., Glock 1951), thus growth phenology has implications for cold hardiness (Mellerowicz et al. 1992, Repo et al. 2000). Dietrichson (1964) found populations of Scots pine (Pinus sylvestris L.) from southern latitudes generally had more frost damage to cambial cells than those from northern latitudes when grown in a common environment. Genetic variation in growth phenology is also related to wood properties. Vargas-Hernandez and Adams (1994) reported that families of coast Douglas-fir with later growth cessation had greater wood density than those with earlier cessation owing to a longer period of latewood growth.

Growth phenology is also strongly affected by environmental factors. The initiation of height growth (i.e., budburst) is largely controlled by air temperatures during the dormant period (Campbell and Sugano 1979, Harrington et al. 2010). Low heritabilities have been reported for traits related to diameter-growth phenology (Li and Adams 1994, Emhart et al. 2006), indicating that environmental variation has a relatively strong effect on the phenotypic expression of these traits. Interannual variation in the environment can substantially change the timing of diameter growth. Dimock (1964) reported a difference of 22 days in the date of diameter growth initiation of Douglas-fir in two successive years. Griffith (1960) and Reukema (1965), also working with Douglas-fir, each reported a range of 45 days within a 5-year period in the date when 50% of diameter growth was completed. Gonzalez-Benecke et al. (2010) demonstrated that the timing of growth cessation can be delayed substantially by maintaining high soil water content. Environmental stress resulting from competition with other trees can delay growth initiation and hasten growth cessation, possibly as a result of resource limitations and differences in auxin concentrations within stems (Kozlowski and Peterson 1962).

Coast Douglas-fir occurs in varied environments in western North America between latitudes of ~34°N to 54°N and elevations between sea level and 2300 m (Hermann and Lavender 1990). Populations of Douglas-fir are closely adapted to their local environments, and pronounced clines associated with environmental gradients have been found for many traits (Campbell and Sugano 1979, Sorensen 1983, Loopstra and Adams 1989, St. Clair et al. 2005). The effects of genetics and environment on growth phenology have been investigated in some past work, but there are few examples where diameter-growth phenology, in particular, has been compared among populations from a wide range of environments (e.g., Emmingham 1977). In addition to being difficult to measure, the period of cambial activity occurs over a relatively long period of time. Detailed measurements throughout the growing season are needed to evaluate differences among populations and among environments. In the present study, we measured the timing of budburst, budset, periodic height growth and periodic diameter growth on Douglas-fir seedlings from different seed sources that were planted into multiple test environments. We also measured stem diameter on a subset of trees every 0.5 h using electronic dendrometers. These data provided detailed information on cambial growth phenology that we used to test the hypothesis that seasonal patterns of diameter and height growth would differ among seed sources and test environments.

Methods

Data were collected during the 2010 and 2011 growing seasons at four installations of the Douglas-fir Seed-Source Movement Trial (Figure 1). The trial is a set of common gardens established before the beginning of the 2009 growing season at nine sites in Oregon and Washington. The trial includes 120 open-pollinated families of coast Douglas-fir that were grown from seed collected from populations in western Washington and Oregon and northern California. Seed were collected from a sample of dominant and codominant trees in wild stands without considering phenotype (i.e., no ‘plus-tree’ selection). Seedlings were grown in 700 ml foam blocks for one growing season and then transplanted into 2800 ml pots for a second growing season before being outplanted. Eight seedlings of each family were planted at each installation in most cases. Fewer seedlings were planted in some cases owing to poor survival prior to planting and additional seedlings of other families were planted in their places. Seedlings were planted at a 3.6-m spacing in 20-tree plots composed of families from the...
same seed source in a replicated-block design (four blocks each containing all of the seed sources). The installations are located within three latitudinal bands (42, 44 and 46°N) and within three physiographic regions (coast, inland-low elevation and inland-high elevation). We selected four installations for this study that represent a wide range of environmental conditions: the coast, inland-low and inland-high elevation installations within the 46°N band (L46CST, L46LOW, L46HI, respectively), and the inland-low elevation installation within the 42°N band (L42LOW). The L46CST, L46LOW and L46HI installations were established following commercial clear cuts of stands composed primarily of Douglas-fir. Competing vegetation was manually removed periodically around the study trees to prevent overtopping, but the development of vegetation at these sites has generally been typical of young stands in the Pacific Northwest. The L42LOW installation was established at a tree nursery where competing vegetation was periodically eliminated. Each installation was fenced to prevent browsing.

A set of 16 families was selected for measurements of growth phenology (Figure 1). The families represent four regions from the natural range of coast Douglas-fir: (i) Washington coast (WA_CST), (ii) Washington inland, low-elevation (WA_L), (iii) Oregon southern inland, low-elevation (ORS_L), and (iv) the California Sierra Range (CA_SIERRA). Four families were selected from each region. We refer to the group of families from the same region as a seed source. The seed sources were selected based on previous measurements of budburst (Gould et al. 2011) to include families that burst bud early (CA_SIERRA followed by ORS_L) and families that burst bud late (WA_CST followed by WA_L). It was not known at the time the families were selected how other aspects of growth phenology might differ among seed sources.

