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ABSTRACT

During the summers of 2016 and 2017, the Center for Analysis and Prediction of Storms (CAPS) ran real-
time storm-scale ensemble forecasts (SSEFs) in support of the Hydrometeorology Testbed (HMT) Flash
Flood and Intense Rainfall (FFaIR) experiment. These forecasts, using WRF-ARW and Nonhydrostatic
Mesoscale Model on the B-grid (NMMB) in 2016, and WRF-ARW and GFDL Finite Volume Cubed-Sphere
Dynamical Core (FV3) in 2017, covered the contiguous United States at 3-km horizontal grid spacing, and
supported the generation and evaluation of precipitation forecast products, including ensemble probabilistic
products. Forecasts of 3-h precipitation accumulation are evaluated. Overall, the SSEF produces skillful 3-h
accumulated precipitation forecasts, with ARW members generally outperforming NMMB members and the
single FV3 member run in 2017 outperforming ARW members; these differences are significant at some
forecast hours. Statistically significant differences exist in the performance, in terms of bias and ETS, among
subensembles of members sharing common microphysics and PBL schemes. Year-to-year consistency is
higher for PBL subensembles than for microphysical subensembles. Probability-matched (PM) ensemble
mean forecasts outperform individual members, while the simple ensemble mean exhibits substantial bias. A
newly developed localized probability-matched (LPM) ensemble mean product was produced in 2017;
compared to the simple ensemble mean and the conventional PM mean, the LPM mean exhibits improved
retention of small-scale structures, evident in both 2D forecast fields and variance spectra. Probabilistic
forecasts of precipitation exceeding flash flood guidance (FFG) or thresholds associated with recurrence
intervals (RI) ranging from 10 to 100 years show utility in predicting regions of flooding threat, but gen-
erally overpredict the occurrence of such events; however, they may still be useful in subjective flash flood
risk assessment.

1. Introduction

Each summer, starting in 2012, the Hydrometeorol-
ogy Testbed (HMT) at the Weather Prediction Center
(WPC) of the U.S. National Weather Service has hostedCorresponding author: Nathan Snook, nsnook@ou.edu
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the Flash Flood and Intense Rainfall (FFaIR) experi-
ment. Spanning four weeks during June and July,
FFaIR brings operational forecasters and members of
the weather research and modeling communities together
to study potential improvements to WPC’s operational
excessive rainfall outlook products and to investigate the
skill and utility of new numerical weather prediction
(NWP) tools for predicting heavy rainfall and flash
flooding (WPC 2016). FFaIR provides a valuable plat-
form for research-to-operations transition of cutting-edge
NWP tools and ensemble forecast products focused on
rainfall and flooding as well as providing valuable feed-
back to researchers—the operations to research compo-
nent. Because FFaIR takes place in real time during the
summer convective season considering the entire con-
tiguous United States (CONUS), these new products
are tested in a variety of synoptic environments and
storm modes.

Experimental real-time severe weather forecasting
experiments within the United States grew out of early
collaborations between operational forecasters and re-
search scientists during the 1980s and 1990s, culminat-
ing in Spring Program 2000—the first formal real-time
forecast experiment—in which participants from the
National Severe Storms Laboratory, the Cooperative
Institute for Mesoscale Meteorological Studies, and the
Storm Prediction Center worked together to evaluate
experimental model products for severe weather fore-
casting (Kain et al. 2003). In subsequent years these
efforts were continued in the Hazardous Weather
Testbed (HWT) Spring Forecast Experiment (SFE), an
annual real-time forecast experiment bringing opera-
tional and research meteorologists together to produce
experimental products for severe weather events on
time scales ranging from several hours to several days
(Clark et al. 2012; Weiss et al. 2015) and evaluate new
NWP products for use in the context of operational,
real-time prediction of severe weather (e.g., Xue et al.
2007, 2009; Clark et al. 2009; Kain et al. 2010; Johnson
et al. 2013; Surcel et al. 2014). The HMT experiments
first occurred in 2010–11 as part of a ‘‘quantitative pre-
cipitation forecasting (QPF) component" of the HWT
Spring Forecasting Experiments (Clark et al. 2012),
and continued with the advent of FFaIR in summer of
2012, applying the collaborative research-to-operations
framework of the HWT SFE to the prediction of high-
impact short-term hydrological events.

