Imaging characterization of paediatric tumours with the *neurotrophic tyrosine receptor kinase* fusion transcript (NTRK-FT).

AUTHORS' NAMES

AFFILIATIONS

1. Department of Imaging, Institut Curie, PSL University, Paris, France
2. SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL University, Paris, France
3. Department of Somatic Genetics, Institut Curie, PSL University, Paris, France
4. Department of Pathology, Institut Curie, PSL University, Paris, France
5. Department of Imaging, Institut Gustave Roussy Cancer Center, Villejuif, France
6. Department of Imaging, Assistance Publique des Hôpitaux de Marseille, Hôpital de La Timone, Marseille, France
7. Department of Pediatric Radiology, CHRU Tours, France
8. Department of Pediatric Radiology, Assistance Publique des Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
9. Department of Pediatric Radiology, CHU Rouen, France
10. Department of Biostatistics, Institut Curie, PSL University, Paris, France
11. Department of Pediatric Oncology and Hematology Centre Léon Bérard, Lyon, France
12. Department of Pediatric Oncology, Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Marseille, France
13. Department of Pediatric Oncology and Hematology, CHU Toulouse, France
14. Department of Pediatric Oncology, Oscar Lambret Center, Lille, France
ABSTRACT

Objectives: The neurotrophic tyrosine receptor kinase (NTRK) fusion transcript (FT) is a major genetic landmark of infantile fibrosarcoma (IFS) and cellular congenital mesoblastic nephroma (cCMN) but is also described in other tumours. The recent availability of NTRK-targeted drugs enhances the need for better identification. We aimed to describe the anatomic locations and imaging features of tumours with NTRK-FT in children.

Case series: Imaging characteristics of NTRK-FT tumours of 41 children (median age: 4 months; 63% < 1 year old; range: 0-188) managed between 2001 and 2019 were retrospectively analysed. The tumours were located in the soft tissues (n=24, including 19 IFS), kidneys (n=9, including 8 cCMN), central nervous system (CNS) (n=5), lung (n=2) and bone (n=1). The tumours were frequently deep-located (93%) and heterogeneous (71%) with necrotic (53%) or haemorrhagic components (29%). Although inconstant, enlarged intratumoral vessels were a recurrent finding (70%) with an irregular distribution (63%) in the most frequent anatomical locations.

Conclusion: Paediatric NTRK-FT tumours mainly occur in infants with very variable histotypes and locations. Rich and irregular intra-tumoral vascularization are recurrent findings.

Advances in knowledge: Apart from IFS of soft tissues and cCMN of the kidneys, others NTRK-FT tumours locations have to be known, as CNS tumours. Better knowledge of the imaging characteristics may help guide the pathological and biological identification.
KEYWORDS
Neurotrophic Tyrosine Receptor Kinase; Fusion Transcript Tumor; Infantile Fibrosarcoma; cellular congenital mesoblastic nephroma; MRI

ABBREVIATIONS
NTRK: Neurotrophic tyrosine receptor kinase
NTRK-FT: NTRK fusion transcript
IFS: infantile fibrosarcoma
cCMN: cellular congenital mesoblastic nephroma
RT–qPCR: Quantitative reverse transcription polymerase chain reaction
RNA: Ribonucleic acid
US: Ultrasound
CT: Computed tomography
MRI: Magnetic resonance imaging
CNS: central nervous system
ACKNOWLEDGEMENTS

We thank all the physicians at the participating centres who kindly provided clinical and radiological data.

DISCLOSURE

Competing Interests

The authors have no conflict of interest to declare.

Funding sources

This translational research project is partially supported by Bayer (Investigation Supported research), by the French society for childhood and adolescent cancers and leukemias (SFCE) and by Imagine for Margo grant.
Dr Simon Jackson
Editor-in-Chief
British Journal of Radiology

Friday, December 8th 2023

Dear Editor in Chief

We are pleased to submit our revised manuscript entitled “Imaging characterization of paediatric tumours with the neurotrophic tyrosine receptor kinase fusion transcript (NTRK-FT)” for consideration for publication in British Journal of Radiology as a Pictorial review.