We measured stem diameters (to the nearest 0.1 mm, using calipers) and heights (to the nearest 1 mm, using rulers) periodically during the 2010 growing season on all four families from each seed source. The first measurement occurred between 10 February and 22 March on all installations other than L46HI where snow prevented measurement until 22 April. At the time of the first measurement, each tree was marked ~5 mm from its base with a paint marker. A cross was marked on both sides of the measurement diameter to align the calipers for subsequent measurements. Trees were remeasured on a weekly or bi-weekly basis. The final measurement occurred between 2 November and 11 November. A total of 526 trees were measured.

Stem diameter on a subset of trees was monitored continuously using electronic dendrometers. Beginning in 2010, dendrometers were installed on four trees from two of the CA_SIERRA families and four trees from two of the WA_CST families at the L42LOW and L46LOW installations (16 trees at each installation, 32 trees total). Dendrometers were installed on 12 February at L42LOW and 6 March at L46LOW. An additional eight dendrometers were added on 19 February 2011 at L42LOW to monitor four trees from each of two families from the ORS_L seed source. Dendrometers were added at L46LOW to eight trees from the same ORS_L families on 3 March 2011. Dendrometer data were collected beyond the end of the 2011 growing season (until 15 December). Dendrometers were placed ~5 mm above the base of each tree. The dendrometers used were DEX70s and DEX100s from Dynamax (Houston, TX, USA) and Model DRs from Ecomatik (Munich, Germany). The precision of the dendrometers was <0.01 mm. Diameter measurements were recorded every 30 min by either a Campbell CR10X or CR1000 datalogger (Campbell Scientific, Logan, UT, USA).

Environmental data including air temperature, relative humidity, precipitation and volumetric soil water content were collected using automated weather stations located at each installation (model U30, Onset Computer Corporation, Pocasset, MA, USA). Soil water content was measured by the weather stations using dielectric sensors (model EC-20, Decagon Devices, Pullman, WA, USA). Variables describing the climates of the seed sources were derived from Rehfeldt’s (2006) thin-plate splines of climate normals for the period...
1961–1990 at the seed-collection locations (Crookston 2008). Trees were examined at least weekly during each spring to record the timing of terminal budburst (when green needles were first visible) and weekly or bi-weekly in the summer to record final budset (defined as the appearance of a new terminal bud that did not burst later in the growing season). A set of phenology metrics was calculated for each tree to summarize basal-area and height-growth phenology. Diameter-growth metrics were based on basal area (area of the stem cross-section) rather than diameter. Because of the relatively low precision of the caliper dataset, the approximate timing of growth initiation and cessation was calculated as the day when 10% of growth was completed (BA50) and the day when 90% of growth was completed (BA90). The approximation approach has been used in other studies that relied on periodic measurements with relatively low frequency and potentially high measurement error (Emmingham 1977, Li and Adams 1994). The day when basal-area growth was 50% complete (BA50) and the percentage of growth completed by 1 August (BA AUG1) were also calculated. Height-growth metrics (HT10, HT50, HT90 and HT AUG1) were similarly calculated. The timing of growth initiation and cessation was calculated in the dendrometer dataset by calculating daily growth rates (the differences between daily median values of basal area) and identifying the point when sustained growth began in the spring and terminated in the fall. Growth initiation was defined as the beginning of a period of five or more consecutive days of increasing basal area. Exceptions were made in cases where the beginning of the growth pattern was clear but there were interruptions in the five consecutive days of growth. Growth cessation was defined as the beginning of a period of five or more days without basal-area growth. BA50 and BA AUG1 were also calculated from the dendrometer measurements.

Differences among seed sources and installations in the metrics were tested with analysis of variance (Neter et al. 1996) using the following model:

\[M_{ijk} = \mu + S_i + I_k + S_i/I_k + \epsilon_{ijk} \]

where \(M_{ijk} \) is the value of a given metric for tree \(i \) from seed source \(j \) and installation \(k \), \(\mu \) is the grand mean, \(S_i \) is the main effect of seed source, \(I_k \) is the main effect of installation, \(S_i/I_k \) is the interaction between seed source and installation and \(\epsilon_{ijk} \) is the error term. Model parameters were estimated using the lm package in R (R Development Core Team 2006). Parameters were considered statistically significant at \(\alpha < 0.05 \). Means were separated using the Bonferroni method to control the family-wise error rate (Neter et al. 1996).

We evaluated evidence that variation in growth phenology among populations is adaptive by calculating Pearson correlation coefficients (Ott 1993) between the phenology metrics measured on all 16 families and variables that describe the climates of the seed-collection locations (e.g., mean annual temperature, growing-season precipitation). Relationships between growth metrics and climatic variables were evaluated at the family level. Correlations were calculated separately for each installation to help understand how the families performed at each installation and how the installations differed. Correlations between the growth metrics and the median date of terminal budburst and budset of each family were also examined. \(P \) values were calculated for the correlation coefficients to assess the strength of the correlations; however, both the phenological traits and climate variables are spatially autocorrelated to some degree which increases the probability of a type I error. Thus, the \(P \) values should be interpreted with caution (Dutilleul 1993, Legendre et al. 2002).