Convection-allowing ensemble NWP model guidance
[also called storm-scale ensemble forecast (SSEF)] is a
major component of the HWT SFE and HMT FFaIR,
both in generation of forecast products, and evaluation
exercises where participants judge the skill and operational
utility of experimental NWP products (Gallo et al. 2017).

Recent HWT SFEs have featured the Community
Leveraged Unified Ensemble (Clark et al. 2018)—a
large (;60 member) ensemble forecasts at convection-
allowing (or synonymously, convection permitting)
3-km horizontal grid spacing covering a common
CONUS domain whose members were produced by a
variety of operational and academic institutions. Such
forecast ensembles have allowed for the evaluation of
specific ensemble design choices (e.g., Clark et al. 2011;
Duda et al. 2014; Loken et al. 2017, 2019; Clark et al.
2018), and the development and evaluation of novel
forecast products (e.g., Clark et al. 2013), including
probabilistic forecasts (e.g., Kain et al. 2013), and
machine-learning-based products (e.g., McGovern
et al. 2017; Gagne et al. 2017). The evaluation of such
storm-scale NWP forecast products for use in a real-
time, operational setting is vital for the development
and improvement of these products and their eventual
transition into operations.

The Center for Analysis and Prediction of Storms
(CAPS) has produced storm-scale ensemble and de-
terministic forecasts at convection-allowing grid spacing
of 1–4 km in support of the HWT SFE since 2005 (Kain
et al. 2008) and, more recently, HMT FFaIR. CAPS
produced the first ever real-time, convection-allowing,
SSEFs for the 2007 HWT SFE—33-h, 10-member en-
semble forecasts covering two-thirds of the CONUS in
that year (Xue et al. 2007). In subsequent years, CAPS
expanded the size of its forecast ensemble and forecast
domain to cover the full CONUS (e.g., Xue et al. 2009;
Xue et al. 2010). In addition to providing valuable da-
tasets for investigating probabilistic forecast techniques
for severe weather (e.g., Schwartz et al. 2010), the im-
pact of radar data assimilation (e.g., Xue et al. 2009;
Kain et al. 2010; Xue et al. 2013), and sensitivity of
forecasts to ensemble configuration (e.g., Schwartz et al.
2010), the CAPS storm-scale ensemble forecasts were
also found to substantially outperform North American
Mesoscale Forecast System (NAM) 12-km forecasts
(Schwartz et al. 2009; Kong et al. 2011).

Encouraged by these successes, CAPS produced a
15-member storm-scale ensemble forecast for the 2016
HMT FFaIR experiment based upon the CAPS 2016
HWT SFE ensemble design. This ensemble consisted
of 13 members using the Advanced Research version
of the Weather Research and Forecasting Model (WRF-
ARW; Skamarock et al. 2005) and two Nonhydrostatic
Mesoscale Model on the B-grid (NMMB; Janjić 2005)
members, and was run at a 3-km horizontal grid spacing
over the CONUS for all operational days of the 2016
FFaIR experiment. Several new heavy precipitation
and flash flood forecast diagnostic products were de-
veloped and produced for FFaIR from the CAPS
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SSEF, including probability of exceeding specified
rainfall amounts over intervals of 1, 3, 6, 12, and 24 h,
probability of exceeding flash flood guidance (FFG),
and probability of extreme rainfall based on climato-
logical recurrence intervals. New fields were also added
to support ingredients-based subjective forecasting of
intense rainfall, including precipitable water, 850-hPa
ensemble mean wind, 850–300-hPa mean wind, and in-
tegrated water vapor transport. A similar ensemble was
run for the 2017 HMT FFaIR, but with a single Geo-
physical Fluid Dynamics Laboratory (GFDL) Finite
Volume Cubed-Sphere Dynamical Core (FV3; Lin 2004,
Harris and Lin 2013) member in place of the NMMB
members. Also, a new localized probability-matched
mean (LPM) algorithm, which calculates a probability
matched mean field (Ebert 2001) based on a mosaic of
local patches in order to improve retention of local
convective structures, was developed and implemented
for evaluation during 2017 FFaIR.

