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ABSTRACT 
Wearable sensors have gained mainstream acceptance for 

health and fitness monitoring despite the absence of clinically 
validated analytic models for clinical decision support.  
Individual sensors measuring, say, EKG signal and heart rate 
can provide insight on cardiovascular response, but a more 
complete picture of health and fitness requires a more complete 
portfolio of sensors and data.  This paper outlines the research 
underway to revisit and reconfigure the 1976 Calvert systems 
model of the effect of training on physical performance. 
Specifically, we use wearable sensor data from clinical trials to 
supplement a hybrid model created by nesting Perl’s 
Performance-Potential model within Calvert’s transfer function 
approach to system simulation.  Contemporary simulation tools 
combined with wearables clinical trial data is the foundation for 
a more agile platform for simulation of fitness and exploration 
of causality between training and physical performance. This 
platform offers the opportunity to strategically integrate data 
from various wearable sensors in a fashion enabling improved 
support for post-injury and return to sport decision-making. 

Keywords: Wearables, fitness monitoring, Calvert model, 
return to sport, post injury physical therapy. 

NOMENCLATURE 
Place nomenclature section, if needed, here. Nomenclature 

should be given in a column, like this: 
HR  Heart rate in beats per min (BPM) 
RTP Return-to-Play 
SmO2 Muscle oxygen level (percentage) 

 
1. INTRODUCTION 

 Calvert’s model [1] (shown in Figure 1) was introduced 
in 1976 as a system model to help predict competitive 
performance, based on cardiovascular health, strength, skill, and 
psychological aspects. Due to the difficulty of combining these 
components, his model calculations were simplified into one that 
strictly looked at the fitness and fatigue emanating from training. 
Although this model is a good basis for predicting the outcome 

times of an athlete, Calvert indicated there are many factors that 
were not discussed since they were out of reach, and that further 
research needed to be done. Returning to the original four-
component model remains attractive as a more accurate model. 
With the advent of commercially available, relatively low-cost 
wearable systems for biometric measurements, there arises the 
opportunity to create more objective and detailed measures of 
individual “fitness” whether it be for athlete performance or 
post-surgical patient rehabilitation [2-4]. For instance the ability 
to capture muscle oxygen saturation is now easily obtained with 
wearables in a way that was simply not possible at the time of 
Calvert’s original research.  In the present work we create a 
hybrid Calvert model by nesting Perl’s Performance-Potential 
model to replace the cardiovascular and strength arms of 
Calvert’s model with the fitness and fatigue equations of Perl [5], 
thus creating a novel four-component model that is more 
tractable for the type of wearable fitness data available today. 

While we believe the hybrid Calvert model will simplify the 
use of objective fitness data available for simulation, establishing 
important qualitative data (e.g., skill) remains a barrier. This type 
of data is generally considered indeterminate unless broad 
assumptions or Likert-type scales are used to annotate workout 
or training data.  Given this ambiguity, subsequent forms of the 
Calvert model attempted to make calculations more tractable by 
reducing the four-component model to, say, a two-component 
model. While this produces a computational framework that 
more readily enables transfer function development and 
calculations to proceed, some of the richness of the qualitative 
elements of Calvert’s model are lost.  Our strategy is to utilize 
machine learning classification methods to find discrete values 
of the subjective components (again, “skill” levels).  For this, it 
is necessary train the hybrid Calvert model with annotated data 
sets for specific athletic training regimens. In particular, the 
reinforcement techniques described by Sutton [6] have been used 
to train unconstrained 6DOF kinematic models and if we view 
the hybrid Calvert model as unconstrained, then the same 
reinforcement techniques may find relevant fitness patterns 
within the data sets. 
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Today’s contemporary assessments are dominated by 
subjective, self-reported measures and this is believed to 
compromise the quality of, say, training load assessments and the 
development of training programs that benefit a person’s 
progress. We propose that data produced from wearables arising 
from clinical trials is the essential “primary data” underpinning 
advanced modeling work to eventually inform clinical decisions 
about training programs involved in returning to normal health 
and fitness.  Further, the phenomena of “sports specialization” 
has exacerbated the trend for flawed training decisions relying 
heavily on training protocols using patients’/athletes’ subjective 
data to understand their limits.  The tendency for information to 
be nested in proprietary form has impeded the ability to create 
platforms other researchers can contribute to or expand. We 
believe that such a platform is an unmet need in the market that 
we wish to address. 

Since the time of Calvert’s original work, it is now possible 
to improve the fidelity of his system model in four ways: 

1. Acquisition of primary data from common wearable 
sensors used in sports and fitness, under a protocol with 
specific exercise regimes in different sports. 

