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ABSTRACT 
Speech analysis using microphones can be problematic for Voice 

Activity Detection (VAD) in the presence of background noise. 

This study explored the use of wearable accelerometers instead 

of microphones. We assessed if accelerometers placed on the 

neck can be part of a VAD system embedded in a wearable 

collar-like device that delivers vibro-tactile stimulation (VTS) to 

the larynx during speech as a therapy for patients with the voice 

disorder spasmodic dysphonia. Specifically, we aimed to a) find 

the ideal location for placing accelerometers to the neck, and b) 

develop a VAD algorithm that detects the onset and offset of 

speech. Six healthy adult participants (M/F = 3/3, age = 26 

(5.1)) vocalized 20 sample sentences with and without VTS at 

three neck locations: 1) thyroid cartilage, 2) sterno-

cleidomastoid, and 3) posterior neck above C7. Based on time-

synchronized acceleration and audio signals, VAD algorithm 

identified the Number of Onsets of Speech and Total Time Voiced. 

The thyroid cartilage attachment location had over 90% 

accuracy detecting speech in both measures. The average 

accuracy of the sternocleidomastoid and C7 locations were 

below 75% and 15% respectively. VAD accuracy decreased with 

the presence of VTS trials at all locations. We conclude that 

accelerometer signals due to tissue motion at thyroid cartilage 

are most suitable for real-time VAD. These findings support the 

feasibility of accelerometer-based voice detection for the use in 

medical devices that target speech and voice disorders. 
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NOMENCLATURE 
VAD Voice Activity Detection 

SD  Spasmodic Dysphonia 

VTS Vibro-tactile Stimulation 

dB  Decibel 
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INTRODUCTION 
Many current Voice Activity Detection (VAD) devices 

utilize microphones. However, the reliability of these systems 

decreases in environments where other voices or environmental 

noise obscure targeted speech. Interest in accelerometers to 

detect voice activity, especially in noisy environments, has 

increased to address the shortcomings of using microphones. 

Although binaural microphone recording is a commonly 

accepted method to reduce recorded background noise in low 

signal-to-noise ratio environments, a neck-attached accelero-

meter can capture voice signals significantly more accurate [1]. 

Even in the presence of 67.5 dB background noise, compared to 

the 40 dB volume tested by Lindstrom et. al. [1], a neck-attached 

accelerometer was resistant to noise while recording laryngeal 

vibrations [2]. Besides these studies that were conducted in 

controlled laboratory settings, accelerometers have successfully 

been employed in workplace environments with random 

background noise to track speech activity throughout a day [3]. 

While most speech analysis research focuses on populations 

with healthy speech production, some devices, like the 

Ambulatory Phonation Monitor [4], have also been tested with 

patients of spasmodic dysphonia (SD), a disorder where 

involuntary spasms of the laryngeal muscles decrease speech 

quality [5]. Issues with microphone recordings of healthy voices 

are exacerbated in these dysphonic patients due to the strained 

speech produced, often at a much lower volume than is normal 

for the healthy population. As dysphonia severity increases, the 

effectiveness of microphone-based measures decrease [6]. 

Accelerometers, however, are able to capture acceleration data 

from speech even in most severe cases of dysphonia [4].  

The current study proposes the use of an accelerometer to 

measure neck surface vibrations as a mean for detecting speech 

in real-time. The work is part of a larger project with the goal of 

developing a wearable collar that delivers vibration therapy to 
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SD patients as they speak [7]. A persistent improvement in voice 

quality has been demonstrated in SD patients following the 

application of vibro-tactile stimulation (VTS) to the laryngeal 

muscles [8]. While existing devices are able to utilize either 

amplitude or frequency based algorithms for VAD, none have 

done so with concurrent VTS in the vicinity of the accelerometer 

as this study proposes. The introduction of VTS adds noise to the 

accelerometer’s recording, which could interfere with the 

existing VAD techniques. The aims of this study are to (1) 

determine the anatomical location for accelerometer placement 

that provides a signal that most reliably distinguishes between 

speech and non-speech during laryngeal VTS and (2) to develop 

a signal processing algorithm for VAD for real-time 

implementation with VTS during speech activity. The 

attachment location must be within the region of a neck collar 

circumscribing the thyroid cartilage. 