This paper provides an overview of the CAPS SSEF
and products during the 2016 and 2017 HMT FFaIR
experiments, as well as verification of these ensemble
forecasts and products. The 2016 and 2017 CAPS HMT
FFaIR SSEF systems and their forecast products are
described in detail in section 2. Objective forecast veri-
fications are presented in section 3. Finally, section 4
contains discussions and a summary, as well as insights
and plans for future development of ensemble forecasts
and rainfall-specific forecast products for HMT FFaIR.

2. Ensemble design and SSEF products

a. Storm-scale forecast ensemble

During the 2016 FFaIR, CAPS produced an ensemble
of 15 convection-allowing model forecasts (13 using
WRF-ARW and 2 using NMMB). ARW and NMMB
members used similar CONUS domains with 3-km
horizontal grid spacing (Fig. 1a). The ARW domain
(the black outline within the red dotted region of Fig. 1a)
comprised 1680 3 1152 horizontal grid points, while the
NMMB domain (the red dotted area in Fig. 1a) com-
prised 1568 3 1120 horizontal grid points. WRF-ARW
forecasts used 51 vertical levels; NMMB members used
50. Version 3.7.1 of WRF-ARW was used for ARW
members. For the ARW and NMMB control members
(arw_cn and nmmb_cn in Table 1), and three other
ARW members without initial condition perturba-
tions (arw_m10, arw_m11, arw_12; Table 1), forecast
initial conditions came from analyses produced by
ARPS 3DVAR (Xue et al. 2003; Gao et al. 2004) with a
cloud analysis system (Hu et al. 2006; Brewster and
Stratman 2016), assimilating full-volume observations

of WSR-88D radar reflectivity and radial velocity,
GOES visible and 11 mm IR, and surface and upper-air
observations. The 0000 UTC operational NAM analysis
was used as the analysis background, and 0000 UTC
NAM forecasts were used to obtain lateral boundary
conditions. Members arw_10, arw_11, and arw_12 (the
physics-perturbation-only members) differ from ARW
control member arw_cn only in microphysics scheme,
and can therefore be used to investigate the relative
performance of four microphysics schemes within WRF.
For other ARW members, the initial conditions were
the control initial condition plus additional perturba-
tions derived from 3-h forecasts of the 2100 UTC cycle
of the operational Short-Range Ensemble Forecast
(SREF; Du et al. 2009), with boundary conditions from
the corresponding SREF members. Member nmmb_m1

FIG. 1. The computational domains for the CAPS HMT FFaIR
storm-scale ensembles in (a) 2016 and (b) 2017. The red dotted area
in (a) is the 2016 NMMB domain, and the red dotted area in (b) is
the 2017 FV3 domain. In both panels, the black boundary within
the red dotted region denotes the domain for ARW member
forecasts, while the gray (inner) boundary within the red dotted
region denotes the verification domain. The outer domain (the full
area shown in each panel, 1860 3 1280 grid points) is used for
providing initial and boundary conditions for the NMMB, but not
for FV3, which was nested within the global FV3 forecast.
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used the 0000 UTC NAM analysis plus SREF pertur-
bation for initial conditions, and did not include assim-
ilation of radar observations (Table 1).

