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GREEN’S FUNCTIONS FOR TIMOSHENKO BEAM PROBLEMS
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ABSTRACT: In this paper, a unified formulation is given
for the bending, buckling and vibration problems of
uniform Timoshenko and Euler-Bemoulli beams resting on
various models of elastic foundation. Canonical Green’s
functions have been derived for these beams which can be
readily used to furnish exact solutions. In addition to
elucidating the behaviour of the beams, the exact solutions
serve as important benchmark results for checking the
convergence and accuracy of various solutions obtained
from numerical methods.

INTRODUCTION

Recently, Luecschen et al. (1996) derived closed form
expressions for the Green’s functions of uniform
Timoshenko and Euler-Bernoulli beams. Both bending and
vibration beam problems were addressed.

Motivated by the work of Lueschen er al. (1996),
this paper generalizes their Green’s functions for the
bending, buckling and vibration problems of Timoshenko
and Euler-Bernoulli beams resting on various models of
elastic foundation. All six combinations of the classical end
conditions are considered. The present paper complements
many papers that have been written on this subject (Lee et
al. 1992, Wang and Stephens 1977, Naidu and Rao 1995,
Shirima and Giger 1992, Rosa 1995 and Razagpor and
Shah 1991), by giving a comprehensive and unified
treatment of the aforementioned beam problems and by
providing exact solutions in a canonical form. It s hoped
that the paper will serve as a useful reference source of
exact beam solutions to researchers and academicians
working on Timoshenko beam problems that are of
fundamental and practical importance.

PROBLEM FORMULATION

Consider an elastic beam of length L, cross-sectional area
A, second moment of area /, mass density p, modulus of

elasticity E, and shear modulus G. The beam is subjected to
a transverse distributed load g(x), n point loads
P,(i=12,...,n) located at x=e¢, and an axial tensile
preload N. The beam rests on an elastic foundation as

- shown in Fig. 1. The various models of elastic foundation

considered are described below:

+  Winkler foundation (Lee et 2/ 1992) having a modulus
K,.

¢ Pasternak foundation (Wang and Stephens 1977 and
Naidu and Rao 1995) having the foundation moduli
K, and X,. The second foundation parameter X, is
the stiffness of the shearing layer. This mode! assumes
that there is a shear interaction between the springs,
and the top ends of the springs are connected to an
incompressible layer which resists only transverse
shear deformation.

e Generalized foundation (Shirima and Giger 1992 and
Rosa 1995) having the foundation moduli X, and
K,,. This model assumes that at the point of contact
between the beam and the foundation, there are both
pressure forces and moments. This model has two
versions; one version assumes the bending moment to
be proportional to the bending rotation of the beam
while the other version assumes the bending moment to
be proportional to the total rotation. The
proportionality constant is X, .

s  Vlasov foundation (Razaqpur and Shah 1991) having
the foundation moduli X, and X, . The foundation is
treated as a semi-infinite medium. The second
foundation parameter is defined as
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where E; is the Young’s modulus of foundation, v, the
Poisson’s ratio of foundation and B the width of the beam.
The parameter 4 characterizes the rate at which vertical
deformation of foundation decays with depth and it can be
correlated to the beam displacements or it can be
determined by means of an iterative method.
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Fig. 1 Beams resting on elastic foundation: (a) Winkler
Joundation, (b) Pasternak foundation and (c) Generalized
Joundation

According to the Timoshenko beam theory, the
governing equations of free vibration motion of the
foregoing beam are given by

d¢ d’ 2
oG- 5] <0 ot
d'w

+N
dx!

+plo’w—s K w

d*w dw

+S:KSF+S,K,F (2)
and
d'¢ _ [ dw) :
EIdxz _KG‘4 ¢ dx dﬂ) ¢
dw
+s,K,¢+s‘K,;- 3)

where w(x) is the transverse displacement, @(x) the
rotation, x the shear correction factor, @ the angular
frequency, & the Dirac delta function and the scalar
indicators s, take values as given in Table 1.

For generality and convenience, the following
nondimensional terms are introduced:

_x _ w __e _ g
F=0y Wa—) §5—; §=-;
L L L
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It should be noted that € is the shear deformation
parameter and for Euler-Bernoulli beams, Q=0.

