
Tugan Eritenel
Mem. ASME

Department of Mechanical Engineering,

The Ohio State University,

Columbus, OH 43210

e-mail: eritenel.1@osu.edu

Robert G. Parker1

Research Professor

Fellow ASME

The Ohio State University,

Columbus, OH 43210;

Distinguished Professor Chair and

Executive Dean,

University of Michigan–Shanghai

Jiao Tong University Joint Institute,

Shanghai Jiao Tong University,

Shanghai 200240, China

e-mail: parker.242@osu.edu

Nonlinear Vibration of Gears
With Tooth Surface Modifications
This work provides an analytical solution for the nonlinear vibration of gear pairs that
exhibit partial and total contact loss. Partial contact loss is where parts of contact lines
lose contact although other parts remain in contact. The gear tooth surface modifications
admit an arbitrary combination of profile and lead modifications. Modifications are a
source of partial contact loss. The analysis also applies for total contact loss. Unlike
models in the literature that are excited by static transmission error or time-varying
mesh stiffness, the excitation and the nonlinearity are not a priori specified. Instead, the
force-deflection function of the gear pair is provided by an independent source, such as a
finite element model or Hertz contact formula. The manipulation of the single-degree-of-
freedom oscillator equation of motion yields the excitation and the nonlinearity that arise
from Fourier and Taylor series expansions of the force-deflection function. These expan-
sions capture the essential contact behavior that includes tooth profile and lead modifica-
tions as well as the bending and shear flexibility of the gear teeth and gear blanks. The
method of multiple scales gives the steady-state dynamic response in terms of a
frequency-amplitude relation. Comparisons with gear vibration experiments and simula-
tions from the literature that include spur and helical gears with tooth profile and lead
modifications verify the method. [DOI: 10.1115/1.4023913]

1 Introduction

Vibration of gear pairs can be considered under the general
category of contact vibrations, which also includes vibration of
bearings, splines, linkages, and other mechanical connections.
This work focuses on nonlinear rotational vibration of gears near
resonance speeds. Although gear resonance can be avoided in
some constant speed applications, many gears operate over a wide
range of speeds where some gear resonances cannot be avoided. In
addition, design constraints may prevent changes in the system to
move the natural frequencies away from the gear mesh frequency.

In gear applications, the involute tooth surface shape is usually
modified slightly. Lead modifications are used to improve mis-
alignment tolerance [1], and profile modifications are used to
avoid undesirable edge or corner contact [2]. With or without
such tooth modifications, gear vibrations exhibit softening nonli-
nearity [3–9] near resonance as a result of partial or total contact
loss. Partial contact loss is where portions of nominally contacting
surfaces lose contact (and other nominally noncontacting portions
potentially gain contact) as a result of dynamic motions, profile
and lead modifications, or misalignment. Partial contact loss
includes reductions in both the profile and face contact ratios.
Modifications are the major source of partial contact loss [10].
Although gear systems that exhibit total contact loss have been
analyzed, only numerical solutions for the vibration of gears that
exhibit partial contact loss are available in the literature; for
example Refs. [4,11–15]. This work applies a perturbation method
that yields a closed-form solution for nonlinear gear contact vibra-
tions. The method admits spur and helical gears with tooth profile
and lead modifications. The solution is compact and exposes the
effects of design parameters on the dynamic response. Although
harmonic balance can yield closed-form analytical solutions in
some nonlinear systems, refined frequency and time discretiza-
tions are needed when applying the method to gear contact prob-
lems. As a result, the process becomes numerical without
expressions showing parameter dependencies of the dynamic
response.

The equations of motion for gear vibrations include time-
dependent parameters such as periodic variation in mesh stiffness.
In many cases, lumped-parameter gear models excited by static
transmission error or time-varying mesh stiffness give satisfactory
results [6,11,16–21]. A single spring is used to model the gear
mesh interface in these works. Velex and Ajmi [21] examine the
validity of approximating transmission error as the excitation
source. Liu and Parker [22] explore the conditions under which
the aforementioned approximations work.

Harmonic balance [23–26] and perturbation methods [27–29]
are used when the gear vibration is approximated using a lumped-
parameter model. The mesh stiffness formulation in Refs. [24–28]
include the periodic fluctuation due to gear tooth engagement/dis-
engagement, while Ref. [23] uses a constant mesh stiffness. The
sole source of nonlinearity in the works listed above is total con-
tact loss, a piecewise nonlinearity in which the gear mesh ceases
to transmit any force. Gear tooth surface modifications are not
included in these works. The modeling in Refs. [22,30] for the
dynamic response of multimesh gears differs from the literature
listed above because it considers tooth profile modifications and
contact loss at each of the individual meshing gear teeth rather
than the gear mesh as a whole. In Refs. [22,30], such contact loss
is due to linear tooth profile modifications, which is the only type
of modification they consider.

Detailed tooth contact models allow dynamic analysis for speci-
fied tooth profile and lead modification [3,4,9,31,32]. Such models
predict partial contact loss arising from arbitrary tooth surface
modifications [4,9,13,15,33,34]. The contact algorithms that allow
for partial contact loss, however, are prohibitively complex for an-
alytical methods, and nonlinear dynamic response can only be
obtained numerically. Numerical methods give only restricted
generalizations about dynamic behavior because they are limited
to selected parametric studies. There are no studies in the litera-
ture that provide closed-form solutions for the nonlinear vibration
of gears when partial contact loss is present.

This work gives closed-form solutions for nonlinear rotational
gear vibrations near primary resonance, that is, when the excita-
tion frequency is close to the natural frequency. The solution can
accommodate spur and helical gears, and it includes the nonlinear
behavior due to partial contact loss and admits arbitrary modifica-
tions of the gear tooth surface including profile and lead modifica-
tions. The use of a general force-deflection function as an input
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frees the dynamic equation of motion from the physical gear mod-
eling assumptions and can apply to other contact problems. For
gears, the force-deflection function captures the phenomena of
partial contact loss, parameter time-dependence, tooth profile and
lead modifications, changing number of teeth in contact, changing
radius of curvature at contact, and the elastic deformation of the
gear blank. With Taylor and Fourier series expansions of this
force-deflection function, the equation of motion takes a form that
enables use of the method of multiple scales.