The ARW members included diversity in micro-
physics and planetary boundary layer (PBL) schemes.
Microphysical schemes used included the Milbrandt
and Yau two-moment (MY2; Milbrandt and Yau
2005), Morrison two-moment (Morrison et al. 2009),
Thompson (Thompson et al. 2008), and the Morrison
and Milbrandt Predicted Particle Properties (P3; Morrison
and Milbrandt 2015) schemes. PBL schemes used in-
cluded the Mellor–Yamada–Nakanishi–Niino (MYNN;
Nakanishi and Niino 2009), Mellor–Yamada–Janjić
(MYJ; Janjić 1994), and Yonsei University (YSU; Hong
et al. 2006) schemes. The two NMMB members used
the Ferrier–Aligo (Aligo et al. 2014) microphysics. All
members used the Noah land surface model (Tewari
et al. 2004) and the Rapid Radiative Transfer Model
(RRTMG; Iacono et al. 2008) for longwave and short-
wave radiation. Specific details on the forecasts of 2016
are given in Table 1.

In 2017, the two NMMB members were not run, and
a single FV3 forecast was added. The FV3 dynamic core
was chosen in 2016 by the National Weather Service
to serve as the dynamic core of the Next-Generation
Global Forecasting System (NGGPS; Zhou et al. 2019),
replacing the spectral model of the operational Global
Forecasting System (GFS). It is a goal of NWS to
eventually use the FV3 dynamic core for all regional
operational forecasting. The FV3 dynamic core and
its physics packages were originally developed by
NASA and NOAA GFDL for global climate simulations

(e.g., Harris and Lin 2014; Xiang et al. 2015); their
suitability and performance for QPF, especially at
convection-allowing/resolving resolutions, had been
little examined. Running FV3 in real time for HMT
FFaIR thus provided a unique opportunity to exam-
ine its QPF performance relative to similarly config-
ured WRF ARW forecasts.

The FV3 forecast used a grid with an approximately
3-km horizontal spacing covering the entire CONUS that
was two-way interactively nested within a stretched global
grid with a mean grid spacing of about 13 km; on the face
covering CONUS (outside of the nest), the grid spacing
was approximately 9 km (Fig. 1b). A scale-aware version
of the simplified Arakawa–Schubert (SAS) cumulus pa-
rameterization scheme (Arakawa and Schubert 1974;
Han et al. 2017) was used on the global grid only. A
microphysics scheme widely used for convection-
allowing forecasting, the Thompson (Thompson et al.
2008) microphysics scheme from WRF ARW, was
implemented by CAPS within FV3 and used for the
2017 HMT forecasts. Other physics options included
the Noah land surface model, the MRF (Hong and Pan
1996) PBL scheme, and the RRTMG for longwave and
shortwave radiation. The FV3 was initialized from the
native T1534 GFS analysis at 0000 UTC each day and
did not require lateral boundary condition.

The 2017 WRF ARW ensemble for FFaIR included
only 10 members, dropping the 3 physics-perturbation-
only members of 2016, and used ARW version 3.8.1. The
ARW members included four microphysics and three
PBL schemes as in 2017, although the combinations
were adjusted to have more P3 microphysics members,

TABLE 1. Configurations for the 2016 CAPS HMT FFaIR storm-scale ensemble, including both ARW and NMMB members. NAMa
and NAMf refer to 12-km NAM analysis and forecast, respectively. ARPSa refers to ARPS 3DVAR and cloud analysis. All members use
RRTMG for parameterization of longwave and shortwave radiation and use no cumulus parameterization. The chosen initial condition
perturbation for nmmb_m1 is from the first member of the Hazardous Weather Testbed NMMB ensemble.