Basal-area growth patterns during the 2010 and 2011 growing seasons were examined in detail using the dendrometer measurements. We calculated the 5-day running mean of daily growth to reduce the short-term variability in growth rates so that seasonal patterns would be easier to recognize. Differences in growth rates among seed sources were evaluated by calculating a \(t \)-statistic for each day of the 2010 growing season (to compare two seed sources) and an \(F \)-statistic for each day of the 2011 growing season (to compare three seed sources) (Ott 1993). To compare growth rates between installations, we first normalized the time series by dividing each measurement by the tree’s total annual growth to yield proportional values as absolute growth was much greater at L42 LOW than at L46 LOW. Differences in growth rates between installations were evaluated by calculating a \(t \)-statistic for each day of the 2010 and 2011 growing season. Critical values (\(\alpha < 0.05 \)) for the \(t \)- and \(F \)-statistics were calculated to serve as a benchmark to evaluate how extreme the differences were among seed sources and installations. The critical values were not intended to formally test the null hypothesis of no differences as the probability of a type I error would be inflated owing to multiple comparisons (Neter et al. 1996).

To evaluate potential trade-offs between basal-area and height growth, Pearson correlation coefficients were calculated between basal-area and height-growth increments during the 2010 growing season. Height-growth increments were calculated from periodic measurements and basal-area growth increments were calculated for the same periods using the dendrometer data. Both basal-area and height-growth increments were normalized (scaled to the total growth of each tree) so that the correlations would reflect the relative growth rate of each tree during the growing season (i.e., the correlation would not be affected if the trees that had the greatest total height growth also had the greatest total basal-area growth).
Results

Environments at the seed-source locations and test installations

The climate normals at the seed-source locations and the weather data collected at the installations illustrate differences among the seed-source and test environments (Table 1). The seed-source environments ranged from an interior-montane environment (CASIERA) to a temperate-coast environment (WACST). The CASIERA environment is characterized by high daily maximum temperatures, low daily minimum temperatures and little precipitation during the growing season, while the WACST environment has relatively high minimum temperatures, low maximum temperatures and much greater precipitation during the growing season.

Based on weather data, the L42LOW installation was similar to the CASIERA and ORSIL seed-source environments with high temperatures during the growing season and relatively low precipitation. The L46CST, L46HI and L46LOW installations were fairly similar to the WAIL and WACST environments.

Phenology metrics

The main effects of seed source and installation were statistically significant for all of the phenology metrics calculated from the caliper and height measurements, but the seed source × installation interaction was significant only for HT50 (Table 2). Among the phenology metrics calculated from the dendrometer measurements, the main effect of seed source was significant in both years (or nearly so) for growth initiation, BA50 and BAAUG1. The main effect of installation was significant for growth initiation and cessation in both years and for BA50 in 2010. The interaction term was not significant for any of the metrics calculated from the dendrometer data.

The seed sources had different patterns of seasonal growth based on the caliper and height measurements (Table 3). The CASIERA seed source generally reached each phenological stage earlier than the other seed sources, while the WACST seed source was generally the last to reach each stage. The ORSIL trees could not be characterized as either ‘early’ or ‘late’; basal-area growth began and ended relatively late, but height growth began early and ended late. Growth of the WAIL trees began later than the CASIERA trees and ended earlier than the WACST trees. Differences among seed sources were much greater for the height-growth metrics (up to 21.7 days) than for the basal-area growth metrics (up to 8.3 days). Differences among installations were generally greater than differences among seed sources. Differences among installations were also of similar magnitudes for both the basal-area and height-growth metrics. Height growth began (as measured by HT10) at around the same time at all of the installations other than the coldest installation (L46HI) where it began considerably later. Basal-area growth also started last, but ended first, at L46HI. Height growth ended first at the warmest installation (L42LOW); however, basal-area growth ended later at that installation than at any of the others.

The phenology metrics calculated from the dendrometer measurements indicated that differences among seed sources and installations were greater in some cases than those calculated from the caliper measurements (Table 4). Growth initiation (measured with dendrometers) differed significantly between seed sources in 2010 (4.2 days) but BA10 (measured with calipers) was nearly equal. Growth initiation occurred 15.1 days later at L46LOW than at L42LOW but BA10 differed by only

Table 1. Variables describing the seed-source environments based on 1961–90 climate means and weather variables at the study installations based on measurements from on-site weather stations in 2010 and 2011.