2 Mathematical Model

2.1 Equation of Motion. This section considers a single
degree-of-freedom equation of motion. The single degree-of-free-
dom model includes fluctuating mesh stiffness and mesh force
nonlinearity. The nonlinear and periodically varying mesh force is
represented by a general, time-dependent force-deflection curve
that can account for partial contact loss, gear misalignment, tooth
surface modifications, varying number of teeth in contact, torque
dependence, and total contact loss. Mathematical manipulations
of the tooth mesh force-deflection term using Fourier and Taylor
series expansion puts the equation of motion in a form suitable for
perturbation analysis. These manipulations and the closed-form per-
turbation approximations for a general mesh force-deflection rela-
tionship are what distinguish this work from past studies. The basic
gear modeling has been proposed in past research. It is assumed
that the force-deflection function and the applied load vary periodi-
cally with time. No further assumptions are made at this point.

The equation of motion is

m€xþ c _xþ Cðx; tÞf ðx; tÞ ¼ FðtÞ (1)

where FðtÞ is the periodic applied load with period PF, f ðx; tÞ is
the nonlinear, time-dependent, periodic force-deflection function
with period Pf , and Cðx; tÞ is the separation function given by

Cðx; tÞ ¼ 0 if x < gðtÞ
1 if x � gðtÞ

�
(2)

where gðtÞ is the unloaded (FðtÞ ¼ 0), quasi-static ( _x ¼ €x ¼ 0)
transmission error one would measure if the gears are rotated
through a gear mesh cycle with zero torque. It satisfies
f gðtÞ; tð Þ ¼ 0.

This single degree-of-freedom mechanical oscillator approxi-
mates the rotational vibration of gear pairs with the following
assumptions. The bearings are assumed to be rigid, allowing a
model with only rotational degrees of freedom. This assumption is
justified when the natural frequencies of vibration modes with
high bearing deformations are sufficiently separated from the nat-
ural frequencies of vibration modes with primarily rotational
oscillations of the gears.

The force-deflection function f ðx; tÞ is general and there are no
restrictions on the type of the elastic deformation that can be
included. In gears, the effects include, but are not limited to, Hertz
contact deformations at the gear teeth, tooth bending, shear, and
gear blank deformations. Because the number of teeth in contact
changes with rotation of gears, the force-deflection function is
periodic with tooth pass frequency. An important distinction must
be made between misaligned gears in the original assembly and
dynamic tilting motions that occur during vibrations. We use the
term misalignment to refer to a mounting error such that the tooth
load is unevenly distributed across the facewidth in its assembled
state. Misalignment affects the mesh stiffness and would be
reflected in the general force-deflection function, which can be
calculated by finite element analysis. Therefore the analysis con-
siders the effects of misalignment. The dynamic tilting motions
that would require additional degrees-of-freedom are neglected.

Equation (2) restricts contact loss to single-sided impacts.
Elimination of the rigid body motion [19,35] lumps the rotational

inertias of both the pinion (Ip) and gear (Ig) into

m ¼ IpIg= Ipr2
g þ Igr2

p

� �
in Eq. (1), where rp and rg are the pinion

and gear base radii, and hp and hg are the rotational deflections of
the pinion and gear. In this case, the load is constant and
FðtÞ ¼ F ¼ Tp=rp represents the mesh force due to a constant
applied torque Tp. Gear vibrations are lightly damped. Damping is
reported to be about 2% in Ref. [5], so approximation with vis-
cous damping c is adopted. Assuming well-lubricated gear con-
tact, the tooth friction forces are assumed small with no
significant impact on the vibration. With this formulation,
xðtÞ ¼ hprp þ hgrg is the dynamic transmission error in Eq. (1),
and xs ¼ gðtÞ is the unloaded static transmission error.

The force-deflection function f ðx; tÞ is the crucial quantity in
this work. For a variety of systems, the force-deflection function
can be obtained from experiments, finite element analysis, and an-
alytical contact models. In gears, it is routinely calculated from
computational models and readily measured. The force-deflection
function, independent of the physical system in question and the
method used to obtain it, can be represented by a Taylor series
around xm up to the nth order by

f ðx; tÞ ¼
Xn

i¼0

1

i!

@if ðx; tÞ
@xi

����
x¼xm

x� xmð Þi¼
Xn

i¼0

BiðtÞ x� xmð Þi (3)

where xm is the deflection induced by the mean applied load.
Averaging the force-deflection function and the applied force over
their shortest common period P, xm is found from

ðP

0

FðtÞdt ¼
ðP

0

f ðxm; tÞdt (4)

The Fourier series expansion of BiðtÞ in Eq. (3) is

BiðtÞ ¼ bi;0 þ
Xp

r¼1

bi;r cosðrnt� Ui;rÞ; i ¼ 0; 1;…; n (5)

where n ¼ 2p=Pf is the frequency of f ðx; tÞ. The Fourier expan-
sion of FðtÞ is

FðtÞ ¼ F0 þ
Xp

r¼1

Fr cosðrft� RrÞ (6)

where f ¼ 2p=PF is the frequency of FðtÞ. Substitution of
y ¼ x� xm, Eqs. (5), and (6) into Eqs. (1) and (2) gives

m€yþ c _yþ Cðy; tÞ
Xn

i¼0

bi;0 þ
Xp

r¼1

bi;r cosðrnt� Ui;rÞ
" #

yi

¼ F0 þ
Xp

r¼1

Fr cosðrft� RrÞ (7)

Cðy; tÞ ¼ 0 if y < �xm þ gðtÞ
1 if y � �xm þ gðtÞ

�
(8)

Substitution of b0;0 ¼ F0, a result of Eqs. (4), (5), and (6) into Eq.
(7) eliminates the mean load F0 under contact, giving

m€yþ c _yþ Cðy; tÞ
Xn

i¼1

bi;0 þ
Xp

r¼1

bi;r cosðrnt� Ui;rÞ
" #

yi

¼
Xp

r¼1

Fr cosðrft� RrÞ � Cðy; tÞ
Xp

r¼1

b0;r cosðrnt� U0;rÞ

� F0 Cðy; tÞ � 1½ � (9)

so the mean load F0 acts only when contact is lost.
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Fourier expansion of gðtÞ gives

gðtÞ ¼ g0 þ
Xp

r¼1

gr cosðrnt�WrÞ (10)

The definition d ¼ xm � g0 and substitution of T ¼ xnt,

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1;0=m

q
, and y ¼ ud give the nondimensional forms of

Eqs. (8) and (9) as

u00 þ 2lu0 þ Cðu; TÞ
Xn

i¼1

ai;0 þ
Xp

r¼1

ai;r cos rXf T � /i;r

� �" #
ui

¼
Xp

r¼1

qr cos rXFT � qrð Þ

� Cðu;TÞ a0;1 cos Xf T þ
Xp

r¼2

a0;r cos rXf T � /0;r

� �" #

� a0;0 Cðu; tÞ � 1½ � (11)