Member
Initial

conditions
Boundary
conditions

Radar
data Microphysics

Land surface
model PBL

arw_cn 0000 UTC ARPSa 0000 UTC NAMf Yes Thompson Noah MYJ
arw_m3 arw_cn 1 arw-p1_pert 2100 UTC SREF arw-p1 Yes P3 Noah YSU
arw_m4 arw_cn 1 arw-n1_pert 2100 UTC SREF arw-n1 Yes MY Noah MYNN
arw_m5 arw_cn 1 arw-p2_pert 2100 UTC SREF arw-p2 Yes Morrison Noah MYJ
arw_m6 arw_cn 1 arw-n2_pert 2100 UTC SREF arw-n2 Yes P3 Noah YSU
arw_m7 arw_cn 1 nmmb-p1_pert 2100 UTC SREF nmmb-p1 Yes MY Noah MYNN
arw_m8 arw_cn 1 nmmb-n1_pert 2100 UTC SREF nmmb-n1 Yes Morrison Noah YSU
arw_m9 arw_cn 1 nmmb-p2_pert 2100 UTC SREF nmmb-p2 Yes P3 Noah MYJ
arw_m10 arw_cn 1 nmmb-n2_pert 2100 UTC SREF nmmb-n2 Yes Thompson Noah MYNN
arw_m11 0000 UTC ARPSa 0000 UTC NAMf Yes P3 Noah MYJ
arw_m12 0000 UTC ARPSa 0000 UTC NAMf Yes Morrison Noah MYJ
arw_m13 0000 UTC ARPSa 0000 UTC NAMf Yes MY Noah MYJ
arw_m14 arw_cn 1 arw-n2_pert 2100 UTC SREF arw-n2 Yes Thompson Noah MYJ
nmmb_cn 0000 UTC ARPSa 0000 UTC NAMf Yes Ferrier–Aligo Noah MYJ
nmmb_m1 0000 UTC NAMa 1 arw-p3_pert 2100 UTC SREF arw-p3 No Ferrier–Aligo Noah MYJ
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since the P3 scheme was newer and required more
evaluation. Details on the member configurations are
given in Table 2. The 2017 WRF ARW members again
used 51 vertical levels; FV3 members used 50.

During 2016 and 2017, CAPS forecasts were run daily
from 0000 UTC for the full duration of FFaIR: in 2016
on weekdays during 17 June–1 July 2016 and 11–22 July
2016, and in 2017 on weekdays during 19–30 June 2017
and 10–21 July 2017. The break between the two periods
each year was to exclude the week containing the U.S.
Independence Day holiday. ARW and NMMB forecasts
were run to 60 h, and FV3 forecasts were run to 120 h.
Forecast execution began shortly before 0200 UTC and
required approximately 6 h of wall clock time, followed
by data transfer and postprocessing. A standard set
of two-dimensional (2D) forecast products, including
specialized rainfall products developed specifically for
FFaIR (described below in section 2b), was transferred
to HMT in real time for use by FFaIR participants.

b. Forecast products

Because of bandwidth limitations for data transfer
and the extremely large size of the full three-dimensional
output of the CAPS SSEF, forecasts were provided to
FFaIR as a suite of 2D ensemble products generated
from the full 3D hourly output, including ensemble
means of standard meteorological fields (e.g., zonal
and meridional winds at 850, 500, and 200 hPa, sea
level pressure, predicted composite radar reflectivity)
and a set of specialized 2D probabilistic and ensem-
ble products focused on extreme rainfall and flooding.
Probabilistic products included probability of exceeding
specific rainfall thresholds (12.5, 25, and 50 mm over
1- and 3-h periods; and 25, 50, and 75 mm over 6-, 12-,
and 24-h periods) and probability of exceeding FFG
(Schmidt et al. 2007, Sweeney and Baumgardner 1999)
over 6-, 12-, and 24-h periods. The 2D fields for probability

of exceedance of precipitation amounts corresponding
to recurrence intervals (RI) of 5, 10, 25, 50, and 100 years
were also calculated over each of several intervals (3-, 6-,
12-, and 24-h periods).