<table>
<thead>
<tr>
<th>Seed source/installation</th>
<th>Elevation (m)</th>
<th>T_{ANN} (°C)</th>
<th>T_{GSmin} (°C)</th>
<th>T_{GSmax} (°C)</th>
<th>FFP (days)</th>
<th>PPT_{ANN} (mm)</th>
<th>PPT_{GS} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASIERA</td>
<td>1410</td>
<td>8.6</td>
<td>3.8</td>
<td>23.9</td>
<td>93</td>
<td>969</td>
<td>165</td>
</tr>
<tr>
<td>ORSIL</td>
<td>427</td>
<td>10.9</td>
<td>7.3</td>
<td>23.1</td>
<td>166</td>
<td>202</td>
<td>265</td>
</tr>
<tr>
<td>WAIL</td>
<td>550</td>
<td>7.8</td>
<td>6.1</td>
<td>18.4</td>
<td>137</td>
<td>2151</td>
<td>612</td>
</tr>
<tr>
<td>WACST</td>
<td>102</td>
<td>9.7</td>
<td>7.7</td>
<td>18.9</td>
<td>180</td>
<td>2705</td>
<td>626</td>
</tr>
<tr>
<td>Installations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L42LOW</td>
<td>415</td>
<td>11.7</td>
<td>8.8</td>
<td>24.9</td>
<td>174</td>
<td>538</td>
<td>184</td>
</tr>
<tr>
<td>L46CST</td>
<td>177</td>
<td>9.8</td>
<td>8.9</td>
<td>17.8</td>
<td>248</td>
<td>1989</td>
<td>568</td>
</tr>
<tr>
<td>L46HI</td>
<td>860</td>
<td>7.8</td>
<td>6.9</td>
<td>16.1</td>
<td>196</td>
<td>1305^2</td>
<td>671</td>
</tr>
<tr>
<td>L46LOW</td>
<td>241</td>
<td>9.6</td>
<td>8.5</td>
<td>18.7</td>
<td>233</td>
<td>1454</td>
<td>420</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L42LOW</td>
<td>415</td>
<td>10.7</td>
<td>5.7</td>
<td>20.6</td>
<td>179</td>
<td>417</td>
<td>143</td>
</tr>
<tr>
<td>L46LOW</td>
<td>241</td>
<td>8.8</td>
<td>6.5</td>
<td>15.8</td>
<td>198</td>
<td>1212</td>
<td>301</td>
</tr>
</tbody>
</table>

\(^1\)T_{ANN}, annual temperature, T_{GSmin}, minimum temperature during the growing season (1 April to 31 September), T_{GSmax}, maximum temperature during the growing season, FFP, frost-free period, PPT_{ANN}, annual precipitation, PPT_{GS}, precipitation during the growing season.

\(^2\)The rain gauge may have under-measured snow precipitation.
6.1 days and was earliest at L46 LOW. Similarly, the difference between installations in the date of growth cessation was ~21 days, but the difference in BA 90 was only ~12 days. Differences among seed sources and installations were fairly consistent between 2010 and 2011. An exception was BA50, which occurred first at L42 LOW in 2010 (4 days earlier than at L46 LOW), but first at L46 LOW in 2011 (9.5 days earlier than at L42 LOW).

To add context to the phenology metrics, total basal-area and height growth in 2010 were summarized for each seed source at each installation (Table 5). Differences among installation in basal-area and height growth were generally greater than differences among seed sources. Basal-area and height growth were much greater at the warm, dry L42 LOW installation than at the other installations. Growth was lowest at the cool, moist L46 HI installation and it was similar at the L46 CST and L46 LOW installations. The ORS IL trees had the greatest basal-area growth at each of the installations and had particularly high growth at the L42 LOW. Seed-source ranks for basal-area growth at each of the installations were generally ORS IL > WA CST > WAIL > CASIERRA. The ORS IL trees also had the greatest height growth among the four seed sources at the L42 LOW installation, but the WA CST trees had the greatest height growth at the other three installations. The CASIERRA trees had the least height growth at all four installations.

Basal-area growth patterns: comparisons among seed sources

The WA CST and CASIERRA seed sources had different rates of basal-area growth during distinct periods of the 2010 growing season (Figure 2). The first period was linked to the timing of terminal budburst, which occurred first in the CASIERRA trees at both installations. Basal-area growth rates decreased in both seed sources during the period immediately after budburst. As a result of differences in the timing of budburst, growth was greater in the WA CST trees than in the CASIERRA trees from late April through early May at the L42 LOW installation and in the first half of May at the L46 LOW installation. Growth rates of both seed sources increased rapidly after the period of slow growth ended. The CASIERRA trees entered the period of rapid growth sooner than the WA CST trees, which were still in the period of slow growth following budburst. Consequently, the seed sources shifted ranks in late May or early June so that the CASIERRA trees had a greater average growth rate for a short period of time. The WA CST trees began their period of rapid growth in mid to late June, and their growth exceeded that of the CASIERRA trees for most of the growing season after 1 July at both installations. The magnitude of the difference in growth rates tended to increase over the remainder of the growing season. There were no distinct changes in growth rates following budset, but growth began to slow down at around the

| Model term | df | P values for phenology metrics
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal-area growth (caliper measurements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S (seed source)</td>
<td>3</td>
<td><0.001</td>
</tr>
<tr>
<td>I (installation)</td>
<td>3</td>
<td><0.001</td>
</tr>
<tr>
<td>S × I</td>
<td>9</td>
<td>0.224</td>
</tr>
<tr>
<td>Residual</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>Basal-area growth (dendrometer measurements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S (seed source)</td>
<td>1</td>
<td>0.005</td>
</tr>
<tr>
<td>I (installation)</td>
<td>1</td>
<td><0.001</td>
</tr>
<tr>
<td>S × I</td>
<td>1</td>
<td>0.372</td>
</tr>
<tr>
<td>Residual</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Height growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S (seed source)</td>
<td>2</td>
<td>0.070</td>
</tr>
<tr>
<td>I (installation)</td>
<td>1</td>
<td><0.001</td>
</tr>
<tr>
<td>S × I</td>
<td>2</td>
<td>0.069</td>
</tr>
<tr>
<td>Residual</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

1BA 10, BA 50, BA 90, day when 10, 50 or 90% of basal-area growth was completed; BA AUG1, proportion of basal-area growth completed on 1 August; HT 10, HT 50, HT 90, day when 10, 50 or 90% of height growth was completed; HT AUG1, proportion of height growth completed on 1 August.
same time that budset occurred. Growth rates were closely coupled during the latter part of the growing season, suggesting that the two seed sources responded similarly to daily variation in environmental conditions.