Cðu;TÞ ¼
0 if u < �1þ

Xp

r¼1

er cosðrXf T � wrÞ

1 if u � �1þ
Xp

r¼1

er cosðrXf T � wrÞ

8>>>><
>>>>:

(12)

where ðÞ0 ¼ d=dT, the nondimensional quantities are

Xf ¼
n
xn

; XF ¼
f

xn
; l ¼ c

2mxn
; qr ¼

Fr

db1;0

ðr 6¼ 0Þ;

ai;r ¼
bi;rd

i�1

b1;0

; er ¼
gr

d
(13)

and the phase angles relative to U0;1 are ði ¼ 0; 1;…; n and
r ¼ 0; 1;…; pÞ

/i;r ¼ Ui;r � U0;1; qr ¼ Rr � U0;1; wr ¼ Wr � U0;1 (14)

2.2 Physical Interpretation

2.2.1 Nondimensional Parameters. The physical interpreta-
tion of the important nondimensional parameters are listed below
and summarized in Table 1.

(1) The mean load a0;0, linear mean stiffness a1;0, and nonlin-
ear stiffnesses ai;0 ði > 1Þ come from Taylor expansion of
the force-deflection function by Eq. (3). In gears, a0;0 repre-
sents the constant mesh force, a1;0 the linear mesh stiffness,
and ai;0 (i > 1) the stiffness nonlinearities that include par-
tial contact loss, nonlinear Hertz contact and others.

(2) The excitation harmonics from the force-deflection func-
tion, a0;r , the harmonics of linear stiffness, a1;r , the harmon-
ics of stiffness nonlinearity ai;r (i > 1) r > 0 and associated
phase angles /i;r come from Fourier expansion of the Tay-
lor coefficients BiðtÞ by Eq. (5). They exist in gears due to
periodic engagement/disengagement of the gear teeth. The
quantity a0;r excites the dynamics. It is close to what is called
the “static transmission error excitation” for unmodified gears.
The a1;r represents the periodic change in the linear mesh
stiffness. The periodicity of the stiffness nonlinearity, that is,
changes in the strength of nonlinearity as the gear teeth
engage/disengage, is contained in ai;r , ði > 1Þ.

(3) The harmonics of the external excitation qr and associated
phase angles qr come from Fourier expansion of the applied
force FðtÞ by Eq. (6). When the applied torque is constant,
qr ¼ 0, and the first harmonic of the fluctuating torque is
reflected in q1 that, if exists, further excites the system.

(4) The harmonics of the unloaded deflection er and associated
phase angles wr come from Fourier expansion of the
unloaded deflection gðtÞ by Eq. (10) and represent the time-
dependent unloaded transmission error.

2.2.2 Partial Contact Loss. Partial contact loss occurs when
portions of nominal gear contact lines lose contact while the other
parts are still in contact [9,10]. This contrasts with total contact
loss, where the gear mesh ceases to transmit any force. Gear

Table 1 Summary of nondimensional parameters and their physical interpretation for gear vibrations

Parameter Definition Source in gears

a0;0 Mean applied load Constant mesh force
Acts only when contact is lost

a0;r Harmonics of parametric excitation Periodic change in the
r > 0 from force-deflection function number of contacting teeth

a1;0 Linear mean stiffness Linearized gear mesh stiffness
at the operating torque

a1;r Harmonics of linear Periodic change in the
r > 0 time dependent stiffness number of contacting teeth

ai;0 Nonlinear stiffness Partial contact loss
nonlinear Hertz contact, etc.

ai;r Harmonics of time Periodic changes in partial contact
r > 0 dependent nonlinear stiffness loss, Hertz contact, etc.

er Harmonics of unloaded deflection Fluctuating unloaded transmission error

qr Harmonics of external excitation Pulsations in applied torque
(not analyzed in this work)

d Mean deflection Mean loaded transmission error

Xf Parametric excitation Periodic change in the
frequency of f ðx; tÞ number of contacting teeth

XF External excitation Pulsations in applied torque
frequency of FðtÞ (not analyzed in this work)
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vibrations combined with tooth profile and lead modifications
cause partial contact loss. Partial contact loss depends heavily on
applied torque. The mesh stiffness of modified gears, which
depends on the total length of the contacting lines, changes with
applied torque. Figure 1 demonstrates this dependence by compar-
ing the dimensional mesh stiffness of unmodified and modified
gears. The modified gears depend heavily on torque; the unmodi-
fied gears do not. This dependence of stiffness on torque is a
source of nonlinearity, and it results from partial contact loss. The
parameters ai;r and /i;r for i > 1 incorporate partial contact loss,
and any other nonlinearity present in the force-deflection function,
into the equation of motion. Static finite element analysis at many
points in a tooth mesh cycle is one effective way to compute the
force-deflection function considering partial contact loss and Hertz
contact nonlinearity. Commercial software can do this accurately.

2.2.3 Independence of Total Contact Loss From Applied
Torque. The analysis helps explain the observation in Refs.
[6,22,30,37,38] that, for steady torque systems that do not involve
gear rattle, increasing the applied torque does not reduce the occur-
rence of contact loss near primary resonance in unmodified gears; that
is, if contact loss occurs at one torque, it will occur at any other tor-
que. Once contact loss occurs, however, the extent of contact loss and
the nature of the nonlinear response will depend on applied torque.

To explain, Fig. 2 shows dimensional, mean-removed excita-
tions from an unmodified and a modified gear pair. The dimen-
sional mean removed excitation B0ðtÞ � F0 and the mean
deflection xm for unmodified gears are almost directly proportional
to the applied torque. The modified gears show no such propor-
tionality. The first harmonic of the nondimensional excitation a0;1

is the dominant driver of vibrations near primary resonance. This
quantity from the unmodified and modified gear pairs is shown in
Fig. 3. Changing the applied torque does not change the first har-
monic of the excitation for the unmodified gear pair much, but it
dramatically changes this quantity for the modified gear pair. In
other words, the first harmonic of the excitation is sensitive to tor-
que for modified gears, but insensitive to torque for unmodified
gears. Because the first harmonic of the nondimensional excitation
a0;1 from unmodified gears is similar for any applied torque, the

Fig. 1 Dimensional gear mesh stiffness at 50 Nm (dashed-dotted line), 150 Nm
(dashed line), and 250 Nm (solid line) using finite element analysis. (a) Unmodified
spur gear pair from [36] (ICR 5 1:37). (b) Modified spur gear pair from [5] (tip relief
starts at 22.2 deg).