Our review focused only on imaging data and were neither published nor submitted elsewhere. This is the first report of pooled imaging data of paediatric tumors with variable histotypes and anatomic locations harboring molecular alterations involving NTRK genes. The recent availability and efficacy of NTRK-targeted drugs enhance the need for improved identification of these tumours. Various radiological patterns were observed but a rich and irregular intra-tumoral vascularization, necrosis, hemorrhage and perilesional invasion were recurrent findings on imaging. This pattern in infants might help suggest NTRK-FT tumours and lead to histological and biological confirmation. These criteria could also be particularly interesting to suggest a soft-tissue infantile fibrosarcoma in case of atypical soft-tissue hypervascular mass in infants presumed to be hemangioma.

We thank you for considering our article. We would like to thank also the reviewers for their valuable comments and hope that we have met their expectations.

This manuscript is not under consideration by any other journal. All of the authors agree with submission to British Journal of Radiology and appropriate ethical standards were followed.

We hope that our manuscript will be regarded as potentially interesting for the readers of British Journal of Radiology
Sincerely,

Anne-Laure Hermann, MD
Department of Imaging, Institut Curie, Paris, France
25 rue d’Ulm, 75005 Paris, France
Email address: Annelaure.hermann@gmail.com
Telephone: +33 1 44 32 42 00
Fax number: 01 53 10 40 15
ORCID 0000 0002 2534 1448

Herve Brisse, MD, PhD
Head of Department of Imaging, Institut Curie, Paris, France
25 rue d’Ulm, 75005 Paris, France
Email address: herve.brisse@curie.fr
ABSTRACT

Objectives: The neurotrophic tyrosine receptor kinase (NTRK) fusion transcript (FT) is a major genetic landmark of infantile fibrosarcoma (IFS) and cellular congenital mesoblastic nephroma (cCMN) but is also described in other tumours. The recent availability of NTRK-targeted drugs enhances the need for better identification. We aimed to describe the anatomic locations and imaging features of tumours with NTRK-FT in children.

Case series: Imaging characteristics of NTRK-FT tumours of 41 children (median age: 4 months; 63% < 1 year old; range: 0-188) managed between 2001 and 2019 were retrospectively analyzed. The tumours were located in the soft tissues (n=24, including 19 IFS), kidneys (n=9, including 8 cCMN), central nervous system (CNS) (n=5), lung (n=2) and bone (n=1). The tumours were frequently deep-located (93%) and heterogeneous (71%) with necrotic (53%) or haemorrhagic components (29%). Although inconstant, enlarged intratumoral vessels were a recurrent finding (70%) with an irregular distribution (63%) in the most frequent anatomical locations.

Conclusion: Paediatric NTRK-FT tumours mainly occur in infants with very variable histotypes and locations. Rich and irregular intra-tumoral vascularization are recurrent findings.

Advances in knowledge: Apart from IFS of soft tissues and cCMN of the kidneys, other NTRK-FT tumour locations have to be known, as CNS tumours. Better knowledge of the imaging characteristics may help guide the pathological and biological identification.
INTRODUCTION

The family of transmembrane tyrosine receptor kinases (TRKA, TRKB, TRKC) is encoded by the NTRK1, NTRK2, and NTRK3 genes, which are critical players in neural development. Gene fusions involving NTRK lead to a fusion protein comprising the kinase domain of the TRK protein, which is a driver of pro-oncogenic pathways. These genetic alterations have been described in approximately 0.3% of all solid tumours, 0.3% of adult tumours and 1.3% of paediatric tumours [1]. In paediatric tumours, NTRK-fusion transcripts (NTRK-FT) were first described with the ETV6 partner gene (ETV6::NTRK3) in congenital/infantile fibrosarcoma (IFS) [2] and cellular congenital mesoblastic nephromas (cCMN) [3]. Other NTRK partners (EML4::NTRK3, TMP3::NTRK1, LMNA::NTRK1, and SCYL3::NTRK1) were further identified in various malignant tumours. The recent development of efficient drugs (e.g., Larotrectinib) blocking the NTRK molecular pathway provided critical hope for treating these tumours [4,5].

However, little is known about their imaging features apart from IFS [6,7], a small series of cCMN [8], case reports of non-IFS soft tissue NTRK-rearranged neoplasms [9-11]. Until now, the radiological features all NTRK-FT tumors, regardless of their anatomical location have not been described and compared. The present study was aimed to collect a series of paediatric tumours with NTRK-FT and describe both their anatomic locations and imaging features for better identification.

CASE SERIES

Patient cohort

Forty-one patients managed between 2001 and 2019 in 13 different centres were collected for this retrospective analysis. Twenty-two (54%) were male, and 19 (46%) were female. The median patient age at diagnosis was 4 months [range, 0–188 m], and 63% were aged younger than 1 year. All tumours exhibited NTRK-FT as assessed by RT–qPCR or RNA sequencing.