Basal-area growth increments of trees measured with dendrometers during the 2010 growing season were strongly correlated with height-growth increments only shortly after budburst (Figure 3). The patterns of height growth were similar to the patterns of basal-area growth in that the CASIERRA seed source had a greater proportion of its growth early in the growing season, but growth of the WA CST seed source was greater later in the growing season and its total growth exceeded that of the CASIERRA seed source. Although the correlations between basal-area and height growth were weak after budburst, they tended to be positive or negative at both installations during the same parts of the growing season.

Trees from the ORSIL seed source were measured with dendrometers in 2011 in addition to the CASIERRA and WA CST trees (Figure 4). The growth pattern of the ORSIL trees combined some aspects of the patterns of both the CASIERRA and WA CST trees. Budburst occurred first in the ORSIL and CASIERRA trees.
and was followed by a period of slow growth. Growth of the WACST trees exceeded that of the other seed sources during this period. Growth of the CASIERRA trees began to decrease following budset at both installations, while the ORSIL trees had later budset and maintained a higher growth rate during the latter part of the growing season. The ORSIL and WACST trees had similar cumulative basal-area growth at L42LOW and the WACST trees had slightly greater growth at L46LOW than the ORSIL trees. Cumulative growth of both the WACST and ORSIL trees exceeded that of the CASIERRA trees.

Basal-area growth patterns: comparisons between installations

Differences in relative growth rates were found between installations during distinct periods of the 2010 and 2011 growing seasons (Figure 5). During both growing seasons, the period of slow growth following budburst occurred first at L42LOW as did the transition to the period of rapid growth. Consequently, the relative growth rate at L46LOW was greater than that at L42LOW from mid-April to late May of both years and then the installations switched ranks. The installations switched ranks again with more growth occurring in early July through early August of each year at L46LOW. The L46LOW installation had slightly greater cumulative growth than the L42LOW installation during much of the 2010 growing season, but the L42LOW installation had considerably greater cumulative growth from April through August of the 2011 growing season. The cumulative growth patterns were similar at L46LOW during both years, but the L42LOW installation had less growth early in the growing season in 2010 than in 2011 (growth completed by 1 August = 55% in 2010 and 65% in 2011). Growth rates were more variable at L46LOW than at L42LOW. There was a distinct increase in the growth rate at L46LOW in mid-September 2010 that corresponded to a recovery of soil water content following late summer precipitation (measured by the on-site soil moisture sensors). Soil water content did not decline as much during the 2010 growing season at L42LOW as at L46LOW but it did not begin to recover until around 1 November at L42LOW. Soil water content declined more at both installations during the 2011 growing season and did not recover
Soil water recovery likely occurred too late to benefit basal-area growth in the latter part of the growing season.

Relationships between phenology metrics and seed-source environments

Several of the phenology metrics were strongly correlated with variables describing the seed-source environments (Table 6). Among the basal-area growth metrics, the strongest correlations were between BA_{50} and BA_{AUG1} and variables related to minimum temperature at the seed source locations. The correlations indicated that seed sources from environments that are relatively warm during the growing season and have long frost-free periods had more growth later in the growing season than those from colder environments. Correlations were generally poor between the environmental variables and variables describing the beginning and end of the growth period. The height-growth metrics were strongly correlated with variables related to both minimum temperature and precipitation. The correlations indicate that seed sources from wetter environments began height growth later and took more time to complete 50% of height growth than those from drier environments. None of the basal-area growth metrics were strongly correlated with the timing of budburst or budset. HT_{10} and HT_{50} were correlated with the timing of budburst, which was expected as height growth begins after budburst. The strongest correlation between a basal-area and height-growth metric was the correlation between HT_{50} and BA_{50}, which were significantly and positively correlated at all four installations ($r = 0.57$).

The relationship between BA_{50} and the length of the frost-free period (FFP) at the seed-source locations was selected as an example of a strong environmental correlation to evaluate in more detail (Figure 6). The relationship between FFP and BA_{50} was fairly strong at each of the installations ($r = 0.60–0.80$). It was weakest at L46\textsubscript{HI} where BA_{50} occurred relatively late in the year and differences among seed sources were relatively small.
Variation in phenology among seed sources

The seed-source locations selected for this study represent different ends of the range of environments where coast Douglas-fir occurs in terms of temperature and precipitation. Given the wide range of seed-source environments, the differences in phenology were surprisingly small in some cases. The CA_SIERRA and WA_CST seed sources were selected because they had the earliest and latest budburst in previous studies. In the present study, HT10 and HT50 were closely tied to the timing of budburst and large differences were found between seed sources as was expected (e.g., up to 21 days). Differences in the basal-area growth metrics were small.