FFG and RI products are of particular interest for
hydrological forecast applications as they take into ac-
count local hydrological conditions—RI thresholds vary
spatially based on local climatology, and FFG both
varies locally and, in many areas, takes into account
recent precipitation and current hydrological condi-
tions. FFG and RI data provided by WPC are in-
terpolated to the model grid for production of and
verification of these forecast products. FFG is produced
by individual NWS River Forecast Centers (RFCs) in
accordance with each RFC domain. WPC compiles the
guidance from each RFC to create a CONUS 5-km
resolution mosaic FFG grid. The CONUS mosaics
are time stamped every 6 h (0000, 0600, 1200, and
1800 UTC), but are updated hourly to account for
the latest guidance issued by RFCs. RI data are
frequency estimates generated from a NOAA Atlas-14
climatology of USGS rain gauges (Herman and
Schumacher 2016).

Probability of exceedance products were generated using
a circular neighborhood algorithm considering data from
within a radius of 25km when calculating contingency table
statistics, and the resulting field was smoothed using a
Gaussian function defined by

G(x, y) 5
1

2ps2 exp
�
2(x2 1 y2)

2s2

�
, (1)

where s is the standard deviation (set to 30 km). The
specific neighborhood algorithm used is a neighborhood
maximum ensemble probability (NMEP; e.g., Schwartz
and Sobash 2017) method, which sets the probability of
event occurrence at a point to 1.0 if the event occurred

TABLE 2. Configurations for ARW and FV3 members of the 2017 CAPS HMT FFaIR storm-scale ensemble. All members use RRTMG
for parameterization of longwave and shortwave radiation. All members use no cumulus parameterization, except FV3, which uses scale-
aware SAS on the global domain only.

Member
Initial

conditions
Boundary
conditions

Radar
data Microphysics

Land surface
model PBL

arw_cn 0000 UTC ARPSa 0000 UTC NAMf Yes Thompson Noah MYJ
arw_m2 arw_cn 1 arw-p1_pert 2100 UTC SREF arw-p1 Yes P3 Noah YSU
arw_m3 arw_cn 1 arw-n1_pert 2100 UTC SREF arw-n1 Yes MY Noah MYNN
arw_m4 arw_cn 1 arw-p2_pert 2100 UTC SREF arw-p2 Yes Morrison Noah MYJ
arw_m5 arw_cn 1 arw-n2_pert 2100 UTC SREF arw-n2 Yes P3 Noah MYNN
arw_m6 arw_cn 1 nmmb-p1_pert 2100 UTC SREF nmmb-p1 Yes MY Noah MYJ
arw_m7 arw_cn 1 nmmb-n1_pert 2100 UTC SREF nmmb-n1 Yes Morrison Noah YSU
arw_m8 arw_cn 1 nmmb-p2_pert 2100 UTC SREF nmmb-p2 Yes P3 Noah MYJ
arw_m9 arw_cn 1 nmmb-n2_pert 2100 UTC SREF nmmb-n2 Yes Thompson Noah MYNN
arw_m10 arw_cn 1 arw-n3_pert 2100 UTC SREF arw-n3 Yes Thompson Noah MYJ
fv3 0000 UTC GFS — No Thompson Noah MRF
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anywhere in that point’s neighborhood, and sets the prob-
ability to 0.0 otherwise. The neighborhood radius of 25km
and standard deviation of 30km were chosen based on
requests by HMT to match settings used in other existing
experimental products. For these probabilistic prod-
ucts, only the subset of WRF ARW members using
SREF boundary conditions were used; NMMB and
FV3 members were not included.

For the 2017 HMT FFaIR, a patchwise LPM en-
semble mean algorithm was developed and used to
produce QPF products. The LPM is based upon the
probability-matched (PM) mean (Ebert 2001), which
produces a forecast field with the spatial structure
of the ensemble mean, but with values sampled from
the full distribution of all ensemble members. The PM
mean is often more skillful than a simple ensemble
mean (e.g., Clark et al. 2009; Xue et al. 2011; Schwartz
et al. 2014), but exhibits a loss of small-scale structure
compared to individual ensemble members (Surcel
et al. 2014). Furthermore, for a large domain, the PM
mean at any given point may combine precipitation
information from very different mesoscale environ-
ments and/or geographic regions (Clark 2017), such
as coastal sea-breeze convection and stratiform pre-
cipitation over the northern plains.