2. Normalization and harmonization of data from different 
sources, each linked to the determinants of performance: 
endurance, strength, skill, and psychological factors. 

3. Collection of performance data annotated with qualitative 
factors impacting performance such as sleep, diet, mood 
and injury that can be part of  reinforcement learning  

4. Implementing the model in a contemporary simulation 
program such as MATLAB to foster dissemination and 
broader use of Calvert’s model. 

Preliminary work has revealed that these aims are not as trivial 
as one would easily suspect, and we believe the “lessons learned” 
in our research will assist others in their simulation efforts. 

 

 

 

 
 
 
FIGURE 2: HYBRID MODEL OF CALVERT WITH THE 
PERL MODEL NESTED FOR FITNESS AND FATIGUE AND 
WEARBLE SENSOR DATA USED TO COMPUTE 
TRAINING LOAD (Adapted from [1],[5]). 
 

FIGURE 1: MULTICOMPONENT MODEL OF 
CALVERT TO EXPLAIN EFFECTS OF DIFFERENT 
FORMS OF TRAINING ON PERFORMANCE 
(ADAPTED FROM [1]). 

TABLE 1: INITIAL CLINICAL TRIAL PRIMARY 
DATA SUPPORTING THE FOUR COMPONENTS OF 
THE CALVERT MODEL. 
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2. MATERIALS AND METHODS 
The current research program involves four activities: 

1. Primary data acquisition.  Acquisition of primary data from 
common wearable sensors used in sports and fitness, under a 
protocol with specific exercise regimes in different sports. 
Collection of subject data was performed under the auspices 
of an approved clinical Study Protocol CWRU-2018-0957 
for wearable sensors. For the initial phase of study, we 
collected heart rate (Polar-10 sensors), muscle oxygenation 
(MOXY sensors), and physical stress data (VivaLnk sensors). 
These parameters are shown in Table 1. 

2. Wearables data integration. Our initial pass at collecting 
primary data was to better understand any issues associated 
with data collection and integration of wearable devices from 
different manufacturers. This was believed to be prudent in 
the event issues arose; we did not want to undertake the full 
study protocol without a preliminary look at the data. This 
might seem trivial, but integration involves a unique set of 
challenges due to a lack of standards – sensor data originates 
from different manufacturers with completely different signal 
time scales, frequency, and output formats.  The “R” 
programming language was chosen as our initial integration 
platform to explore the data integration issues since it is 
readily available and open source. Eventually the integration 
algorithms would need to migrate to the MATLAB platform. 
The exercise protocol for our pilot data is shown in Table 2. 

3. Qualitative data collection. The collection of qualitative 
factors impacting performance such as sleep, diet, mood 
injury, genetics, is a part of the Study Protocol and will 
commence as part of the full-scale study.  In the next phase 
preliminary work we anticipate testing a Likert-type scale for 
the “Skill” and “Psychological” parameters shown in Table 1.  
Specific data will be collected when allowed post-COVID19. 

4. Model Calibration. Figure 2 illustrates the hybrid Calvert 
model modified for the present research program; test 
objective data has been implemented in MATLAB/Simulink. 
Several unknows exist in the model and the on-going research 
effort is to use the data collected under the Study Protocol to  
(a) resolve the coefficients in the transfer functions for 
specific performance measures, and (b) and (b) enable the 
assessment of the C1-C4 coefficients that integrate/calibrate 
specific performance parameters corresponding with athlete 
performance. 

Our goal in this work is best expressed in the words of Calvert: 
“Although this general model has obvious deficiencies and many 
variations could be proposed, it accounts for the major 
determinants of performance.  Each component transfer function 
should probably be nonlinear and should definitely contain a 
saturation type limiter, since there are physiological limits to 
how much training can be tolerated (which themselves change as 
training progresses). In spite of this, the framework should be 
useful in the design of crucial experiments in the future.” We 
concur and have collected pilot data as an exploratory effort. 
 
 
 

3. RESULTS AND DISCUSSION 
The workout schedule (Table 2) for collegiate women 

soccer players is the basis of data for the present work.  When 
we are permitted to resume access to full team workouts post-
COVID19, then a similar workout schedule will be conducted 
with 5 groups of 5 athletes, creating a more statistically sound 
basis for data analysis.  Currently, workouts are individual-
based, with athletes working “at-home” (again, during the 
pandemic). Despite this limitation we believe that the data 
collected is adequate – yet still realistic – to explore. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A sample of wearable data for heart rate and muscle 

oxygenation is shown in Figure 3, plotted on the same axis for 
convenience in comparison.  Data trends are not all that 
surprising, and we have the expected changes during warm-up 
and cool down, as well as the expected trends of heart rate 
dropping as muscle oxygenation rises.  The plots themselves are 
intuitive results and fairly unremarkable, but what is challenging 
is the process of extracting data from the commercial sensors and 

TABLE 2: PILOT EXECISE SEQUENCE FOR 
WEARABLE PRIMARY DATA COLLECTION.