Table 6. Correlations between phenology metrics and variables describing the seed-source environments and the timing of budburst and budset. Values shown are averages of the correlations at each of the four installations. The number of installations where the correlation was statistically significant (α < 0.05) is given in parentheses. Correlations that were significant at all four installations appear in bold.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Phenology metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BA10</td>
</tr>
<tr>
<td>TANN</td>
<td>0.28 (1)</td>
</tr>
<tr>
<td>TGSmin</td>
<td>0.23 (0)</td>
</tr>
<tr>
<td>TGSmax</td>
<td>0.18 (0)</td>
</tr>
<tr>
<td>FFP</td>
<td>0.16 (0)</td>
</tr>
<tr>
<td>PPT_ANN</td>
<td>-0.14 (0)</td>
</tr>
<tr>
<td>PPT_GS</td>
<td>-0.07 (0)</td>
</tr>
<tr>
<td>Budburst</td>
<td>-0.14 (0)</td>
</tr>
<tr>
<td>Budset</td>
<td>-0.02 (0)</td>
</tr>
</tbody>
</table>

1BA10, BA50, BA90: day when 10, 50 or 90% of basal-area growth was completed; BA_AUG1: proportion of basal-area growth completed on 1 August; HT10, HT50, HT90: day when 10, 50 or 90% of height growth was completed; HT_AUG1: proportion of height growth completed on 1 August.

2TANN: mean annual temperature; TGSmin: mean daily minimum temperature during the growing season (1 April 1–30 September); TGSmax: mean daily maximum temperature during the growing season; FFP: frost-free period; PPT_ANN: mean annual precipitation; PPT_GS: mean precipitation during the growing season; Budburst: day of terminal budburst; Budset: day of terminal budset.

Figure 6. Relationship between the frost-free period at the local environments of 16 Douglas-fir families and the date when 50% of basal area growth was completed in 2010 (BA50) at four planting installations. Linear regression models were fitted using the caliper measurements (open points); results from the dendrometer measurements are shown for comparison (closed points).
relative to the height-growth metrics. For example, seed sources differed by up to 8 days in BA_{10} and up to 5 days in BA_{90}. Differences in the basal-area growth metrics were also small relative to the length of the period of basal-area growth. The differences in BA_{10} were equal to ~6% of the average basal-area growth period of 129 days. In contrast, the differences in HT_{10} were ~26% of the average height-growth period of 80 days. Even with the high-precision dendrometer measurements, the maximum difference among seed sources for basal-area growth initiation or cessation in either year was 11 days and the length of the basal-area growth period differed among seed sources by a maximum of 5 days. The significance of the differences among seed sources in each aspect of growth phenology is not clear; we cannot say that some differences are not important just because they are relatively small. However, it appears that the well-documented differences among genotypes in budburst are a poor analog for other phenological traits.

We did not find general patterns in the phenology metrics to suggest a simple classification of seed sources based on the suite of phenological traits. For example, the CASIERRA seed source was almost always the first to reach each phenological stage, but the ORS seed source started height growth relatively early, started basal-area growth relatively late and ended both basal-area and height growth relatively late. Budburst (another measure of height-growth initiation) was poorly correlated with HT_{90} and all of the basal-area metrics. Budburst is relatively easy to measure and it would be convenient to use it as a phenological index for the purpose of evaluating the effects of climate change or seed transfer (Campbell 1974); however, it does not adequately represent other aspects of growth phenology. The poor correlation between budburst and several of the phenology metrics also indicates that the assumption on which we based the selection of seed sources—that differences in budburst correspond with difference in other aspects of phenology—was not well founded. It is possible that larger differences in the basal-area growth metrics could be found with a different sample of seed sources.

The small differences in the length of the basal-area growth period did not correspond to small differences in total growth. Seed sources differed by up to 39% in total basal-area growth during the 2010 growing season. Similarly, a longer period of height growth did not correspond with more growth. For example, the WASL seed source had the shortest growth period, but the greatest total growth in 2010 at three of the four installations. These results are in agreement with previous studies of Douglas-fir that found growth rates during the growing season were more important to total growth than differences in the growth period (Emmingham 1977, Li and Adams 1994).

The dendrometer measurements allowed for a detailed comparison of basal-area growth among seed sources. Although the timing of budburst was poorly correlated with the basal-area growth metrics, it clearly affected growth patterns in the first half of the growing season. Differences among seed sources in the timing of budburst created differences in basal-area growth patterns, specifically the timing of the growth pause around the time of budburst and the timing of the growth acceleration afterwards. The adaptive significance of the timing of budburst has often been evaluated in the context of environmental constraints on height growth (Campbell 1974, St. Clair et al. 2005, Gould et al. 2011), but it is important to recognize that the timing of budburst also affects other aspects of plant growth and physiology. The whole-tree production of photosynthate can be reduced during stem elongation and leaf expansion as some nutrients required for photosynthesis are translocated from older foliage to new foliage (Gordon and Larson 1968, Camm 1993). The new foliage initially exports little photosynthate until needles are completely expanded (Gordon and Larson 1968, Webb 1977). Thus, budburst creates a period when production can diminish while demand for photosynthate is high. The secondary effects of budburst, such as reduced basal-area growth, should be considered in addition to constraints on height growth when evaluating how well a population is adapted to a particular environment. Additionally, climatic conditions outside of the growing season need to be considered when characterizing a particular environment. Previous work has shown that temperatures throughout the winter affect the timing of budburst (Campbell and Sugano 1979, Harrington et al. 2010). In the present study, the dendrometer measurements indicated that the period of basal-area growth can be considerably longer (24 February 24–4 November in 2010 for the WA CST trees at L42 LOW) than what is often defined as the growing season (e.g., 1 April 1–30 September); thus, basal-area growth is likely affected by environmental conditions throughout most of the calendar year.