By ecliminating the rotation function ¢(x), the
governing Eqgs. (2) and (3) may be expressed in the form of
a fourth order differential equation:

d'w ,d'%

¥ _18Y
& & Y

(1= Spas o] __Q dF
_[l+ﬂn,) [“ZP'J(I e‘)] on, & O

in)
where

1= ﬂ:(l"Q”g) —Q”: +7, c = Th(l'n’h) (63.,1))
: 1+ Qn, 1+Qn,

n,=¥Y& -5,K,; n,=N+s,K, +s,K,

N,=@" ~5,Ke; 1. =5K, -1 (7a,b,c,d)
The commonly used boundary conditions for Eq. (5),
obtained from using Hamiltonian Pringiple, are
summarized in Table 2,
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GREEN’S FUNCTIONS FOR BEAMS

The solution to Eq. (5) is given by
oy (1= [P o =
(%) =[ﬁ] [[lez.¢)a(e) 2
) F.G{f.?=e‘.)] ®

where the Green's function G(¥,¢} for the beam must

satisfy the boundary conditions given in Table 2 and this
equation (Lueschen ef al 1996)

d‘'G ,d'G

2.2

& &

-G = §(x - ¢) ©)

Based on the method of initial parameters
(Bergman and Hyatt 1989), the general Green's function
for the considered beam problem is given by

O{F,¢) = —or (7, coshaF + T, cost)
+8,(T, sinhaf + 7, sinb¥)
-M,(cosb¥ ~ cosh ax)
+Q,(T, sinha¥ + T, sinbx)
- H(¥-¢)[7, sinho(% - ¢) + T, sinb(%- )]} (10)

where H is the Heaviside step function, #,,6,,M,,Q,

are, respectively, the deflection, rotation, bending moment
and transverse shear force at x=0 and

l
’ A +4at +}. ’ +4a : (11a,b)
I .

Q’h

b 2 12a,b
5 1+0n," ! l+f2r;1 (12a.0)
r,=l(:r,+ il ); T,=1[T,- L ]-, (12¢,d)
a 1+Qn, b 1+ Qn,
-Qn -n.0
T;:.l(l r’l ’L _QT]]:
a 1+Qn,
1{1-Qn, - 9,0 )
=-= +QT, 12e,

Six combinations of end conditions for
transversely
and axially loaded beams on an elastic foundation are
considered As shown below, the four unknowns
(#,,8,,M,,0,) can be determined from the boundary

conditions given in Table 2.

Case 1: Simply supported beams (S-S beams)

W,=M,=0 (13)

6, =%[sinhasinb(1-¢)
I

(14)

~sinb sisha(1- )]

1

Q, =—| 7.7, siné sinhaf1 -

’ A.n[ ? a( g) (15
~T,7, sithasinb(1-¢)]
where the determinant 4, is given by

A =(T.T, - T,T,) sinb siha T

Case 2: Clamped-simply supported beams (C-S beams)

W,=8,=0 (17)

LT [ soha sinb(1-
M°=:[ ﬂnhﬂsulb(l {) a18)
+sinb sioha(1- £)]

1 .
o =:[T‘ ooshasmb(l—.f)] )
+T, cosb s'mha(l-éf)]

where the determinant A, is given by
A = T,coshasinb + T, cosb sinha (20)

Case 3: Clamped beams (C-C beams)

#,=8,=0 @1

1 T} T}
M =— b
0 Am{ 4 ——sinhag - P ———sinbg

TTT[oosb(l ¢)sinha - cosb sinha(l-¢)]  (22)

+_T,=%Z;_[sinb(1-§)oosha—sinboosha(l"5)]}
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0,=—— {[T'br' b(1- §)+TTcosha(l :)]
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—[7sind(1 - &) + 7; sinhaf(1 - &)]
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b a

where the determinant A is given by

23

LT, TT,
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a b

)(l cosh cosha)
(24)

Case 4: Clamped-free beams (C-F beams)

W,=86,=0 (25)

2 2
M, = {-—Tﬁsinbg—ﬁzf—sinha;
A, b a

TTT[smb cosha(l-¢) - sinb(1- £ cosha]