This study obtained institutional review board approval. Nonoppositional patient agreement to the study was obtained from their legal guardians.

Tumour locations, histologic subtypes and genetics

The molecular characteristics of the 41 tumours with NTRK-FT are presented in Table 1.

Imaging characteristics
US, CT-scan and MRI images were available for retrospective radiological review (by two radiologists by consensus) for 14 (35%), 28 (68%) and 29 patients (71%), respectively. Imaging characteristics of all NTRK tumours and of the most frequent location and histotypes are described in Table 2.

Among soft tissue IFSs, approximately half of the cases (53%) had ill-defined margins. Most (79%) were heterogeneous with necrosis (63%) or haemorrhage (47%). Enlarged intratumoral vessels were observed in 89% of cases, with an irregular distribution in 78% and significant enhancement on MRI in 80%. A histological comparison was obtained in one case and confirmed the presence of highly condensed anarchic vascularization composed of irregular thin-walled vessels (Figure 1). Perilesional invasion was found in 68% of the cases with predominantly fat invasion (69%) (Figure 1, Figure 2 and Figure 3).

The cCMNs were large tumours at diagnosis with a median tumour volume of 263 cm3 (IQR: 47–569) and a median largest diameter of 85 mm (IQR: 50–150). Only US (50%) or CT (100%) were available for these tumours. They were heterogeneous (88%) with necrosis (63%) or haemorrhage (25%), and no calcification or fibrosis was identified. Additionally, 88% of the cases demonstrated enlarged intratumoral vessels with an irregular distribution in 63% of them. In all the patients, the tumour was confined to the kidney without surrounding tissue invasion and without metastatic lesions (Figure 4 and Figure 5).

The CNS tumours included four brain tumours and one spinal tumour. Among the brain tumours, three were large masses at diagnosis with a median largest diameter of 72 mm (IQR: 58–78); the other tumour was a centimetric pineal embryonal malignant tumour. Two of the tumours were heterogeneous (with necrosis and haemorrhagic components) and displayed marked enhancement of the tissue portion (Figure 6 and Figure 7). The other tumour demonstrated no tissue enhancement but enlarged intratumoral and peritumoral vessels (Figure 8). All the tumours had well-defined margins. They showed a mass effect on the surrounding parenchyma and ventricles, except for the mass located in the pineal gland due to its smaller size. Only one tumour demonstrated white matter perilesional oedema (Figure 6). The spinal tumour was a diffuse leptomeningeal glioneuronal tumour harbouring an NTRK2-AGAP1 fusion transcript in a 12-year-old boy. On imaging, it appeared as an infiltrative lesion of the spinal cord containing cystic components and highly enhanced tissue portions (Figure 9).

The five other tumours located in the soft tissues showed various imaging aspects, most of them demonstrating high enhancement (80%) with focal invasiveness into the surrounding tissues, especially fat tissue (80%). One
benign dendrocyte hamartoma was located in the subcutaneous fat of the scalp, and the other was located in the subcutaneous fat and muscular part of the abdominal wall (Figure 10). The two benign mesenchymal tumours (both harbouring both $TPM3::NTRK1$ fusion transcripts) presented as a homogeneous and highly vascularized anoperineal mass and as a subaponeurotic homogeneous and poorly vascularized mass of the leg. The low-grade spindle cell sarcoma/lipofibromatosis-like neural tumour was located in the paravertebral muscles with an epidural extension and appeared as a homogeneous infiltrative mass with marked enhancement and invasion of the surrounding bone (Figure 11).

The other tumour located in the kidney was an undifferentiated sarcoma with an $LMNA::NTRK3$ fusion transcript in a 12-year-old boy presenting as a large highly vascularized mass with extensive necrosis and pulmonary and spinal leptomeningeal metastases (Figure 12).

The two lung tumours had both $ETV6::NTRK3$ fusion transcripts. Undifferentiated sarcoma in a 10-year-old boy presented as a well-defined mass containing central necrosis and enlarged intratumoral and afferent vessels. The other tumour was an ALK-negative inflammatory myofibroblastic tumour in a 15-month-old girl and presented as a well-defined solid mass with pronounced peripheral enhancement but without abnormally enlarged vessels (Figure 13).