Fig. 2 Dimensional mean-removed excitation levels from the gears in Fig. 1 at 50
Nm (dashed-dotted line), 150 Nm (dashed line), and 250 Nm (solid line) using finite
element analysis. (a) Unmodified spur gear pair. (b) Modified spur gear pair.

Fig. 3 The first harmonic of nondimensional excitation from
the unmodified and modified gears with varying applied torque.
The gears are the same as in Fig. 1.
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applied torque has no effect upon the occurrence of contact loss.
This mathematical explanation translates into a physical explana-
tion as follows. In unmodified gears, a higher torque nearly line-
arly increases both: (a) the excitation and so the vibration
amplitude, and (b) the threshold of vibration amplitude needed to
trigger contact loss. In summary

(1) For unmodified gears, the occurrence of contact loss is in-
dependent of the applied torque.

(2) For modified gears, the occurrence of contact loss depends
on the applied torque.

(3) Once contact loss starts to occur, the vibrations depend on
applied torque. The amplitude of applied torque affects the
duration of separation in a mesh period, and the vibration
amplitude.

3 Analysis Method

3.1 Dynamic Response Near Primary Resonance. This
section presents approximate analytical solutions of Eqs. (11) and
(12) near the primary resonance region using the method of multi-
ple scales. To unify the analysis, we consider that parametric and
external excitations are both present and their frequencies are
equal and close to the natural frequency, X ¼ Xf ¼ XF � 1. The
reason for setting Xf ¼ XF is to keep the length of the closed-
form solution to a minimum and to allow for periodic external tor-
que excitation near resonant speed; thus there is no reason to con-
sider Xf 6¼ XF. Following Ref. [39] to expand u, T, and the
forcing frequency X near the primary resonance gives

uðT;eÞ¼ u0ðT0;T1;T2Þþ eu1ðT0;T1;T2Þþ e2u2ðT0;T1;T2Þ
Tn¼ enT; X¼ 1þr¼ 1þ er̂

(15)

The small parameter e is a detuning parameter such that the exci-
tation frequency is close to the natural frequency. The separation
function in Eq. (12) is rewritten as C ¼ 1þ H where

Hðu; tÞ ¼ 1

2
sgn uþ 1�

Xp

r¼1

er cosðrT � wrÞ
" #

� 1

2
(16)

This allows p contact losses per period. Fourier expansion of
Hðu; tÞ is admissible because, like uðtÞ, it has period 2p, giving

H ¼ D0 þ
XN

r¼1

Dr cosðrT0 � �rÞ (17)

The quantities D0 and Dr depend on uðtÞ and are not yet known.
Arbitrarily, many harmonics can be used to represent the separa-
tion function H, but N must not be less than the number of contact
losses per period, N � p. These steps turn contact loss into a form
manageable by the method of multiple scales [22,30,40,41].

The OðeÞ parameters are

a0;1 ¼ eâ0;1; a2;0 ¼ eâ2;0; a3;0 ¼ eâ3;0; q1 ¼ eq̂1; l ¼ el̂;

r ¼ er̂; D0 ¼ eD̂0 (18)

These orderings reflect the assumption that the nonlinearities,
forcing, and damping are small. The mean value D0 of the separa-
tion function H is ordered by assuming that the duration of contact
loss is small compared to the period of vibration. Furthermore, all
harmonics are assumed one order smaller than the corresponding
mean values. This gives the Oðe2Þ parameters as

a2;1 ¼ e2â2;1; D1 ¼ e2D̂1; D2 ¼ e2D̂2 (19)

We consider up to the third order polynomial approximation of
the nonlinear force-deflection function, that is, ai;r � 0 for i � 4,
and the first harmonic of the periodically varying force-deflection
function, that is, ai;r � 0 for r � 2. Parametric instability due to
the first harmonic of the linear stiffness variation a1;1 is possible,
but this needs to be treated separately. The third and higher

harmonics of the separation function (Dr for r � 3) and excita-
tions a0;r and qr for r � 2 do not contribute to the solution, so
they are excluded from subsequent equations for brevity.

Substitution of Eq. (15) into Eq. (11) and combining like orders
of e gives the perturbation equations

D2
0u0 þ u0 ¼ 0 (20)

D2
0u1 þ u1 ¼ �2D0D1u0 � â2;0u2

0 � â3;0u3
0 � 2l̂D0u0

� D̂0 u0 þ a0;0

� �
� â0;1

2
eiT0 þ e�iT0
� �

þ q̂1

2
eiðT0�q1Þ þ e�iðT0�q1Þ
h i

(21)

D2
0u2 þ u2 ¼ �2l̂ðD1u0 þ D0u1Þ � 2D0D1u1 � 2D0D2u0

� D2
1u0 � ðu1 þ â2;0u2

0 þ â3;0u3
0ÞD̂0 � 2â2;0u0u1

� 3â3;0u2
0u1 �

â0;1D̂0

2
eiT0 þ e�iT0
� �

� ða0;0 þ u0ÞD̂1

2
eiðT0��1Þ þ e�iðT0��1Þ
h i

� ða0;0 þ u0ÞD̂2

2
eið2T0��2Þ þ e�ið2T0��2Þ
h i

� â2;1u2
0

2
eiðT0�/2;1Þ þ e�iðT0�/2;1Þ
h i

(22)

where Di ¼ @=@Ti. The general solution of Eq. (20) is

u0 ¼ AðT1;T2ÞeiT0 þ �AðT1; T2Þe�iT0 (23)

Substitution of Eq. (23) into the first order Eq. (21) yields secular
terms that must be eliminated for u0 to be periodic, giving the
condition

2iD1Aþ A 2il̂þ D̂0 þ 3â3;0A2 �A
h i

þ â0;1

2
eir̂T1 � q̂1

2
ei r̂T1�q1ð Þ ¼ 0

(24)

Transforming to polar coordinates by setting A ¼ 1=2aeib,
b ¼ r̂T1 � c, with a; c2 R gives the real and imaginary parts of
Eq. (24) as

aD1c¼ ar̂�1

2
aD̂0�

3

8
â3;0a3�1

2
â0;1 coscþ1

2
q̂1 cos c�q1ð Þ

D1a¼�l̂a� â0;1

2
sincþ1

2
q̂1 sin c�q1ð Þ

(25)