Variation in phenology among test environments

Differences in the phenology metrics among installations were generally greater than the differences among the seed sources and, unlike the comparisons among seed sources, differences among installations were of similar magnitude for the basal-area and height-growth metrics. These results illustrate the major role that environment plays in growth phenology (Emmingham 1977, Li and Adams 1994, Emhart et al. 2006, Gonzalez-Benecke et al. 2010). Understanding the environment factors that affect different aspects of growth phenology is important to our ability to predict how environmental change will affect growth. The role of temperature in height-growth initiation is well established (Campbell and Sugano 1979, Harrington et al. 2010), but it also appeared to affect basal-area growth initiation. By most measures, basal-area growth began first at the relatively warm L42 LOW installation. The period when most of the basal-area growth was completed (between BA_{10} and BA_{90}) began last and ended first at the relatively cold
L46L installation. Differences in the timing of basal-area growth initiation between the 2010 and 2011 growing seasons also appeared to be affected by temperature. Growth initiation (as measured with dendrometers) occurred 16 days earlier in 2010 when the average air temperature in February was ~3° warmer at L42LOW and 4° warmer at L46LOW than in 2011. Temperature alone cannot explain why BA50 and BA10 occurred considerably later in 2010 at the L46CST installation than at the L46LOW. Spring air temperatures were similar at both installations and growth was evident at both installations at the end of March. The soils in some parts of L46CST are poorly drained and the installation received considerably more precipitation than L46LOW. The wet soils may have taken longer to warm so that root growth was delayed. Excessive soil moisture could also have slowed down diameter growth in the spring (Khan et al. 1996). Growth accelerated later at L46CST and total basal-area growth was only slightly lower than at L46LOW.

Temperature appeared to affect the timing of basal-area growth initiation but it is unclear as to whether cambial cells experience dormancy in the same respect as meristematic cells in buds. Worrall (1971) and Bhella and Roberts (1975) argued that Douglas-fir cambial cells do not experience winter dormancy based on their findings that a period of chilling is not required for cambial reactivation. Air temperature has been suggested as the key environmental factor affecting cambial reactivation (Begum et al. 2008, Deslauriers et al. 2008). The importance of temperature has been demonstrated by artificial heat treatments that locally reactivate cambial cells and initiate the process of cell division and differentiation (Barnett and Miller 1994, Oribe and Kubo 1997, Begum et al. 2007). However, temperature is not likely to be the only factor limiting cambial reactivation (Seo et al. 2008). Heating has not been effective on some species or on some parts of the stem (Oribe and Kubo 1997), and cambial cells have also been found to respond more readily to heat when applied in late winter or spring compared with early winter treatments (Barnett and Miller 1994, Oribe and Kubo 1997). These results suggest that the activity of cambial cells is inhibited during winter and not just limited by temperature. Worrall (1971) suggested that cambial reactivation in Douglas-fir depends on chemical signals from the terminal bud or foliage as a response to photoperiod. In the present study, the timing of budburst was not strongly correlated with any of the metrics describing basal-area growth, suggesting that the timing of cambial growth initiation is not closely coupled with the timing of budburst. A better understanding of how cambial cells respond to the environment and interact with other plant organs is needed. Although the dendrometers provided precise measurements of stem expansion, anatomical or physiological studies would allow for a more detailed evaluation of the early stages of cambial reactivation.

The dendrometer measurements allowed for a detailed comparison of basal-area growth patterns throughout the growing season at the L42LOW and L46LOW installations. The differences between installations paralleled the differences between seed sources in the sense that relative basal-area growth was initially slower at the installation with the earliest budburst but the installations then switched ranks (Figure 5). It is not clear which environmental factors produced divergent growth patterns in the latter part of the growing season; however, plant water status may have played a role. Despite lower precipitation and higher temperatures at L42LOW, soil water content did not decrease as much during the growing season as at L46LOW. Competing vegetation was nearly completely eliminated at L42LOW and the soil contains a relatively impermeable hardpan that may have retained soil water at a depth that was accessible to the study trees. Basal-area growth in mid-September 2010 accelerated at L46LOW at about the same time as soil water began to recharge, indicating that growth had been limited in the latter part of the season or that the stems were not fully hydrated (or both).

The differences among installations in growth phenology did not correspond with differences in total growth. The L42LOW installation had far greater basal-area and height growth than the other installations despite having about the same period of basal-area growth and a shorter period of height growth. High summer temperatures, low humidity and low precipitation presumably caused height growth to cease early at the L42LOW installation, but did not cause a cessation of basal-area growth. Despite the short period of growth, the 2010 height increment was 60% greater at L42LOW than at any of the other installations. In contrast, the L46CT installation had about the same period of height growth as the L46CST and L46LOW installations but only ~60% as much height growth. These results suggest that resource limitations during different times in the growth period have a greater effect on total growth than the length of the growth period.