METHODS 

2.1 Participants 
Voice and acceleration data were collected from 6 healthy 

adult participants (M/F = 3/3, 26 ± 5.1 years). Healthy was 

defined as lacking any self-identified neurological, movement, 

or speech disorder. The experiment protocol was approved by the 

Institutional Research Board (IRB) of the University of 

Minnesota. All the participants signed a consent letter prior to 

attending the experiment. 

2.2 Instrumentation 
Audio data were recorded at 44100 Hz using an ECM-88B 

Electret Condenser Microphone (Sony Corporation, Tokyo, 

Japan) connected to a MixPre-6 microphone preamplifier. The 

preamplifier was connected to a computer using Audacity [9] to 

record the signal. The accelerometer used was a BU-27135-000, 

a single-axis accelerometer (Knowles Electronics LLC, Itasca, 

IL, United States). The acceleration data were collected and 

recorded directly to an SD card by an Arduino Uno R3 (BCMI, 

Italy) at 1000 Hz. This sampling frequency accounts for the 

average fundamental frequency of vocalized vowels in males 

and females of up to 400 Hz [10]. The accelerometer was 

connected to the Arduino Uno using three insulated multiple 

strand wires.  

Acceleration and audio recordings were time-synchronized 

in order to compare accuracy of the VAD algorithm between 

each recording. Time synchronization was implemented by 

producing a 1000 Hz beep for 250 milliseconds at the start and 

end of accelerometer signal recording that was recorded in the 

audio signal. The audio signal was then trimmed to the start of 

the first and last beep. Laryngeal VTS was provided by 2 Pico 

Vibe™ 9-millimeter vibrators (Precision MicrodrivesTM, 

Model 307 – 100). The vibrators operated at a stimulation 

frequency of 100 Hz, supplied with 1.1 volts from an adjustable 

voltage power block. The accelerometer and vibrators were 

attached to the skin of the neck using double sided tape and one 

piece of Blenderm tape (3M, Maplewood, MN, United States) 

on top of each device to secure them to the skin (see FIGURE 1). 

 

 
FIGURE 1: Attachment of vibrators, in red, to the laryngeal muscles 

lateral to the thyroid cartilage and accelerometer attachment locations: 

(A) thyroid cartilage, (B) sternocleidomastoid lateral to the thyroid 

cartilage, and (C) 2.5 centimeters above C7. 

2.3 Procedure 
The accelerometer was attached to three locations: thyroid 

cartilage below the thyroid notch, sternocleidomastoid in line 

with the thyroid notch, and 2.5 centimeters above C7 on the back 

of the neck. Vibrators were attached bilaterally over the laryngeal 

area, lateral to the thyroid cartilage (see FIGURE 1A). 

The experimental protocol consisted of speaking 20 sample 

sentences in 6 different conditions of 2 variables: accelerometer 

attachment location and application of VTS (see FIGURE 2). 

 
FIGURE 2: Experimental protocol at each accelerometer attachment 

location. Data were collected beginning with a baseline trial (5000 ms), 

followed by separate trials with and without the application of VTS. 
 

Speech data were collected with and without VTS 

application at all accelerometer attachment locations. A baseline 

trial for 5000 milliseconds with no speech was recorded at each 

accelerometer location to determine a threshold for the VAD 

algorithm (see FIGURE 2).  

2.4 Signal Processing 
Audio data were exported from Audacity (The Audacity 

Team, Pittsburgh, Pennsylvania, U.S.A). Acceleration data were 

converted from binary to comma-separated value files by the 

Arduino and then exported from the SD card. Subsequent data 

analysis and signal processing was conducted in MATLAB 

R2018b (The MathWorks Inc., Natick, Massachusetts, U.S.A.). 

Detecting voice activity from acceleration data requires 

signal processing to filter the data and set thresholds for speech. 