The only bone tumour case was an osteosarcoma of the fibula in a 15-year-old girl that harboured the $CAMSAP2::NTRK3$ fusion transcript with no difference on imaging compared with conventional osteosarcoma (Figure 14).

DISCUSSION

According to our cohort, paediatric $NTRK$-FT tumours mainly occur in infants, with the most frequent anatomical locations being soft tissues (59%) and kidneys (22%), while the CNS (12%) appeared as the next most frequent site of origin. The most common imaging findings were deep location (93%), heterogeneity (71%), enlarged (70%) and irregular (63%) intratumoral vascularization and marked enhancement (69%).

IFS has been previously described as exhibiting heterogeneous signal and enhancement related to haemorrhage and necrosis, rare calcifications and extensions into adjacent structures [12,13], which is consistent with our
findings. The vascularization pattern of IFS has not been precisely described in the MR literature thus far. Our series demonstrated an inconsistent but recurrent pattern of abnormal vascularization involving enlarged peri- or intratumoral vessels with an irregular distribution. The marked degree of vascularity in IFS, which has also been described by pathologists, led to a haemangiopericytoma-like vascular pattern, which might explain these radiological features [14]. Such marked vascularization is not specific to IFS and is observed in other paediatric soft tissue sarcomas, such as rhabdomyosarcoma (RMS) and alveolar soft-part sarcoma (ASPS). Interestingly, Kobayashi et al. also reported a small series of NTRK-rearranged spindle cell neoplasms with a similar pattern of high vascularization with intra- and peritumoral flow voids [9].

The cellular variant of CMN harbouring the ETV6::NTRK3 gene fusion is an aggressive infantile renal neoplasm associated with possible local recurrence and metastasis. Its imaging appearance in our series is consistent with the literature [8], showing large and heterogeneous masses without calcification containing areas of necrosis and fluid-filled cysts. Interestingly, we also observed a peculiar vascularization pattern with enlarged and tortuous intratumoral vessels in all but one case (small-sized and homogeneous tumour). This vascular pattern was not previously reported in the radiologic literature except for one case in Bayindir’s series [8]. A strong haemangiopericytous vascular pattern has also been described in cCMN [15], possibly explaining this feature.

In our study, central nervous system (CNS) NTRK-FT tumours harboured various NTRK fusions, but all three cases of NTRK2 tumours were located in the CNS. CNS tumours with NTRK rearrangements have been described in various histological subtypes, such as low- to high-grade gliomas or ganglioglioma [16]. To date, no specific imaging features have been reported. A few cases [17] have shown tumours with well-defined margins, heterogeneous signals with little to no perilesional oedema and enlarged intratumoral vessels, in agreement with our cases. This imaging pattern is uncommon in paediatric CNS tumours but not specific and has also been reported in children with embryonal tumours presenting multi-layered rosettes [18] and high-grade neuroepithelial tumours with BCL6 corepressor gene internal tandem duplication [19].

Among non-IFS soft tissue tumours with NTRK-FT, one lipofibromatosis-like neural tumour harbouring the TPM3::NTRK1 fusion partner was observed in an epidural lumbar location, which was comparable to a previous description [11]. The LMNA::NTRK1 fusion transcript has been reported in low-grade spindle cell sarcoma in
peripheral soft tissues in children and young adults [9], whereas this specific transcript was observed in our cohort in only one case of renal undifferentiated sarcoma.

Our study presents some limitations: it was retrospective, leading to a marked proportion of missing data (30%). Interobserver agreement was not evaluated. No control cohort was used to assess distinctive radiological features between \(NTRK\)-FT tumours and tumours without \(NTRK\)-FT. Finally, the identification of imaging characteristics was not possible for exceptional cases, such as our lung and bone tumour cases.

CONCLUSION

\(NTRK\)-FT paediatric tumours are rare neoplasms occurring primarily in infants. IFS and cCMN have the highest prevalence, but a wide range of histotypes, such as CNS tumours and a few other benign mesenchymal tumours, is also observed. Although not constant, a high degree of vascularization is a recurrent finding in the three most frequent anatomical locations—i.e., in soft tissues, kidneys and the brain.
REFERENCES

https://doi.org/10.1038/s41598-021-00206-y.

https://doi.org/10.1016/j.ejrad.2009.05.036.

https://doi.org/10.3390/jims21030753.

https://doi.org/10.1038/s41467-019-12187-5.

