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ABSTRACT: In this paper, a unified formulation is given 
for the bending, buckling and vibration problems of 
uniform Timoshenko and Euler-Bernoulli beams resting on 
various models of elastic foundation. Canonical Green's 
functions have been derived for these beams which can be 
readily used to furnish exact solutions. In addition to 
elucidating the behaviour of the beams, the exact solutions 
serve as important benchmark results for checking the 
convergence and accuracy of various solutions obtained 
from numerical methods. 

INTRODUCTION 

Recently, Lueschen et at (1996) derived closed form 
expressions for the Green's functions of uniform 
Timoshenko and Euler-Bernoulli beams. Both bending and 
vibration beam problems were addressed. 

Motivated by the work of Lueschen et al. (1996), 
this paper generalizes their Green's functions for the 
bending, buckling and vibration problems of Timoshenko 
and Euler-Bernoulli beams resting on various models of 
elastic foundation. All six combinations of the classical end 
conditions are considered. The present paper complements 
many papers that have been written on this subject (Lee et 
al. 1992, Wang and Stephens 1977, Naidu and Rao 1995, 
Shirima and Giger 1992, Rosa 1995 and Razaqpor and 
Shah 1991), by giving a comprehensive and unified 
treatment of the aforementioned beam problems and by 
providing exact solutions in a canonical form. It is hoped 
that the paper will serve as a useful reference source of 
exact beam solutions to researchers and academicians 
working on Timoshenko beam problems that are of 
fundamental and practical importance. 

PROBLEM FORMULATION 

Consider an elastic beam of length L, cross-sectional area 
A, second moment of area I, mass density p, modulus of 
elasticity E, and shear modulus G. The beam is subjected to 
a transverse distributed load q(x), n point loads 

, (i = 1,2 	n) located at x=e, and an axial tensile 
preload N. The beam rests on an elastic foundation as 
shown in Fig. 1. The various models of elastic foundation 
considered are described below: 
• Winkler foundation (Lee et al 1992) having a modulus 

K,. 

• Pasternak foundation (Wang and Stephens 1977 and 
Naidu and Rao 1995) having the foundation moduli 
K, and K,. The second foundation parameter K, is 
the stiffness of the shearing layer. This model assumes 
that there is a shear interaction between the springs, 
and the top ends of the springs are connected to an 
incompressible layer which resists only transverse 
cheat deformation. 

• Generalized foundation (Shirima and Giger 1992 and 
Rosa 1995) having the foundation moduli K, and 

Km . This model assumes that at the point of contact 
between the beam and the foundation, there are both 
pressure forces and moments. This model has two 
versions; one version assumes the bending moment to 
be proportional to the bending rotation of the beam 
while the other version assumes the bending moment to 
be proportional to the total rotation. The 
proportionality constant is Km . 

• Vlasov foundation (Razaqpur and Shah 1991) having 
the foundation moduli K, and K,. The foundation is 
treated as a semi-infinite medium. The second 
foundation parameter is defined as 
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Kr = 	
B 

4(1 + vs) p ( 1) +s,K —
di w

+ 
 d'w 

ctri 	dri 
(2) 

where E, is the Young's modulus of foundation, v, the 
Poisson's ratio of foundation and B the width of the beam. 
The parameter p characterizes the rate at which vertical 
deformation of foundation decays with depth and it can be 
correlated to the beam displacements or it can be 
determined by means of an iterative method. 

g(k) 

0111111111111 
111111111111113  

and 

EIV=KG4(0-1) -fite0 

(3) 

where w(x) is the transverse displacement, cb(x) the 

rotation, K the shear correction factor, to the angular 
frequency, 8 the Dirac delta function and the scalar 
indicators s, take values as given in Table 1. 

For generality and convenience, the following 
nondimensional terms are introduced: 
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Fig. I Beams resting  on elastic foundation: (a) Winkler 
foundation, (b) Pasternak foundation and (c) Generalized 
foundation 

According to the Timoshenko beam theory, the 
governing equations of free vibration motion of the 
foregoing beam axe given by 

164
610 d 2 w) _ 	pielx—ei  
dx dx 2  

+N—
d2w 

+0102w-s,K,,w 
cec2  

It should be noted that CI is the shear deformation 
parameter and for Euler-Bernoulli beans, 0 = 0. 

By eliminating the rotation function 0(x), the 

governing Eqs. (2) and (3) may be expressed in the form of 
a fourth order differential equation: 

d117 61217  
cff2

av7 
 

=r 1-C2rOrnimi_o 	cr8 (5)  
1+077,) L 	 1+07h 1E 2  

where 

1t= 77,(l- 077,) - on, + n.  ; a — 	 
1+ aqi 

77 1  = 	— s,TC, ; Th = .11/ +sic + s, 

, = — ;K ;  q. =sic; — qi 	(2a,b,c,d) 
The commonly used boundary conditions for Eq. (5), 
obtained from using Hamiltonian Principle, are 
summarized in Table 2. 