A basic, computationally efficient measure to characterize a 

signal for VAD is average power in the time and frequency 

domain. Average power, P, in the time domain of a discrete-time 

signal can be calculated as the average of the sum of each 

squared value, N, in the signal: 

 

𝑃 =
1

𝑁
∑ |𝑥(𝑛)|2𝑁−1

𝑛=0                              (1) 

 

This calculation can also be conducted similarly in the frequency 

domain to find spectral energy density, power spectral density, 
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and average spectral power. The spectral energy density, Es(f) 

can be calculated using the Fourier transform, X(f): 

 

𝐸𝑠(𝑓) =  |𝑋(𝑓)|2                                 (2) 

 
The power spectral density of the signal, Pxx, where ∆t represents 

the sampling interval is: 

 

𝑃𝑥𝑥(𝑓) =  
∆𝑡

𝑁
|∑ 𝑋(𝑓)𝑛

𝑁−1
𝑛=0 |2                      (3) 

 

The average spectral power of this signal in the frequency 

domain, Pf, can then be calculated by integrating the power 

spectral density over all frequencies in the signal, where fs is the 

sampling frequency: 

 

𝑃𝑓 =  ∫ 𝑃𝑥𝑥(𝑓)
𝑓𝑠

2⁄

−𝑓𝑠
2⁄

𝑑𝑓                              (4) 

 

Parseval’s Theorem states the energy of the signal in the 

time domain is equal to the summation of all frequency 

components of the spectral energy density of the signal [11]. 

Thus, the calculated average power of a window of samples in 

the time and frequency domain would be equal as well. 

Non-VTS and VTS trials were treated with different filters. 

Non-VTS trials were used as evidence for the feasibility of using 

an accelerometer at any of the chosen regions around the neck 

for generally applicable speech detection. VTS trials targeted the 

specific application of the delivery of VTS using a collar [7]. 

Thus, filters to remove the frequency and noise associated with 

VTS and the input current to the vibrators were only applied in 

trials with VTS. 

Non-VTS trials were treated with a band-pass filter from 80-

400 Hz to remove movement artifacts and high frequency noise 

from the accelerometer. VTS trials were treated with a band pass 

filter from 110-400 Hz. The increase from 80 Hz to 110 Hz on 

the lower stop band accounts for the frequency of the vibrators 

that varied from 99 Hz to 109 Hz across participants. This slight 

variance in frequency of the vibrators can be attributed to 

attenuation of the signal due to anatomical differences of the 

neck region between participants and minor variability of the 

input voltage provided to the vibrators. The VTS trials were then 

treated with three band-stop filters to remove the 2nd, 3rd, and 4th 

harmonic of the 60 Hz noise caused by the current to the 

vibrators. Only FIR filters were used to avoid nonlinear phase 

distortions. These filters were applied using the MATLAB 

function filtfilt, which produces zero-phase distortion, however, 

it does introduce a constant magnitude distortion. This distortion 

was addressed in the signal processing workflow by applying a 

scale factor to adjust threshold magnitude. Because there is a 

magnitude distortion and the possibility of phase distortion when 

using other filters, time domain calculations on VTS trials after 

filtering were excluded. 

2.5 VAD Algorithm 
To differentiate speech acceleration signals from no activity, 

a baseline trial in which the participants were asked to not speak 

and remain stationary for each location was used to calculate a 

threshold. A 5000-millisecond baseline trial was recorded and 

divided into 50-millisecond subintervals. The average power in 

time and frequency domain were calculated for each subinterval, 

then averaged across all subintervals which is then defined as the 

threshold for speech activity (see FIGURE 3). 

 
FIGURE 3: Threshold calculation. A 5000-millisecond interval of the 

baseline trial was divided into 100 subintervals of 50 milliseconds. The 

average power values for each of these subintervals were calculated. 

These average power values were then averaged together to calculate 

the threshold for speech activity to be used by the VAD algorithm (see 

Figure 5) 

The VAD algorithm divided the complete signal into 

intervals that were filtered and analyzed sequentially, which 

resembles how the algorithm would intake real-time data. The 

interval length is modular in the algorithm, so the accuracy of the 

VAD algorithm was tested at multiple interval lengths to 

determine the ideal value of the interval length. Percentage 

accuracy was defined as the absolute percent error of the 

acceleration data trial subtracted from 100%. The result of the 

VAD algorithm run on the audio is considered as the reference 

value for this comparison. After each interval was filtered and 

analyzed, the complete filtered signal was returned for analysis. 

The VAD algorithm output was an integer vector with values 
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greater than zero indicating voiced frames. The number of onsets 

of speech activity and total time marked as voiced was 

calculated. The same measures were extracted from the audio 

and acceleration data and compared, using audio as the accepted 

value, to determine accuracy. The number of onsets of speech 

activity and total time voiced calculated, for both accelerometer 

and audio signals, were the main measures for VAD algorithm 

accuracy. Percentage accuracy for accelerometer data were 

calculated as the absolute percent error, in comparison to the 

audio data, subtracted from 100%. (see FIGURE 4). 
 