LEGENDS

Table 1: Tumour molecular characteristics of the 41 tumours with NTRK-FT
Altogether, 12 different histotypes were observed, and the gene fusions primarily involved NTRK3 (n=32, 78%) with -ETV6 (n=28, 68%), followed by NTRK1 (n=6, 15%) and NTRK2 (n=3, 7%), and concerned 11 different fusion partners. Twenty-four tumours (59%) were located in soft tissues and included 19 IFS (79%) harbouring primarily an NTRK3-ETV6 fusion transcript (n=18) and only one NTRK1-TPR fusion transcript. Nine tumours (22%) were located in the kidney and included 8 cCMNs, all of which harboured an NTRK3-ETV6 fusion transcript. Five CNS tumours were observed, i.e., 4 brain tumours and 1 spinal diffuse leptomeningeal glioneuronal tumour. All the tumours harboured variable NTRK fusions, and the tumours associated with an FT involving NTRK2 were located in the CNS. Less frequent locations included the lung and bone.

Table 2: Imaging characteristics of all NTRK tumours, soft-tissue IFS, renal cCMN, soft-tissue non-IFS and brain tumours with NTRK-FT.
Most of the tumours (93%) were deeply located (visceral or CNS location or deep subaponeurotic soft tissues). The tumour margins could be well or ill defined (51% and 49%, respectively). A majority of them showed heterogeneous content (71%), with approximately half of the cases containing necrosis (53%) and one-third of them displaying haemorrhagic components (29%). Calcifications and fibrosis were rarely seen (12% and 5%, respectively). Perilesional invasion was found in 56% of the cases. In 70% of the cases, the tumours presented enlarged intratumoural vessels with an irregular distribution in 63% of the cases. High, heterogeneous, central and peripheral MRI enhancement was the most frequently represented (69%, 72% and 92% of the cases, respectively). NA, not available (all the features were not available for each patient from imaging data available).

Figure 1: IFS with the ETV6-NTRK3 fusion transcript in the right arm of a 4-month-old boy.
(a) Clinical examination demonstrated a large mass in the right arm, with subcutaneous vascularization. (b) Longitudinal power Doppler US demonstrated a heterogeneous mass with irregular vascularization (thick arrow) and necrosis, apparent as a nonvascularized hypoechoic area (arrow). (c) Coronal T1-weighted MR imaging demonstrated an area of hyperintense haemorrhage within the lesion (dotted arrow). (d) The coronal T2-weighted MR image shows a heterogeneous mass with partial necrosis (arrow). (e) The coronal reconstruction with maximum intensity projection (MIP) postprocessing of the CT image shows enlarged peritumoral and intratumoral vessels (thick arrow). Histological views from the core needle biopsy specimen (f) H&E, 10x. Highly condensed
anarchic vascularization composed of irregular thin-walled vessels (*) within proliferating spindle cells (⇒). (g) CD31, 10x. Highlighted vascularization (*) through endothelial cell staining (brown).

Figure 2: Orbital IFS with the ETV6-NTRK3 fusion transcript in a 2-month-old boy.

(a) Clinical examination demonstrated a large orbital mass with exophthalmia. (b) The axial T2-weighted MR image shows a large heterogeneous orbital mass containing fluid areas with liquid/liquid levels (arrow). (c) The axial T2*-weighted MR image demonstrates haemorrhagic components (dotted arrow). (d) The axial postcontrast T1-weighted fat-saturated MR image shows marked and heterogeneous enhancement and enlarged high-flow vessels.

Figure 3: Forearm IFS with ETV6-NTRK3 fusion transcript in a 5-month-old boy

Clinical examination demonstrated a soft-tissue mass without skin alteration. (b) Longitudinal power-Doppler US showed a subaponeurotic mass with high vascularization exhibiting an irregular distribution (thick arrow). (c) The Axial T2-weighted fat-saturated MR image shows flow voids within the lesion (arrow). (d) The coronal postcontrast T1-weighted fat-saturated MR image shows heterogeneous enhancement of the lesion with central nonenhanced necrosis (dotted arrow).

Figure 4: cCMN with the ETV6-NTRK3 fusion transcript in a 5-month-old boy.

Transverse colour-Doppler mode US (a) and contrast-enhanced CT at the portal phase on the axial (b) and coronal views (c). A large heterogeneous mass containing a hypointense area (thick arrow) and highly vascularized tissue portions was observed displaying very enlarged intratumoral vessels with an irregular distribution (arrow) and enlarged peripheral vessels (a). No invasion of the surrounding tissues was observed.