To efficiently produce an LPM product, we apply
the PM mean algorithm over a series of local patches.
The domain is divided into a set of rectangular local
patches, each centered within a larger, rectangular
LPM domain. The patches do not overlap, but the
domains of adjacent or nearby patches do. A con-
ceptual illustration of this setup is shown in Fig. 2.
After the LPM mean is calculated for all points on
each of the local patches, the patches are stitched
together to form a single field for the full CONUS do-
main, and the Gaussian smoother of Eq. (1) is applied to
minimize discontinuities along patch boundaries, using
s 5 3 km (1 grid point).

Based on prior experimentation, the LPM imple-
mentation for the 2017 FFaIR used local patches with
dimensions of 5 3 5 grid points, LPM domains of 60 3 60
grid points, and s 5 3 km for the Gaussian smoother.
This configuration was found to provide a good balance
between forecast quality and computational expense,
though we note that the choices of these settings do
have a substantial impact on the resulting LPM product.
The sensitivity of the LPM to configuration settings,
including patch size, LPM domain size, and smoothing
parameters, as well as comparison between the perfor-
mance of the patchwise LPM used in this study with the
more computationally expensive point-by-point LPM
algorithm of Clark (2017), will be documented in a
separate paper.

3. Veri�cation of precipitation forecasts

In this section, we present verification of precipitation
forecasts of the 2016 and 2017 CAPS SSEFs, for the full
HMT FFaIR experiment periods. All verifications are
performed over the verification domain, indicated by
the inner gray boundary in Fig. 1. The biases and equi-
table threat scores [ETS, also known as the Gilbert skill
score (GSS); Mason 2003] will be examined, followed by
scale-dependent verifications using fractions skill scores
(Roberts and Lean 2008) and examinations of the pre-
cipitation power spectra (Denis et al. 2002; Surcel et al.
2014). Forecasts of 3-h rainfall exceeding 0.01 and 0.50
in. (0.025 and 12.7 mm, respectively), as well as forecasts
of rainfall exceeding flash flood guidance and rainfall
exceeding 10-yr recurrence intervals will also be con-
sidered. To examine the statistical significance of dif-
ferences in forecast bias and ETS performance, a
bootstrap resampling method is used to generate 10 000
realizations. To perform the bootstrap, daily data are
aggregated for all available forecast days for a given
member or subensemble. From this pool of data, daily
data are randomly sampled with replacement to gener-
ate a resampled set of daily data containing the same
number of individual forecasts and days as the original
dataset. This process is repeated 10 000 times to produce
the full set of 10 000 realizations. This large pool of

FIG. 2. Conceptual illustration of the patches used to generate
localized probability matched mean products. Highlighted are two
patches (the darker magenta and blue shaded regions) along with
their associated calculation areas LPM domains (the lighter ma-
genta and blue shaded regions surrounding the patches). The gray
lines indicate the edges of model grid cells.
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resampled forecasts allows us to examine the statistical
significance of differences among ensemble members or
subensembles using, for example, the 5th–95th percen-
tile range of the resampled forecasts (two forecasts can
be considered to differ significantly when the value of a
verification metric (e.g., bias, ETS) for one member falls
outside the 5th–95th percentile range of that metric in the
other member). For probabilistic forecasts, area under the
ROC curve (Mason 1982) and reliability diagrams will be
used for objective verification.

a. Grid-based verification of 2016 and 2017
precipitation forecasts

Rainfall accumulations from NOAA multiradar/
multisensor (MRMS; Zhang et al. 2016) precipitation
estimates are used to verify precipitation accumulation
forecasts. For use in verification, MRMS data were re-
gridded from their native grid with 1-km horizontal grid
spacing to the HMT forecast grid (which uses 3-km
horizontal grid spacing) via bilinear interpolation. No
additional quality control or filtering was applied to
MRMS data after regridding, and only days for which

full MRMS data were available were used for verifica-
tion. Verification of forecasts against MRMS data are
performed on the model grid over a verification sub-
domain encompassing most of the CONUS [indicated
by the gray (innermost) box in Fig. 1a for 2016 and
Fig. 1b for 2017]. Data from all days for which complete
datasets are available for both MRMS precipitation and
the CAPS SSEF are used for verification.