 
FIGURE 4: Accuracy of VAD Algorithm in comparison to audio data 

at multiple interval lengths. Black line is number of onsets and red line 

is total time voiced. Percentage Accuracy was calculated as absolute 

percent error subtracted from 100%. 250 milliseconds was chosen as the 

lowest tested interval length to accommodate the 240 sample minimum 

for using the MATLAB filtfilt function. The percentage accuracy in total 

time voiced is whithin 2% change for different interval length. 

As shown in Figure 4, 250 milliseconds interval was chosen 

as the shortest interval with a similarly high accuracy to other 

intervals tested. The length of this interval is the expected 

duration for the delay that will be introduced in the real-time 

implementation of the algorithm. The intervals were then divided 

into 50 millisecond subintervals and the average power of each 

subinterval was calculated in both time and frequency domains. 

These two values were then compared to the threshold, and if 

any two contiguous subintervals were greater than the threshold, 

the entire interval (250 ms) was considered voiced (see FIGURE 

5). 

Due to the magnitude shift of the final signal caused by the 

filtering of the VTS trials, the threshold needed to be scaled up. 

Multiple scale factors were tested to find the scale factor with the 

highest accuracy. This was determined by comparing audio and 

acceleration data for the number of voiced onsets detected by the 

VAD algorithm. This scale factor was calibrated to each trial to 

maximize agreement of number of onsets between audio and 

acceleration data. 

 
FIGURE 5: VAD Algorithm: The acceleration signal was analyzed in 

250 millisecond intervals, where each interval was divided into 5 

subintervals of 50 milliseconds. If two contiguous subintervals had an 

average power greater than the threshold, the entire interval was 

considered voiced. 

RESULTS 
When comparing the different accelerometer attachment 

locations in non-VTS trials, the acceleration signals decrease in 

overall amplitude from the thyroid cartilage to C7 positions. 

More importantly, the amplitude difference between speech and 

non-speech signals also decreases (see FIGURE 6). This 

decrease in differentiability of speech and non-speech 

acceleration signals is reflected by accuracy measurements. In 

non-VTS trials, the thyroid cartilage, on average, has greater than 

90% accuracy in both number of onsets and total time voiced 

(see TABLE 1). In comparison to sternocleidomastoid and C7 

positions, the thyroid cartilage has greater accuracy and lower 

variability, as seen in standard deviation comparison (see 

TABLE 1). The C7 position has 12% or lower accuracy in all 

measures and conditions. 

Comparing non-VTS to VTS trials revealed that accuracy 

for total time voiced decreased at both the thyroid cartilage and 

sternocleidomastoid positions during VTS (see TABLE 1). The 
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percentage accuracy values for number of onsets slightly 

increased when adding VTS because the scale factor was 

adjusted to match this metric in the audio data. This also explains 

the lower accuracy in VTS trials for the total time voiced.  

 

 
FIGURE 6: Comparison of acceleration signals, at each of three 

accelerometer attachment locations: A) thyroid cartilage, B) 

sternocleidomastoid, and C) C7. Each signal is a different trial without 

VTS. Y-axis scale is intentionally kept constant to emphasize amplitude 

differences between each signal. 

 

TABLE 1: Mean percentage accuracy of VAD algorithm for 

acceleration data compared to audio data including standard 

error. Attachment locations: TC = Thyroid Cartilage; and Scm = 

Sternocleidomastoid. 

Location Number of Onsets Total Time Voiced 

No VTS, TC 91.67% ± 2.41% 94.89% ± 1.58% 

No VTS, Scm 61.42% ± 12.39% 51.05% ± 12.39% 

No VTS, C7 12.47% ± 6.70% 5.22% ± 2.92% 

VTS, TC 94.88% ± 2.13% 62.03% ± 7.96% 

VTS, Scm 73.31% ± 7.97% 52.17% ± 12.00% 

VTS, C7 12.28% ± 7.88% 4.66% ± 2.90% 

DISCUSSION 

3.1 Attachment Location 
The first aim of this study was to determine which of three 

accelerometer attachment locations would provide the highest 

accuracy signal for the VAD algorithm from neck surface 

vibrations amidst VTS applied to the laryngeal muscles. Based 

on the results of this study, the thyroid cartilage is the location 

that provides the acceleration signal with the highest accuracy 

when compared to the sternocleidomastoid and C7 positions. 