Figure 5: cCMN with ETV6-NTRK3 fusion transcript in a 20-month-old boy.

Transverse greyscale (a) and longitudinal Doppler colour mode (b) US and contrast-enhanced CT in the portal phase in the coronal view (c) and axial view (d). A large and heterogeneous mass of the left kidney is demonstrated; the mass contained a large portion of nonenhanced liquid necrosis (thick arrow) and displayed enlarged intratumoral vessels (thin arrow).
Figure 6: Atypical teratoid rhabdoid tumour (ATRT) with the NTRK3-SPECC1 fusion transcript in a 15-month-old boy.

Axial T2 (a), SWI (b), ASL (c) and postcontrast T1 (d) weighted MRI images reveal a large frontoparietal intra-axial well-defined mass with a central portion of necrosis (star) and haemorrhage (dotted arrow), containing flow voids on T2 (thin arrow) and displaying high, heterogeneous and peripheral enhancement with increased perfusion on ASL (thick arrow). Perilesional oedema of the surrounding white matter (arrowhead) was observed.

Figure 7: High-grade glioma with the NTRK2-BCR fusion transcript in a 2-month-old girl

Axial T2 (a), coronal T2 (b), axial SWAN (c) and postcontrast T1 (d) weighted MR images.

MR revealed a large infiltrative intra-axial mass with frontotemporal invasion, containing fluid portions (star), a small haemorrhagic component (dotted arrow), enlarged afferent and intratumoral vessels (arrow) with mild, heterogeneous central and peripheral enhancement.

Figure 8: Embryonal malignant CNS tumour with the NTRK1-TMP3 fusion transcript in a 12-year-old boy.

Axial T1 (a), axial FLAIR (b), axial postcontrast T1 (c) and axial postcontrast T1 with maximum intensity projection (MIP) (d) weighted MR images. MR revealed an intra-axial occipital well-defined mass, with no enhancement but containing multiple hypointense flow voids on FLAIR images (arrow), enlarged vessels within and at the periphery of the lesion (dotted arrow).

Figure 9: Spinal diffuse leptomeningeal glioneuronal tumour with the NTRK2-AGAP1 fusion transcript in a 12-year-old boy

Medullar sagittal T2 (a)(b), sagittal T1 (c) and postcontrast fat-saturated T1 (d)(e) weighted MR images show an infiltrative mass along the spinal cord, with ill-defined margins, containing cystic components (arrow) and tissue portions with high and heterogeneous enhancement (dotted arrow).

Figure 10: Benign dendrocytic hamartoma of the abdominal wall with the NTRK3-KHNRBS1 fusion transcript in a 4-month-old girl.

(a) Clinical examination revealed a large superficial purplish lesion of the skin of the abdominal wall with skin thickening and ill-defined margins. Axial contrast-enhanced CT (b), axial T1-weighted (c) and T2-weighted fat-
saturated (e) MR images show two portions within the mass. One is located superficially in the skin and subcutaneous fat of the abdominal wall, demonstrating high and homogeneous enhancement, isointensity on the T1-W image and hyperintensity on the T2-W image (thick arrow). The second one is located deeply in the left right rectus muscle, demonstrating no enhancement or isointensity on T1 and T2-W images (arrow). (d) The sagittal T2-weighted image shows infiltration of the subcutaneous fat between the two parts of the lesion (dotted arrow).

Figure 11: Para-spinal low-grade spindle cell sarcoma/lipofibromatosis-like neural tumour with the NTRK1-TPM3 fusion transcript in a 3-year-old girl
Sagittal T1 (a), T2 (b) and postcontrast T1 (c) weighted MR images and axial T2 fat-saturated (d) and postcontrast T1 (e) weighted MR images. They show a lumbar infiltrative mass with invasion of the paravertebral muscles and epidural tissue (thick arrow), displaying isointensity on T1-W images (a), hyperintensity on T2-W images and high homogeneous enhancement (c)(e). The mass is responsible for medullar compression (arrow) and erosion of the surrounding vertebral bodies (dotted arrow).