A
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A, b a
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%[T, cosha(1- &) cosb + T, sinb(1- &) sinha]} 27

where the determinant A, is given by

A, = [ 15 T’:;) cosh cosha
T, : TT )
*{——‘—’ + 4L L1 ) sinbsinha i
b a b a
Case 5: Simply supported-free beams (S-F beams)
W, =M, =0 29)
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TTT[ sb(1- £} sinha - cosb sinha(l - 5)]}

0, =_1_{T‘T‘T‘ sinbe +-20% Goh g
A, b a

+%[?;T‘oosbsinha(l -8- 7, sihacosb(1-8)]  G)
+§[T,T, sinb(1- &) cosha - 7,7, cosha(1- &) sinb]}
where the determinant A, is given by
T, . T, .
o =(T,T, —ﬂ?;)[;‘coshaﬂnb-—blmnhaoosb) (32)
Case 6: Free-free beams (F-F beams)

M,=0,=0 ' (33)

{--—T'T‘T‘ sinbé 255 goh g
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sinb cosha(l- &) - %oosb sinha(1- g)] 4)
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T, . . T,

+T,T,[T’smha(l—§)smb +—a-cosha(l—§)cosb]}

where the determinant A,, is given by

A

r

(TTT TTTJ(] cosb cosha)

2
+(L - ’b?;] sinbsinha

a

(36)

BENDING PROBLEM

For the bending problem of the Timoshenko beam under
transverse load and the axial load, the angular frequency is
set to zero, i.e. the parameters 7n,,1,,%, reduce to

m =-SJEM; m= 'S:Er; . =(S: +s4)E.u (37a,b)
The transverse deflection is determined from Eqs.

(8) and (10) and depending on the end conditions, the
appropriate expressions given in Egs. (13)-(36) for

220z isnbny z| uo isanb Aq ypd-€oL-ee-26-6.08€ L1 00A60 L 09Y/6L0VE L LLOON/SL98./L66 |V LApd-sBuipeadoid/ | ©/610-swse uonos|joojeyBipawse//:djy woly papeojumoq




W,,8,,M,,0,. The stress-resultants can be determined
from the following relations:

"
=Q(§+‘Z::F5(E E) +Qr;,w+(l+Qq,) i
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‘[%%] [EE {al=.o)jalehe

3P % 6(%,3, ] 39)

VIBRATION AND BUCKLING PROBLEMS

In the cases of vibration and buckling problems,
the exact vibration and stability criteria of Timoshenko
beams for the considered six combinations of end
conditions are obtained by setting the determinant A to
2eT0.

Note that for buckling problem, the frequency

parameter @’ is set to zero and the axial tensile preload N
is changed to N, = -N 50 as to denote a compressive axial
load. The parameters 7,,n,,7, reduce to those given in
Eqs. (35a)-(35¢), respectively.

CONCLUDING REMARKS

Using Green's functions, exact solutions have been derived
for the berding, buckling and vibration preblems of

Timoshenko beams on various elastic foundation models.

All the combinations of classical end conditions for beams
were considered. The classical Euler-Bernoulli beam
solutions may be obtained from these exact solutions by
setting the shear deformation parameter Q=0 and
neglecting the effect of rotary inertia. The exact solutions
should be useful in providing benchmark results for
checking the walidity, comvergence and accuracy of
numerical results.

It is interesting to note that the exact solutions for
the bending of Timoshenko beams on Winkler foundation
may be applied to thick cylindrical shells under
axisymmetric loading. The analogy between these two
problems was pointed out by Ma and Pulmano (1996).
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Table 1 Scalar indicator s,

1 0 0 0 0

Pasternak 1 1 0 0 0

Generalized (Type 1) 1 0 1 0 ¢

Generalized (Type 2) 1 0 0 1 0

Vlasov 1 0 0 0 1

No elastic foundation 0 0 0 0 0
Table2  Boundary conditions for beams

Simple (5)

v _

‘52

Clamped (C)

_ d‘w &
w=0, Qi+ q,Q)E‘-:'-+ (1~ + 0 - 7.Q) =0

Free (F)

d'v

(] + Qﬂ!)—":fT + Qﬂ,l? = 0,

d'w
(l + r]zg)'?&_: + [QT], == (l - qu)'h]

£=0
ax
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