entamine, trastuzumab-desuxtecan, and lapatinib. Primary outcome was overall survival (OS). RESULTS: Of 7780 abstracts screened, 91 publications and a total of 109 patients were included in the final analysis. Patients received chemotherapy (either IT, IV, or a combination of an antibody-drug conjugate) concurrently with HER2-TT (N=57) exhibited a median OS of 44.0 months, compared to patients treated with targeted anti-HER2 therapies alone (N=52), which exhibited a median OS of 14.3 months (P<0.001). The median progression-free survival (PFS) was 6.8 months, 95% CI: 3.8-11.6 months. For patients receiving IT trastuzumab (N=83) exhibited a median progression-free survival (mPFS) and OS of 6.0 and 21.0 months, respectively, while patients receiving IV trastuzumab (N=14) exhibited a mPFS and OS of 6.5 and 26.0 months, respectively (P=0.04). mPFS was 11.3 months, 95% CI: 6.3-16.3 months; P=0.68, HR: 1.154, 95% CI: 0.587-2.266). In the subgroup of patients receiving IT trastuzumab (N=58), those who concurrently received IT chemotherapy (N=48) exhibited mPFS and OS of 5.7 and 14.0 months, respectively, while patients concurrently receiving IV chemotherapy (N=10) exhibited a mPFS and OS of 6.0 and 19.0 months, respectively (PFS: P=0.45, HR: 1.360, 95% CI: 0.602-3.073; OS: P=0.29, HR: 1.821, 95% CI: 0.630-5.260). CONCLUSIONS: HER2-TT is an effective therapeutic strategy for BCLM. Patients with BCLM receiving concurrent cytotoxic chemotherapy alongside HER2-TT experience prolonged mOS and IV and IT trastuzumab are similarly effective. Univariate and multivariate analyses will be presented.

SYST-06
INTRACRANIAL ACTIVITY OF TEPOTINIB IN PATIENTS WITH MET EXON 14 (METEX14) SKIPPING NSCLC ENROLLED IN VISION

Background: Tepotinib, a highly selective MET inhibitor, demonstrated an objective response rate (ORR) of 49.1% and median duration of response (mDOR) of 13.8 months in METEX14 skipping NSCLC patients in the Phase II VISION study (Cohorts A+C; N=275). Here, we report the intracranial activity of tepotinib in VISION. Methods: Patients with METEX14 skipping NSCLC received oral tepotinib 500 mg QD (450 mg active moiety). Patients with BM (asymptomatic and symptomatic/stable) were eligible. Primary endpoint was systemic ORR (RECIST v1.1); a subgroup analysis in patients with BM was predefined (data cut-off: February 1, 2021). An ad-hoc retrospective analysis of brain tumor was conducted by an IRC using RANO-BM criteria. Responses were determined in patients with BM controlled with bRT. Results: In those with only non-targeted lesions (NTLs) per RANO-BM (enhancing and non-enhancing NTLs), disease control was defined as non-complete response (CR)/non-progressive disease (PD). Data cut-off: July 1, 2020. Results: Fifty-one patients had baseline BM (Cohorts A+C). Systemic efficacy was consistent with the overall population (ORR 32.9% [95% CI: 38.5-67.1], mDOR 9.0 months [95% CI: 5.6- not estimable]). Fifteen patients were evaluable by RANO-BM (Cohort A); 12 received prior systemic therapy for BM (median weeks before RANO-BM, 6). Systemic best objective responses (BORs) were partial response (PR, n=9), stable disease (SD, n=3), and PD (n=5). Seven patients had target CNS lesions per RANO-BM (all with prior radiotherapy); intracranial BORs were PR (n=5), SD (n=1), and PD (n=1). For patients with NTL only (n=8), one had PD, and seven achieved intracranial disease control with three patients achieving CR of the enhancing NTL. 13/15 patients achieved intracranial disease control. Conclusions: Tepotinib demonstrated robust intracranial activity in patients with MET-skipping NSCLC with BM, complemented by intracranial activity in an ad-hoc analysis using RANO-BM.