Figure 12: Undifferentiated renal sarcoma with the NTRK3-LMNA fusion transcript in a 12-year-old boy
Longitudinal greyscale US (a), axial contrast-enhanced abdominal CT in the delayed phase (b), axial thoracic CT in the pulmonary window (c), coronal contrast-enhanced abdominal CT in the portal phase (d) and sagittal postcontrast T1-weighted MR (e) images. They show a heterogeneous mass in the upper lobe of the left kidney containing a hypoechoic area and a nonenhanced hyperechoic area indicating necrotic and haemorrhagic components (thick arrow). (d) Enlarged intratumoral vessels within the lesion with irregular distribution (arrow). Note the aggressive behaviour of the tumour, with several pulmonary and intramedullary metastatic lesions (arrowhead).

Figure 13: Inflammatory myofibroblastic tumour (ALK negative with a NTRK3-ETV6 fusion transcript) in a 15-month-old girl.
Axial contrast-enhanced thoracic CT on mediastinal (a) and pulmonary (b) windows and coronal contrast-enhanced thoracic CT on the mediastinal window (c) demonstrating a homogeneous pulmonary mass with well-defined margins and low enhancement.

Figure 14: Fibular osteosarcoma with the NTRK3-CAMSAP2 fusion transcript in a 15-year-old girl.
Axial CT of the leg on the bone window (a); axial T2 weighted fat-saturated MR image (b); and coronal T1 (c), T2 (d) and postcontrast T1 (e) weighted MR images. They show an aggressive bone lesion of the fibula with a permeative periosteal reaction (thick arrow) and great extension to soft tissues (arrow), displaying high and heterogeneous signals on T2 and heterogeneous enhancement.
Figure 12
Table 1. Tumor molecular characteristics of the 41 tumors with NTRK-FT