This can be attributed to the attenuation of the neck surface 

vibrations caused by speech as the distance from the larynx 

increases [12, 13]. The attenuation of signal amplitude and 

similarity of speech and non-speech signals causes the VAD 

algorithm to decrease in accuracy. 

3.2 VAD Algorithm 
The second aim of this study was to develop a VAD algorithm 

robust to VTS. The VAD algorithm shows high accuracy in the 

absence of VTS when provided with a strong signal at the thyroid 

cartilage. Unfortunately, the accuracy of the algorithm in 

calculating total time voiced at the thyroid cartilage decreases to 

roughly 60%, approaching the inaccuracy of the sterno-

cleidomastoid location, when introducing VTS (see TABLE 1). 

The cause of this decrease in accuracy at the thyroid cartilage 

was the noise introduced to the acceleration signal by the VTS 

and the current to the vibrators. Adding VTS increased the 

overall amplitude of the signal, making it difficult to differentiate 

speech from non-speech activity.  

While VTS introduced noise to the acceleration signals, the 

frequency of the vibrators themselves was easily filtered out. The 

noise due to the alternating current that powered the vibrators 

was more difficult to remove from the signal. The 60 Hz 

alternating current noise varied slightly as the vibrators’ 

frequency was not perfectly consistent. This made filtering the 

2nd, 3rd, and 4th harmonics, all of which had large energies relative 

to the speech signal, difficult. The VAD algorithm may not need 

to account for this alternating current noise, however, as the real-

time application of this system in a collar would be powered by 

a direct current contained within the device, potentially 

eliminating the harmonic noise frequencies altogether. In the 

case of direct current, the VAD algorithm should be robust to the 

noise caused by introducing VTS and function at an overall 

higher accuracy than recorded in this study. 

3.3 Implications for the Wearable Device 
This study was conducted as part of a larger project with the 

goal of creating a wearable collar that delivers VTS therapy to 

SD patients as they speak . The findings of this study have 

important implications for the implementation of VAD in the 

collar. Regarding the location of the accelerometer attachment in 

the collar, the thyroid cartilage is the only viable location from 

those that has been tested. Even with VTS, the thyroid cartilage 

produced an acceleration signal amplitude from speech that was 

large enough to be distinguished from non-voice activity. The 

sternocleidomastoid was far too variable across participants to 

be feasible in a collar intended for a large population. C7 could 

be expected not to produce a usable signal for VAD in most SD 

patients. With a refined VAD algorithm, neck-surface vibrations 

from the thyroid cartilage should be effective in providing an 

accurate representation of voice activity. 

The results of the VAD algorithm used in this study provide 

valuable insight for its use in the actual device. The modular 

aspects of the algorithm were the length of intervals and the scale 

factor used to account for magnitude distortion of acceleration 

signals after filtering. While modular aspects of the algorithm 

allow for flexibility in adjusting the accuracy of VAD, they 

require individual calibration to set at accurate values. 

Fortunately, both modular aspects could potentially be 

unnecessary in the collar. The need for a scale factor could be 
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removed if advanced signal processing, such as an adaptive filter, 

was implemented. The 250-millisecond interval length used in 

this study could also be maintained in the collar due to high 

accuracy of the VAD algorithm at this interval (see FIGURE 4). 

Based on these results, the VAD algorithm, if improved in signal 

processing, could easily be implemented in real-time for the 

wearable VTS collar. 

CONCLUSION 
This study showed that the thyroid cartilage was the best 

location for recording neck surface vibrations due to voicing. 

The VAD algorithm functioned with high accuracy at the thyroid 

cartilage without VTS, but in accuracy as measured total time 

voiced decreases upon the introduction of VTS. Fortunately, 

there is the potential to increase the accuracy of this algorithm 

by applying more sophisticated signal processing and use of a 

direct current in the collar. Application of adaptive filtering that 

adjusts to noise currently present in the environment and the 

user’s characteristics would increase the accuracy of the VAD 

algorithm. This study aimed to determine the feasibility of 

utilizing an accelerometer for VAD so such sophisticated signal 

processing methods were not tested. 

Further research should evaluate variations in voice such as 

changes in volume and patients with voice disorders. These new 

variables will require improvement of the VAD algorithm to 

accommodate a wider variety of speech signals.  
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