SYST-07
WINDOW-OPPORTUNITY STUDY OF ONC201 IN PEDIATRIC PATIENTS WITH DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) AND THALAMIC GLIOMA

Yazmin Oda1, Carl Koschmann2, Roshiton Tarapara3, Jeffrey Allen4, Matthew Hall5, Douded Daghistani6, Ziad Khait6, Dolly Aguilera6, Tobey MacDonald7, Peter de Blank7, Susan Lynne Govern8, Sabine Mueller9, Cassie Klein9, Nicholas Vitanza9, Joshua E. Allen10, Wafik Zaky4, Sharon Gardner10, Miami Children’s Hospital, Miami, FL, USA. 1University of Michigan, Ann Arbor, MI, USA. 2Chimesir, Inc., Durham, NC, USA. 3New York University Grossman School of Medicine, New York City, NY, USA. 4Nicklaus Children’s Hospital, Miami, FL, USA. 5Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, USA. 6Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. 7University of Texas MD Anderson Cancer Center, Houston, TX, USA. 8University of California, San Francisco, San Francisco, CA, USA. 9Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 10Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapy, Department of Pediatrics, University of Washington, Seattle, WA, USA.

Background: H3 K27M-mutant diffuse midline glioma is a universally fatal malignancy primarily affecting children and young adults; no effective systemic therapy is available. ONC201, a first-in-class imipridine, is an oral, brain-blood barrier penetrating, small molecule antagonist of oncogene receptor D2/3 and agonist of the mitochondrial protease ClpP. ONC201 monotherapy demonstrated durable objective responses in adults with recurrent H3 K27M-mutant glioma. This phase 1 trial will evaluate ONC201 radiosurgery (RT) in pediatric patients with H3 K27M-mutant midline glioma. Methods: This multicenter, open-label, dose escalation and expansion phase I study of ONC201 is composed of eight arms that will evaluate the recommended phase 2 dose (RP2D) of ONC201, biomarkers, and pharmacokinetics (PKs). ONC201 is administered to children 2-≤19 years, ≥2 weeks from last RT administration, and have a KPS/LPS ≥50; prior confirmation of H3 K27M mutation is not required. In Arm H, single-agent ONC201 administration will occur twice-weekly on consecutive days during each 21-day cycle at the RP2D defined in Arm G. Arm H has a planned enrollment of 27 patients (DIPG, n=15; thalamic glioma, n=12). Patients will undergo a single biopsy at each of the following time points: 1-3 h post-first dose, 22-26 h post-second dose, 1-3 h post-first dose, 6-10 h post-second dose, and 22-26 h post-second dose. The 22-26 h post-first dose biopsy in thalamic glioma was previously collected and will not be assessed in this treatment arm. Plasma for PK analysis will be collected from all patients.

SYST-08
SURVIVAL ANALYSIS OF METASTATIC MELANOMA PATIENTS WITH BRAIN METASTASES USING SURVEILLANCE, EPIDEMIOLOGY, AND END RESULTS (SEER)

Caleb Stahl1, Angel Barou2, Debarati Bhanja3, Hannah Widing3, Aizeira Mansour4, 1Penn State College of Medicine, Hershey, PA, USA. 2Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA.

Introduction: Melanoma brain metastases (BM) are common and are historically associated with poor prognosis. In the early 2010s, the treatment paradigm for malignant metastatic melanoma shifted with the introduction of immunotherapy (IT). Recent studies suggest that IT provides survival benefits for patients with BM from melanoma primary. The goal of this study was to validate these findings in a large population cohort. Methods: Data were collected from the Surveillance, Epidemiology and End Results (SEER) database, version 8.3.4 (22 March 2017). Three cohorts were created based on the FDA approval date of IT: ipilimumab (2011), nivolumab (2014), and nivolumab plus ipilimumab (2015) for use in metastatic melanomas. Respectively, the cohorts are defined as the pre-IT era cohort (2010), early-IT era cohort (2011-2015) and late-IT era cohort (2016-2018). One-year overall survival (OS), 2-year OS, and median OS were assessed using a Kaplan-Meier analysis and log rank tests. Results:...