<table>
<thead>
<tr>
<th>Anatomical location</th>
<th>Histology</th>
<th>Fusion partners</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft tissue (n=24)</td>
<td>Infantile fibrosarcoma</td>
<td>NTRK3-ETV6</td>
<td>18 (44%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NTRK1-TPR</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td>Benign dendrocyte hamartoma</td>
<td>NTRK3-KHDRBS1</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NTRK3-EML4</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td>Benign mesenchymal tumor</td>
<td>NTRK1-TPM3</td>
<td>2 (5%)</td>
</tr>
<tr>
<td></td>
<td>Lipofibromatosis-like neural tumor</td>
<td>NTRK1-TPM3</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Kidney (n=9)</td>
<td>Cellular congenital mesoblastic nephroma</td>
<td>NTRK3-ETV6</td>
<td>8 (19%)</td>
</tr>
<tr>
<td></td>
<td>Renal undifferentiated sarcoma</td>
<td>NTRK1-LMNA</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Central Nervous System (n=5)</td>
<td>Embryonal malignant tumor</td>
<td>NTRK1-TPM3</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NTRK2-KANK2</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td>High grade glioma</td>
<td>NTRK2-BCR</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td>Atypical teratoid rhabdoid tumor</td>
<td>NTRK3-SPECC1</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td>Spinal leptomeningeal glioneuronal tumor</td>
<td>NTRK2-AGAP1</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Lung (n=2)</td>
<td>Inflammatory myofibroblastic tumor</td>
<td>NTRK3-ETV6</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td></td>
<td>Lung undifferentiated sarcoma</td>
<td>NTRK3-ETV6</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>Bone (n=1)</td>
<td>Osteosarcoma</td>
<td>NTRK3-CAMSAP2</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>41 (100%)</td>
</tr>
</tbody>
</table>
Table 2: Imaging characteristics of all NTRK tumours, soft-tissue IFS, renal cCMN, soft-tissue non-IFS and brain tumours with NTRK-FT.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All NTRK-FT tumours (n=41)</th>
<th>Soft-tissue IFS (n=19)</th>
<th>Renal cCMN (n=8)</th>
<th>Soft-tissue non-IFS (n=5)</th>
<th>Brain tumours (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis</td>
<td>Median, range (months)</td>
<td>4 m [0 – 188]</td>
<td>2 m [0 – 74]</td>
<td>3.5 m [1 – 20]</td>
<td>2 (40%) 76 m [2 – 156]</td>
</tr>
<tr>
<td>Gender</td>
<td>Boys / Girls</td>
<td>22/19</td>
<td>10/9</td>
<td>6/2</td>
<td>3 (60%) 3/1</td>
</tr>
<tr>
<td>Location</td>
<td>Superficial</td>
<td>3 (7%)</td>
<td>1 (5%)</td>
<td>0 (0%)</td>
<td>43 (IQR 20–82) 0 (0%)</td>
</tr>
<tr>
<td></td>
<td>Deep</td>
<td>38 (93%)</td>
<td>18 (95%)</td>
<td>8 (100%)</td>
<td>14.5 (4–91) 4 (100%)</td>
</tr>
<tr>
<td>Tumor size</td>
<td>Median of largest diameter (mm)</td>
<td>65 (IQR 11–154)</td>
<td>50 (IQR 12–118)</td>
<td>85 (IQR 50–150) 2 (40%)</td>
<td>65 (IQR 11–78)</td>
</tr>
<tr>
<td></td>
<td>Median of volume (cm³)</td>
<td>58 (IQR 0.6–847)</td>
<td>37 (IQR 1–530)</td>
<td>263 (IQR 47–748) 3 (60%)</td>
<td>123 (IQR 1–228)</td>
</tr>
<tr>
<td>Margins</td>
<td>Well-defined</td>
<td>21/41 (51%)</td>
<td>10/19 (53%)</td>
<td>3/8 (38%) 5 (100%)</td>
<td>4/4 (100%)</td>
</tr>
<tr>
<td></td>
<td>ill-defined</td>
<td>20/41 (49%)</td>
<td>9/19 (47%)</td>
<td>5/8 (63%) 0 (0%)</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td>Tumor content</td>
<td>Homogeneous</td>
<td>12/41 (29%)</td>
<td>4/19 (21%)</td>
<td>1/8 (13%) 0 (0%)</td>
<td>1/4 (25%)</td>
</tr>
<tr>
<td></td>
<td>Heterogeneous</td>
<td>29/41 (71%)</td>
<td>15/19 (79%)</td>
<td>7/8 (88%) 0 (0%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td></td>
<td>Necrosis</td>
<td>21/40 (53%)</td>
<td>12/19 (63%)</td>
<td>5/8 (63%) 0 (0%)</td>
<td>2/4 (50%)</td>
</tr>
<tr>
<td></td>
<td>Hemorrhage</td>
<td>12/41 (29%)</td>
<td>9/19 (47%)</td>
<td>2/8 (25%) 0 (0%)</td>
<td>1/4 (25%)</td>
</tr>
<tr>
<td></td>
<td>Calcification</td>
<td>4/34 (12%)</td>
<td>2/15 (13%)</td>
<td>0/8 (8%) 1 (20%)</td>
<td>0/3 (0%)</td>
</tr>
<tr>
<td></td>
<td>Fibrosis</td>
<td>1/22 (5%)</td>
<td>0/11 (0%)</td>
<td>0/4 (0%) 0 (0%)</td>
<td>0/2 (0%)</td>
</tr>
<tr>
<td>Vascularization pattern</td>
<td>Enlarged peritumoral</td>
<td>22/41 (54%)</td>
<td>13/19 (68%)</td>
<td>3/8 (38%) 1 (20%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td></td>
<td>(afferent/efferent) vessels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enlarged intratumoral</td>
<td>28/40 (70%)</td>
<td>16/18 (89%)</td>
<td>7/8 (88%) 0 (0%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>MRI enhancement</td>
<td>Irregular distribution</td>
<td>MRI enhancement: No enhancement</td>
<td>MRI enhancement: Mild enhancement</td>
<td>MRI enhancement: High enhancement</td>
<td>MRI enhancement: Homogenous</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>25/40 (63%)</td>
<td>14/18 (78%)</td>
<td>5/8 (63%)</td>
<td>1 (20%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>Perilesional invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perilesional invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18/41 (44%)</td>
<td>6/19 (32%)</td>
<td>8/8 (100%)</td>
<td>4 (80%)</td>
<td>1/4 (25%)</td>
</tr>
<tr>
<td></td>
<td>23/41 (56%)</td>
<td>13/19 (68%)</td>
<td>0/8 (0%)</td>
<td>2 (40%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td></td>
<td>13/23 (57%)</td>
<td>9/13 (69%)</td>
<td>NA</td>
<td>1 (20%)</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td></td>
<td>8/23 (35%)</td>
<td>5/13 (38%)</td>
<td>NA</td>
<td>1 (20%)</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td></td>
<td>9/23 (39%)</td>
<td>7/13 (54%)</td>
<td>NA</td>
<td>0 (0%)</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td></td>
<td>4/23 (17%)</td>
<td>0/13 (0%)</td>
<td>NA</td>
<td>0 (0%)</td>
<td>3/3 (100%)</td>
</tr>
</tbody>
</table>