Relationships between phenology and seed-source environments

Several of the phenology metrics were strongly correlated with variables describing the seed-source environments, but there were important differences between the basal-area and height-growth metrics. The growth metrics related to the initiation and cessation of basal-area growth were not strongly correlated with any of the environmental variables, but BA50 was highly correlated with the minimum temperature during the growing season and the length of the frost-free period. In contrast, HT10 was strongly correlated with both measures of minimum temperature and precipitation during the growing season. Our results affirm those of previous studies that found that genetic variability in height-growth initiation in Douglas-fir is closely related to water availability during the growing season.
The strong correlations found for \(BA_{SP} \) suggests that minimum temperature has been more important to the evolution of cambial phenology than summer drought or other factors.

Several hypotheses can be proposed regarding the adaptive significance of variation in basal-area growth rates and its relation to seed-source environments. Slow growth is associated with high wood density (Vargas-Hernandez and Adams 1994, Devine and Harrington 2009), and the transition to slow growth relatively early in the growing season may mark an early transition from earlywood to latewood formation. Although we did not measure it here, in earlier work the timing of the earlywood–latewood transition has been found to differ more among families than the timing of growth initiation and cessation, and the length of the growth period (Vargas-Hernandez and Adams 1994). High wood density may be advantageous in dry environments as the small lumen diameters may reduce cavitation (Kavanagh et al. 1999), and high-density wood maintains stored water better than low-density wood under low stem water potential (Domec and Gartner 2002). Drought tolerance alone does not explain why the \(CA_{SIERRA} \) trees had slower growth than the \(ORS_{SIERRA} \) trees that are also adapted to a dry environment. The \(CA_{SIERRA} \) environment is somewhat drier and considerably colder than the \(ORS_{SIERRA} \) environment. The combination of low water potential and freeze–thaw cycles greatly increases the risk of cavitation and the loss of hydraulic conductivity (Pittermann and Sperry 2006, Wilson and Jackson 2006); thus, the combination of cold and drought may be the key factor differentiating the two seed sources. Slow growth in the latter part of the growing season among populations from cold environments could also reflect a necessary trade-off between growth and the development of cold hardiness in cambial cells (Sennerby-Forsse and Fircks 1987). Differences in above-ground growth may also indicate differences in allocation to roots or other carbon sinks (Krueger and Trappe 1967, Webb 1977, Reich et al. 1980). Populations from cold environments may shift the allocation of photosynthate to root growth relatively early in the season to compensate for a shorter period of root growth in the fall.

Implications for climate change

Our results provide a clearer understanding of growth phenology of Douglas-fir that can aid in predicting some impacts of climate change and in the development of mitigation strategies. Growth phenology exhibits a high degree of plasticity in response to the environment. Individual trees can be expected to exhibit different patterns of basal-area and height growth as the climate changes. Some changes, such as earlier growth initiation with rising temperatures, may help individuals cope with climate change as the growth period may be better coordinated with the period of high soil moisture that precedes summer drought in the Pacific Northwest. Other changes, such as an earlier shift to slow basal growth in response to lower soil water content in the summer, may result in reduced growth. It is not clear to what degree changes in phenological events such as the timing of basal-area and height-growth initiation and cessation will affect forest productivity. In the present study, total growth was not closely related to the length of the growth period. Although changes to phenology are potentially important, accurately predicting climate change impacts requires a better understanding of how genotypes respond to environmental conditions throughout the growing season.

Genetic variation in growth phenology is a potentially important resource for mitigating some of the effects of climate change. Phenological traits can be considered with other factors in determining whether a genotype is well adapted to a particular environment. Distinction should be made between different aspects of growth phenology. Variation in diameter-growth phenology appears to be an adaptation to a different set of environmental factors than budburst or height-growth phenology. It should not be assumed that a population that is well adapted to an environment based on budburst phenology will also be well adapted based on diameter-growth phenology. It is also important to better understand how traits may interact with one another and with a changing environment. The current study was too limited to draw general conclusions about which populations may be best adapted to future climates. Diameter-growth phenology is more difficult to measure than other traits; however, some simple cambial phenology metrics such as \(BA_{AUG1} \) can be calculated with relatively little effort (e.g., based on a measurement before growth starts, on 1 August, and after growth is completed). It may be feasible to predict different aspects of growth phenology based on the climate of the seed source, and on environmental factors at the planting location. The model for budburst phenology developed by Gould et al. (2011) could be a template for models to predict growth phenology. A much larger sample of seed sources needs to be measured to develop these models. High-resolution measurements, such as those made with dendrometers, are also helpful for understanding when and how populations differ in growth phenology.

Acknowledgments

We gratefully acknowledge the help of our co-workers, particularly Chris Poklemba, in collecting phenology data and maintaining electronic equipment. We also thank the landowners (Hancock Forest Management, Port Blakely Tree Farms, US Forest Service Stone Nursery and WA Department of Natural Resources) that allowed us access to their lands to establish the study and take measurements. Comments from two anonymous reviewers and an associate editor greatly improved the manuscript.
References

Griffith BG (1960) Growth of Douglas-fir at the University of British Columbia research forest as related to climate and soil. University of British Columbia Faculty of Forestry, Forestry Bulletin 2, 58 pp.