3.1.1 First Order Perturbation. If the process is terminated at
the first order perturbation, only Eq. (25) is considered. The steady
state solutions of Eq. (23) result from D1a ¼ 0, D1c ¼ 0 in Eq.
(25). This gives, after use of Eq. (18), the frequency-amplitude rela-
tion cast in terms of the original parameters independent of e as

ar� 1

2
aD0 �

3

8
a3;0a3 � 1

2
a0;1 cos cþ 1

2
q1 cos c� q1ð Þ ¼ 0

� la� 1

2
a0;1 sin cþ 1

2
q1 sin c� q1ð Þ ¼ 0

(26)

These two equations can be combined by eliminating c, giving

l2a2 þ ar� 1

2
D0a� 3

8
a3;0a3

	 
2

�
a2

0;1 þ q2
1

4
þ a0;1q1

2
cos q1 ¼ 0

(27)

Many parameters (a0;0, a2;0, a2;1, /2;1, D1, D2, �1, and �2) do not
appear in Eq. (26) and only contribute through the second
order perturbation. After calculation of the general solution of
Eq. (21), the approximate solution is constructed from
u ¼ u0 þ eu1 þ Oðe2Þ, giving
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u ¼ a cosðT0 � cÞ þ a2;0a2

2

1

3
cosð2T0 � 2cÞ � 1

� �

þ a3;0a3

32
cosð3T0 � 3cÞ � a0;0D0 þ Oðe2Þ (28)

3.1.2 Second Order Perturbation. Proceeding to the second
order perturbation, substitution of Eqs. (28) into (22) yields secu-
lar terms that need to be eliminated for u1 to have a periodic solu-
tion, giving the condition

D2
1Aþ 2iD2Aþ 2lD1A� 10

3
â2

2;0A �Aþ 3

8
â2

3;0A3 �A2 þ D̂0

â0;1

2
eir̂T1 � 2Aa0;0â2;0 þ 3A2 �Aâ3;0

	 


þ a0;0D̂1

2
eiðrT1��1Þ þ A2â2;1

2
e�iðr̂T1�/2;1Þ þ

�AD̂2

2
eið2r̂T1��2Þ þ A �Aâ2;1eiðr̂T1�/2;1Þ ¼ 0 (29)

Substitution of D1A from Eq. (24) into Eq. (29) and use of the polar coordinates aðT1; T2Þ and cðT1; T2Þ give the real and imaginary parts
of Eq. (29) as

aD2c ¼ â0;1 cos c� q̂1 cosðc� q1Þ
 � 3

32
â3;0a2 þ 1

4
r̂

	 

� 3

8
D̂0â0;1 cos cþ 1

4
l̂â0;1 sin c

� 1

4
l̂q̂1 sinðc� q1Þ �

1

2
a0;0D̂1 cos �1 � cð Þ � 1

4
D̂2a cos �2 � 2cð Þ � 3

8
â2;1a2 cos U2;1 � c

� �

þ 1

8
D2

0a� 3

16
â3;0D̂0a3 þ 1

2
l̂2aþ 15

256
a5â2

3;0 þ aâ2;0a0;0D̂0 þ
5

12
a3â2

2;0

D2a ¼ â0;1 sin c� q̂1 sinðc� q1Þ
 � 9

32
â3;0a2 þ 1

4
r̂

	 

� 3

8
D̂0â0;1 sin c� 1

4
l̂â0;1 cos c

þ 1

4
l̂q̂1 cosðc� q1Þ þ

3

8
l̂â3;0a3 þ 1

2
a0;0D̂1 sin �1 � cð Þ

þ 1

4
D̂2a sin �2 � 2cð Þ þ 1

8
â2;1a2 sin U2;1 � c

� �
(30)

Steady-state vibration requires D1a ¼ D1c ¼ 0 in Eq. (25) and D2a ¼ D2c ¼ 0 in Eq. (30). Combination of the real and imaginary parts
of Eqs. (25) and (30) according to the reconstitution method [41,42], substitution of D1a ¼ D1c ¼ 0 into Eq. (25) and D2a ¼ D2c ¼ 0
into Eq. (30), and use of Eqs. (18) and (19) in that sequence give the frequency-amplitude relations

ar� D0

2
a� 3a3;0a3

8
� a0;1

2
cos cþ q1

2
cosðc� q1Þ þ

(
1

4
la0;1 sin c� 1

4
lq1 sinðc� q1Þ þ a0;1 cos c� q1 cosðc� q1Þ

 � 3

32
a3;0a2 þ 1

4
r

	 


� 3

8
D0a0;1 cos c� 1

2
a0;0D1 cos �1 � cð Þ � 1

4
D2a cos �2 � 2cð Þ � 3

8
a2;1a2 cos U2;1 � c

� �
þ 1

8
D2

0a� 3

16
a3;0D0a3 þ 1

2
l2aþ 15

256
a5a2

3;0

þ aa2;0a0;0D0 þ
5

12
a3a2

2;0

)
¼ 0� la� 1

2
a0;1 sin cþ 1

2
q1 sinðc� q1Þ þ

(
� 1

4
la0;1 cos cþ 1

4
lq1 cosðc� q1Þ

þ a0;1 sin c� q1 sinðc� q1Þ
 � 9

32
a3;0a2 þ 1

4
r

	 

� 3

8
D0a0;1 sin cþ 3

8
la3;0a3 þ 1

2
a0;0D1 sin �1 � cð Þ þ 1

4
D2a sin �2 � 2cð Þ

þ 1

8
a2;1a2 sin U2;1 � c

� �)
¼ 0 (31)

from which a and c can be solved. The expressions outside of the
brackets are the first order perturbation solution, and the expres-
sions inside the brackets are the second order corrections.