1 + f2ry, 
(6a,b) 
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GREEN'S FUNCTIONS FOR BEAMS 

where the 

satisfy the 
equation 

d'G 

W(1)_( ' °'7I'1 

The solution 

1+Clq, 

Green's 

boundary 
(Lueschen 

2.—d2G 
aG 

eff 1  

Based on 

to Eq. (5) is given by 

[1 1G(7, 	q(0 

1.1 

function G(1,0 for 

conditions given in 
et a/ 1996) 

= 61I - 

the 	method 	of initial 

(8)  

the beam must 

Table 2 and this 

(9)  

parameters 

Case 1: Simply supported beams (S-S beams) 

W. =M=0 (13)  
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where the determinant A n  is given by 

= (7r, - 7;T) sinb sinha 
(Bergman 
for the 
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where 

and transverse 

and Hyatt 1989), the 
considered beam problem 

, 

a 

general Green's 
is given by 

+7; cosb 
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function, 	W., 
rotation, bending 

and 

function 
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Case 2: Clamped-sinqt supported beams (C-S beams) 
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H 	is the Heaviside step 
the deflection, 

shear force at Tr =0 

M. = 	sinh a sinb(1- 
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where the determinant Aa  is given by 

A 	= 7; cosh a sinb + 	cosb sinha 

Case 3: Clamped beams (C-C beams) 

W.=8,=0 

T Tx 
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Six 	combinations 	of 

loaded beams on 
considered. As shown below, the four unknowns 
(016 ,00 ,M,,Q,,) can be determined from the boundary 

conditions given in Table 2. 
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+T,T3T.: [cosb(1-)sinha - cosb dnha0 -011 (26) 
= 1  1 7;7271  cos be + 7727;  cosh 

° 	t b  a 

TletT coshao  
= -acci  {{-TTIT°  cosb(1- 

x [cosh a -cosh] 

-[7;sin141- + sinha(1 - )1 
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a 

where the determinant A ct. is given by 

A ce  (T7T3 TT. )(1 cosbcosha) 
a 	b 

-( T1

a 	 b

T's  + 7;9sinb sinha 

Case 4: Clamped-free beams (C-F beams) 

Wo =0„ = 
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where the determinant A, is given by 
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(24) Case 6: Free-free beams (F-F beams) 
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Case 5: Simply supported-free beams (S-F beams) 
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BENDING PROBLEM 

For the bending problem of the Timoshenko beam under 
transverse load and the axial load, the angular frequency is 
set to zero, i.e. the parameters 77,, 77,, 77, reduce to 

77,=-3,E„; 773 = —s,kr ; 774 =(s,+s4 )E„ 	(37a,b,c) 

The transverse deflection is determined from Eqs. 
(8) and (10) and depending on the end conditions, the 
appropriate expressions given in Eqs. (13)-(36) for 

(35) 

(36) 
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= M Ecx)I, do: 

+flrbrv" + (1 + C1,70
c127+ 

(38)  

1- ilth tff 	1- Chi, a 

10 { G( 53 	,Mi)cg 

W„,O,,M„,a. The stress-resultants can be determined 

from the following relations: 

4 rbi, -11. )  [ 	r i 

1 + 	-10 t(47,0)410de 

4-I 	a 

VIBRATION AND BUCKLING PROBLEMS 

(39)  

In the cases of vibration and buckling problems, 
the exact vibration and stability criteria of Timoshenko 
beams for the considered six combinations of end 
conditions are obtained by setting the determinant A to 
ZCTO. 

Note that for buckling problem, the frequency 
parameter c13 2   is set to zero and the axial tensile preload if 
is changed to Mc.= -N so as to denote a compressive axial 

load. The parameters 41 ,71,17, reduce to those given in 
Eqs. (35a)-(35c), respectively. 

CONCLUDING REMARKS 

Using Green's functions, exact solutions have been derived 
for the bending, buckling and vibration problems of 

Timoshenko beams on various elastic foundation models. 
All the combinations of classical end conditions for beams 
were considered. The classical Euler-Bernoulli beam 
solutions may be obtained from these exact solutions by 
setting the shear deformation parameter ri=o and 
neglecting the effect of rotary inertia. The exact solutions 
should be useful in providing benchmark results for 
checking the validity, convergence and accuracy of 
numerical results. 

It is interesting to note that the exact solutions for 
the bending of Timoshenko beams on Winkler foundation 
may be applied to thick cylindrical shells under 
axisymmetric loading. The analogy between these two 
problems was pointed out by Ma and Pulmano (1996). 
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Table I Scalar indicator ; 

Foundation Type 
Winkler 1 0 0 0 0 
Pasternak 1 1 0 0 0 
Generalized (Type 1) 1 0 1 0 0 
Generalized (Type 2) 1 0 0 1 0 
Vlasov 1 0 0 0 1 
No elastic foundation 0 0 0 0 0 

Table 2 Boundary conditions for beams 

..; 

 

Types of ' 
end condition 

crri 
= — = v 

oF,  Simple (S) 

Clamped (C) 
d'W 	 ,aW 

W = 0,  
eff' 	 cif 

Free (F) 
) (1 2 7+ 

(1+ CO2)— +so =0, eff 2 

d'W  
(1+ 7/12)7F +

r 
 — 774  — — CIO% j---a— =0 
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