Day 1: Stage 1 Warmup (10 minutes) 

Stage 2 Dribbling 

Stage 3 Cool down (10 minutes)

Day 2: Stage 1 Warmup (10 minutes) 

Stage 2 Beep Test

then 1 minute break 

Stage 3 Cool down (10 minutes)

Day 3: Stage 1 Warmup (10 minutes) 

Stage 2 3 sets of box to box sprints x10

then 1 minute break 

Stage 3 Cool down (10 minutes)

Day 4: Stage 1 Warmup (10 minutes) 

Stage 2 Ladder Drill with sprints 

Stage 3 Cool down (10 minutes)

Day 5: Stage 1 Warmup (10 minutes) 

Stage 2 3x5 of 30 second jog,

20 second run,

10 second sprint, 

2 minute break 

Stage 3 Cool down (10 minutes)

Day 6: Stage 1 Warmup (10 minutes) 

Stage 2 Beep Test

Stage 3 Cool down (10 minutes)

Day 7: Stage 1 Warmup (10 minutes) 

Stage 2 Technical work with ball

Shooting drills 

Stage 3 Cool down (10 minutes)
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then harmonizing all the data into a single data file.  Our inability 
to control and harmonize the so-called time-stamp – shown as 
the baseline in Table 3 – creates a data management issue.  In 
Table 3 we see an abundance of “NA” values where times could 
not be synchronized.  Here, we allowed the “R” program to blend 
the data allowing the routines to default to “NA” but this classic 
problem of data voids may become more significant later.  For 
instance, the calculation of heart rate variability (HRV) will need 
to “overlook” the “NA” values; more to the point, is HRV 
potentially impacted in a way that we would first compute HRV, 
assign to a default baseline time, then blend HR, HRV, and 
SmO2 after the calculations?  We are seeking primary data that 
can be shared and believe that any type of filtering and averaging 
could introduce bias that may limit the use of our primary data 
by others. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Equally challenging is extracting data from the sensors.  
Some systems allow you to capture data, but you must assume 
that the wearable system software has not introduced bias, but 
since most manufacturers will not let you “see their homework” 
you are left to assume you have as good a set of “raw data” as is 
possible.  Further, there tends to be the need to use proprietary 
algorithms for import/export, and these not only change with 
model, but also the export formats can be somewhat difficult to 
use.  Some systems export data in JSON format, others enable 
TXT or CSV formats. Generally the manufacturers assume the 
user is an athlete looking for aggregate fitness indicators, and not 
seeking raw data for clinical trials.  Creating interface routines is 
required, and thus data I/O is a much bigger challenge with off-
the-shelf devices versus a custom design system. 

 

 
Our preliminary modeling and pilot data collection efforts 

have encourages continuing the development of an updated 
version of Calvert’s model.  As we develop strategies for 
computing the unknown coefficients (Figure 2) our efforts will 
reveal and produce open-source algorithms that can benefit other 
researchers.   
 

Our preliminary modeling and pilot data collection efforts 
have encouraged continuing the development of an updated 
version of Calvert’s model.  As we develop strategies for 
computing the unknown coefficients (Figure 2) our efforts will 
reveal and produce open-source algorithms that can benefit other 
researchers.  However, three main questions remain: 
 Can our strategy for developing a new version of the Calvert 

model, in fact, create a predictive training model that 
incorporates knowledge about physiological adaptations 
which would allow hypothesis-driven research? 

 Can this model be demonstrated applicable for other sports 
that don’t have measurements like time (say, volleyball) to 
determine outcome? 

 Is it realistic to expect the transfer functions shown in Figure 
2 be established independently of the integration 
coefficients C1-C4? 

 
4. CONCLUSION 
Advances in accuracy and cost of wearables has created an 

opportunity to revisit the Calvert model and explore 
components of analysis not feasible when the work was 
published in 1976.  We believe there is room to improve the 
model and make it more accurate. Expanding upon this model 
with aspects such as diet, amount of sleep, injury, mood, and 
energy level, creates a more complete and open platform that 
can facilitate other research team activity.  
 

TABLE 3: SAMPLE DATA ILLUSTRATING 
PRESENCE OF ‘NA’ IN DATASETS USING ‘R’ 

FIGURE 3: SAMPLE PLOT OF HEART RATE 
(HR, BPM) AND MUSCLE OXYGENATION FOR 
SENSOR LOCTED ON THE VASTUS 
LATERALIS MUSCLE (PERCENT O2) 
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