3.1.3 Separation. The quantities Dr and �r in Eq. (17) are
found using the separation instants Ti. These separation instants
are solved by substitution of u from Eq. (28) into Eq. (16) for
H ¼ �1 (i.e., C ¼ 0). For arbitrarily many contact losses per pe-
riod p, the solutions Ti, i ¼ 1;…; 2pþ 1, mark the instants when
contact is lost or re-established. Let Hi denote whether there is
contact (Hi ¼ 0) or not (Hi ¼ �1) when Ti � T < Tiþ1. The Fou-
rier coefficients and phase angles of the separation function H in
Eq. (17) are then

D0 ¼
1

2p

X2p

i¼1

Tiþ1 � Tið ÞHi (32)

Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

r;a þ D2
r;b

q
; �r ¼ tan�1 Dr;b;Dr;a

� �
; r ¼ 1;…;N

Dr;a ¼
1

rp

X2p

i¼1

sin rTiþ1 � sin rTið ÞHi;

Dr;b ¼ �
1

rp

X2p

i¼1

cos rTiþ1 � cos rTið ÞHi; r ¼ 1;…;N

(33)

The perturbation solution considers a maximum of N ¼ 2 because
harmonics of H higher than the second, i.e., Dr for r > 2 in Eq.
(17), do not yield secular terms. This limits contact loss to twice-
per-period because N � p. Even when the contact loss is limited
to twice-per-period, finding the separation instants Ti requires
solving Eq. (16) for p ¼ 2. Finding a closed-form solution is not
feasible unless: (1) contact loss occurs once per period (p ¼ 1),
and (2) the mean change in solution u due to contact loss does not
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affect when contact loss starts and ends (a0;0D0 ¼ 0). Adopting
these assumptions gives the closed-form expressions

D0 ¼ �1þ s
p
; Dr ¼

2

rp
sin rs

�r ¼ r tan�1 �a sin cþ e1 sin w1; a cos c� e1 cos w1ð Þ; r ¼ 1; 2

(34)

s ¼ cos�1 �1þ a2;0a=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a cos c� e1 cos w1ð Þ2þ a sin c� e1 sin w1ð Þ2

q
0
B@

1
CA
(35)

The numerical solution for D0, Dr , and �r using Eqs. (32) and (33)
is computationally demanding. To save computation when analyz-
ing a system with the second order perturbation solution Eq. (31),
we use a coarse frequency resolution across the frequency range

of interest to confirm that contact loss occurs once per period
using numerical solutions of Eqs. (32) and (33). Once confirmed,
the analytical expressions in Eqs. (34) and (35) are used. The ana-
lytical expressions in Eqs. (34) and (35) and numerical solution of
Eqs. (32) and (33) give almost identical results for the cases ana-
lyzed in this work, so the presented results use the analytical
expressions. This comparison justifies the assumption of only one
instance of contact loss per mesh period for the current system.
For a set of parameters with even stronger nonlinearity at reso-
nance, the perturbation solution assumptions must be re-evaluated
to confirm their suitability.

The vibration amplitude and frequency at the onset of total con-
tact loss can be found from the foregoing analytical solution. Just
before the onset of total contact loss, the mean value of the separa-
tion function and its harmonics are zero and D0 ¼ Dr ¼ 0 in Eq.
(34). This gives s ¼ p. Substitution of s ¼ p into Eq. (35) gives
the amplitude at the onset of total contact loss as

a ¼
4e1 cosðc� w1Þ � 2a2;062

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

1a
2
2;0 þ 4� 4e2

1 sin2ðc� w1Þ � 4e1a2;0 cosðc� w1Þ
q

4� a2
2;0

(36)

Substitution of a from Eq. (36) and D0 ¼ Dr ¼ 0 into Eq. (31)
gives the frequency r and the phase c at the onset of total contact
loss. The closed-form solution is lengthy using the second order
perturbation solution, but a compact expression can be obtained
using the first order perturbation solution. The first order does not
consider quadratic nonlinearity and unloaded fluctuations (they do
not yield secular terms), so a2;0 ¼ e1 ¼ 0. Subsequently, Eq. (36)
reveals that a ¼ 1 initiates total contact loss. Substitution of a ¼ 1
and D0 ¼ 0 into Eq. (27) gives the two frequencies where total
contact loss starts as

r ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0;1 þ q2
1

4
� l2 � a0;1q1

2
cos q1

s
þ 3

8
a3;0 (37)

3.1.4 Key Points from the Analytical Solution

(1) The first order perturbation gives the frequency amplitude
relation by Eq. (27). It considers only the cubic nonlinearity
a3;0 and the mean reduction of stiffness due to total contact
loss D0.

(2) The second order perturbation solution gives the frequency
amplitude relation by Eq. (31). It considers quadratic nonli-
nearities (a2;0, a2;1, /2;1), and cubic nonlinearity (a3;0). The
mean value of the separation (D0) and its first two harmon-
ics (D1, D2) with associated phase angles (�1, �2) contrib-
ute. These quantities account for total contact loss.

(3) The mean value (D0) and the first two harmonics (D1, D2)
of the separation function and their phase angles (�1, �2)
are found from the perturbation equations numerically from
Eqs. (32) and (33) or analytically from Eqs. (34), (35) when
contact loss is limited to once per period (p ¼ 1). Both har-
monics are crucial for an accurate response as the upcom-
ing results will show.

(4) When the expression inside cos�1 in Eq. (35) is not in the
range ð�1; 1Þ, total contact loss does not occur. The ampli-
tude and frequency at onset of contact loss is analytically
given by Eq. (37) from the first order perturbation. The sec-
ond order approximation of the amplitude at onset of con-
tact loss is found from Eq. (36) and the frequencies can be
solved by substitution of that amplitude into Eq. (31).

3.2 Stability. The solution of Eq. (31) can give one or three
solutions for a given frequency. When more than one solution is

possible, only the stable solutions would be observed in practice
or calculated by numerical integration. The stability of a solution
is found by linearizing Eqs. (25) and (30) about a stationary point
ða; cÞ. This yields the matrix form

d

dT

a
c

	 

¼ J

a
c

	 

(38)

where the matrix J denotes the Jacobian. The solution is unstable
if any eigenvalues of J have a positive real part. The algebraic
expression for J is prohibitively long and provides no practical
insight. For these reasons, the stability is found numerically from
the Jacobian matrix J at the stationary points.

4 Results

In this section, dynamic response of the equation of motion Eq.
(11) obtained using the perturbation solution in Eq. (28) is com-
pared with gear vibration experiments from the literature, numeri-
cal integration, and the linearized solution. The first order
perturbation solution is found from Eq. (27), and the second order
perturbation solution is found from Eq. (31).

4.1 Key Regions in Dynamic Response and Comparison
With Numerical Solution. Independent of the physical system
analyzed, there are four possible distinct regions in the nonlinear
response. To investigate the characteristics of these four regions,
time domain numerical integration and the second order perturba-
tion solution of an example system are shown in Fig. 4. The linear
time-invariant solution (only linear stiffness and external excita-
tion exist, a1;0; a0;1 6¼ 0) is plotted to provide a comparison:

Region 1. The linear and nonlinear solutions give almost iden-
tical responses. The response is relatively small. There is no con-
tact loss, and nonlinear terms negligibly affect the response.

Region 2. The nonlinear solution deviates significantly from
the linear solution as the vibration amplitude grows. This region
does not exist, i.e., becomes identical to region 1, if a2;0 ¼ 0 and
a3;0 ¼ 0. Although the contact is maintained, this region repre-
sents partial contact loss in physical systems, where the nonlinear-
ities are due to a reduction in instantaneous dynamic stiffness.
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The nonlinear terms a2;0, a3;0, and the time-dependence a2;1, /2;1

dominate the response.

Region 3. Total contact loss, manifest from the kink in the
response at X ¼ 0:97, starts in this region. Here C ¼ 0. The vibra-
tion amplitude a and the frequency of excitation X at which total
contact loss starts is given by Eq. (36). It depends on the quadratic
nonlinearity, the fluctuation in the unloaded deflection e1, and the
relative phase angle c� w1.

Region 4. Total contact loss occurs. The solution is dominated
by the mean reduction in stiffness D0 due to separation, the first
two harmonics of the separation function D1, D2, their phase
angles �1, �2, and the mean load a0;0. The agreement between the
numerical and perturbation solution is excellent, justifying the
assumptions in the perturbation solution. The nonlinearities are
stronger if the periods of separation become long, which would
degrade the agreement somewhat as shown in Ref. [37] for a sim-
pler tooth mesh contact model in planetary gears.

4.2 Gear Vibrations

4.2.1 Computational Results. Computational dynamic response
of a helical gear pair is obtained using the contact algorithm in
Refs. [9,10]. That model has been successfully compared against
experiments and a specialized finite element/contact mechanics model
of gear dynamics. Some elastic behaviors, such as corner contact, ra-
dius of curvature effects, buttressing effects, and the coupling between
the deflections of adjacent teeth, are neglected in this contact
algorithm.

The gear parameters, which are from [9], are listed in Table 2.
The nondimensional parameters are given in Table 3.

The dynamic response of the helical gear pair with profile and
lead modifications and the force-deflection function shown in
Fig. 5 is plotted in Fig. 6. The computational dynamic response
and perturbation solution agree throughout most of the operating
frequencies. There is a clear difference between the linear and the
nonlinear response. Region 2 of Fig. 4 identifies this type of
response. Physically, this difference is attributed to partial contact
loss, where some portions of the nominal contact lines separate
while the gear mesh as a whole is still engaged. The perturbation

solution predicts the nonlinear dynamics arising from partial con-
tact loss.

The investigation of practical gear vibration raises the question
of whether all the nonlinear terms (a2;0, a3;0, a2;1, /2;1) are neces-
sary to obtain an accurate response or not. The importance of
these terms are assessed by investigating the perturbation solution
when these are set to zero one at a time, as shown in Fig. 7. The
response becomes inaccurate when any one of them is set to zero;
all nonlinear terms are necessary to obtain an accurate response.

4.2.2 Experimental Results. In this section, experimental
measurements of rotational vibration of unity ratio gear pairs with
profile and lead modifications [5] are compared with the second

Table 3 Parameters of the analyzed gears in Figs. 6, 9, 10,
and 11

Figure 6 Figure 9 Figure 10 Figure 11

a0;0 0.727 0.727 0.716 0.714
a0;1 0.069 0.181 0.061 0.058
a2;0 0.209 0.213 0.197 0.202
a2;1 0.313 0.212 0.118 0.069
a3;0 �0.037 �0.034 �0.074 �0.074

/2;1 (rad) �2.891 �3.203 �3.228 �0.230
e1 0.167 0.302 0.185 0.038

w1 (rad) �3.293 �3.124 �3.124 0.037
l 0.030 0.050 0.016 0.028

d ðlmÞ 4.350 5.516 9.005 9.201

Fig. 4 Dynamic response of equation of motion (Eqs.
(11)–(12)) using second order perturbation and numerical inte-
gration. Parameters are: a0;1 5 2=75, a0;0 5 2=3, a2;0 5 1=4,
a3;0 5 21=24, e1 5 0:1, w1 5 0, a2;1 5 0, l 5 0:0082. Important
regions of solutions are marked with (1) through (4). (Stable
perturbation solution: solid line, unstable perturbation solu-
tion: dashed line, numerical integration: circles, linear solution:
dashed-dotted line.)

Table 2 Physical parameters of the helical gears analyzed in
Fig. 6

Parameter Pinion Common Gear

Number of teeth 27 35
Transverse module (mm) 3 3
Base helix angle (deg) 28.08
Transverse operating pressure angle (deg) 24.60
Facewidth (mm) 20.00 20.00
Center distance (mm) 88.90
Profile crown (lm) 0 10
Lead crown (lm) 0 10

Fig. 5 Force-deflection function f ðx; tÞ of a helical gear pair
obtained by the method of Ref. [9]. Tooth surface modifications
are: quadratic profile tip and root crown of 10lm and lead
crown of 10lm on the gear.
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order perturbation solution. The experimental measurements are
available for various tip relief starting roll angles and for different
applied torques.

The gear parameters from Ref. [5] are listed in Table 4. The
nondimensional parameters are given in Table 3. The gears in this
test rig are sufficiently isolated from the vibrations of the support-
ing structure to justify use of a single degree-of-freedom oscillator
to model the dynamics [24].

The force-deflection function would ideally come from the ex-
perimental setup by slowly rotating the gears through a mesh
period and measuring transmission error at various applied tor-
ques. Because these data are not given, the force-deflection func-
tion is obtained from finite element analysis [43] of the gears.
When the tip relief starts at roll angle 20:9 deg, the force-
deflection function calculated by finite element analysis is shown
in Fig. 8 for various torques. Even if the finite element analysis
could precisely replicate the elastic behavior of the experimental
setup, the crucial gear tooth profile and lead modifications are
specified within a manufacturing tolerance (3 lm). These errors
can cause a mismatch between the experimental data and pertur-
bation solution.

Fig. 7 Perturbation solution when a2;0, a3;0, a2;1, and /2;1 are set
to zero one at a time are shown. The nonzero parameters are
the same as in Fig. 6. The circles denote numerical integration
with no nonzero parameters.

Fig. 6 Primary resonance of a helical gear pair at 200 Nm using
second order perturbation, numerical integration, and the line-
arized model. The numerical integration results are obtained
using the method of Ref. [9] (stable perturbation solution: solid
line, computational data by numerical integration: circles, linear
solution: dashed-dotted line).

Table 4 Physical parameters of the spur gears analyzed in
Figs. 9, 10, and 11

Parameter Pinion Common Gear

Number of teeth 50 50
Transverse module (mm) 3 3
Base helix angle (deg) 0
Transverse operating pressure angle (deg) 20.00
Facewidth (lm) 20.00 20.00
Center distance (lm) 150.00
Tip relief (lm) Varies Varies
Lead crown (lm) 5 5

Fig. 8 Force-deflection function f ðx; tÞ obtained by finite ele-
ment analysis of a spur gear pair with increasing applied
torque. Gear data from Ref. [5], linear tip relief of 10lm starts at
20:9 deg.

Fig. 9 Primary resonance of a spur gear pair (tip relief start at
20.9 deg) at 85 Nm using second order perturbation and linearized
model. Experimental data are from Fig. 3(c) of Ref. [5] (stable sec-
ond order perturbation: solid line, unstable second order per-
turbation solution: dashed line, experimental measurement:
circles, linear solution: dashed-dotted line).
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The experimental measurements and the second order perturba-
tion solution for three gear pairs are compared in Fig. 9 (where
the applied torque is 85 Nm and the 10 lm profile modification
starts at 20:9 deg), Fig. 10 (where the applied torque is 170 Nm
and the 10 lm profile modification starts at 20:9 deg), and Fig. 11
(where the applied torque is 170 Nm and the profile 10 lm modifi-
cation starts at 23:6 deg). Table 3 lists the nondimensional param-
eters used in this analysis. All gears have 5 lm lead crown
modification.

The perturbation solutions agree accurately with the experimen-
tal results in all three cases. Damping is estimated to be between
2% and 5% as shown in Table 3. This agrees with the reported
damping of 2% in Ref. [5] and yields perturbation results that

closely match the experiments, as shown in the figures. The agree-
ment with the experimental measurements justifies the use of the
single-degree-of-freedom rotational oscillator model and the
exclusion of friction forces for gear vibrations. These justifica-
tions, however, are specific to the experimental setup because
compliant bearings or poorly lubricated gears with high friction
may require different physical assumptions.

The onset of total contact loss is manifest by the kinks in the
perturbation solution curves. Even in regions without total contact
loss, the linear response differs from the experimental measure-
ments and perturbation solutions. Region 2 of Fig. 4 characterizes
this type of response. The difference is attributed to partial contact
loss and occurs due to the profile and lead modifications. The
good agreement provides experimental evidence that the perturba-
tion solution predicts the nonlinear dynamic response due to par-
tial contact loss.

5 Conclusions

This work derives approximate, closed-form analytical solu-
tions for the nonlinear vibration of gear pairs with profile and lead
modifications described by a specified nonlinear, periodic force-
deflection curve. The solution includes reductions in profile and
face contact ratios as a result of vibration combined with modifi-
cations. Misalignments in the gear assembly are considered by
their effects on the force-deflection curve. The solution includes
nonlinear effects of partial contact loss, that is, reductions in pro-
file and face contact ratios as a result of vibration combined with
tooth modifications. The method of multiple scales provides the
analytical perturbation solutions in the primary resonance region.

(1) The dynamic excitation in gear pairs is mathematically
shown to come from the periodicity of the force-deflection
function. This periodicity is due to the periodic engage-
ment/disengagement of the gear teeth resulting in linear
and quadratic mesh stiffness fluctuations that drive the gear
vibration. The occurrence of total contact loss in unmodi-
fied gears is shown to be independent of applied torque
because the vibration amplitude increases with larger tor-
ques, so does the threshold of vibrations needed to trigger
total contact loss. This is not true for modified gears; the
occurrence of contact loss depends on applied torque in
modified gears. Once contact loss starts to occur, however,
the amplitude of nonlinear vibration does depend on
applied torque.

(2) The method of multiple scales gives the approximate,
closed-form analytical solutions, which provide physical
insight on the effect of design parameters on nonlinear
vibration. Comparisons with gear vibration experiments
and numerical integration verify the analytical solution by
perturbation. It is observed that the second order perturba-
tion solution is significantly more accurate than the first
order perturbation solution, indicating the nonlinearity is
strong in the physical experiments.

(3) Key regions in the nonlinear response are:
(a) Linear region: vibration amplitude is relatively low,

and the system behaves linearly.
(b) Partial contact loss region: The mean stiffness drops

due to partial contact loss from reduced profile and face
contact ratios as a result of vibration; nevertheless, con-
tact is maintained. During partial contact loss, nominal
contact lines lose contact although the gear teeth
remain engaged. Partial contact loss is most prominent
in systems with tooth profile and lead modifications.
Quadratic and cubic nonlinearities capture the partial
contact loss nonlinearity in modified gears; quadratic
and cubic nonlinearities drive the nonlinear response.

(c) Onset of total contact loss region: Vibrations reach the
threshold to cause total contact loss. The onset fre-
quency and amplitude is independent of applied torque

Fig. 10 Primary resonance of a spur gear pair (tip relief start at
20.9 deg) at 170 Nm using second order perturbation and linear-
ized model. Experimental data are from Fig. 3(b) of Ref. [5]
(stable second order perturbation: solid line, unstable second
order perturbation solution: dashed line, experimental mea-
surement: circles, linear solution: dashed-dotted line).

Fig. 11 Primary resonance of a spur gear pair (tip relief start at
23.6 deg) at 170 Nm using second order perturbation and linear-
ized model. Experimental data are from Fig. 3(b) of Ref. [5]
(stable perturbation solution: solid line, unstable perturbation
solution: dashed line, experimental measurement: circles, lin-
ear solution: dashed-dotted line).
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in unmodified gears. The amplitude and the frequency
at the onset of total contact loss is analytically given
and is consistent with experiments.

(d) Total contact loss region: The contact separates fully
and the mean load brings the system back into contact.
Total contact loss in gears occurs when the gear teeth
disengage completely. When contact loss occurs, vibra-
tion amplitude depends on applied torque. Contact loss
is captured by the mean reduction in mesh stiffness and
its two harmonics. For contact loss, the perturbation so-
lution considers one separation per period, and
excludes further period doubling and chaos. The valid-
ity of this assumption is borne out by the correlation
with experimentally measured vibration.
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