Precipitation frequency biases for 2016 and 2017 in-
dividual member forecasts and for simple, PM, and LPM
means, are plotted in Fig. 3 for areas with 3-h pre-
cipitation accumulation exceeding 0.01 in. (0.254 mm;
Figs. 3a,c) and 0.50 in. (12.7 mm; Figs. 3b,d). When
considering areas of precipitation exceeding 0.01 in.
(Figs. 3a,c), the simple mean has the greatest bias (1.5–2.5),
compared to bias values of around 0.5–1.5 for indi-
vidual members and the PM and LPM means. The
large biases of the simple mean result from the pres-
ence of large areas of light precipitation created by the
smoothing effect of the mean. In general, bias is higher
during afternoon and evening hours, around 18–24
and 42–48 h of forecast time (Figs. 3a,c), for the ARW

FIG. 3. Frequency bias of 3-h accumulated precipitation, verified against 3-h accumulations calculated from
observed hourly MRMS precipitation data, for all operational days of the CAPS (a),(b) 2016 and (c),(d) 2017 HMT
ensemble forecasts for regions with precipitation (left) exceeding 0.01 in. (0.254 mm) and (right) exceeding 0.50 in.
(12.7 mm). The horizontal dash-dotted line in each panel indicates a bias value of 1.0 (unbiased). Biases are plotted
at 3-h intervals between 3 and 60 h of forecast time.
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members, consistent with the peak in convective ac-
tivity in the late afternoon. The NMMB members of
the 2016 ensemble (Fig. 3a) and the FV3 member of
the 2017 ensemble (Fig. 3c) exhibit low biases initially
due to lack of radar data assimilation, but exhibit
biases at the 0.01-in. threshold similar to those of
ARW members by 6–9 h of forecast time. Bias at the
0.01-in. threshold is lower in 2017 (Fig. 3c) than in
2016 (Fig. 3a) by approximately 0.2–0.5 for both in-
dividual ensemble members and the ensemble mean;
given that there were no major changes to the dynamic
cores of the models used or to the implementations
of PBL or microphysical schemes within the ARW
model between the running of the 2016 and 2017
CAPS SSEF forecasts, we speculate that the lower
overall bias in 2017 may result in part from differences
in large-scale flow on seasonal or subseasonal time
scales and differences in the overall prevalence of
convection between the 2016 and 2017 HMT opera-
tional periods.

Bias in areas of heavy precipitation (3-h accumula-
tions exceeding 0.50 in.; Figs. 3b,d) is similar in magni-
tude for individual ARW ensemble members, with
values ranging from 1.3–2.3 before 9 h and 0.5–1.3
thereafter, with similar behavior in 2016 and 2017
(Figs. 3b,d). The larger high biases in the first 9 h are
attributable to assimilation of radar reflectivity data
using cloud analysis, which does improve ETS scores
(see Fig. 7); nmmb_m1 and FV3, neither of which as-
similate radar data, exhibit lower biases than most or all
ARW members during the initial hours at the 0.50-in.
threshold (Figs. 3b,d).

In 2016, three ARW ensemble members—arw_cn, arw_
m11, arw_m12, and arw_m13 in Table 1—differed only in
microphysical scheme; together with the control member
arw_cn, these comprise a physics-perturbation-only sub-
ensemble that can be used to investigate the impact of the
microphysical scheme on forecast performance. Among
this physics-perturbation-only subensemble (Fig. 4a), the
Thompson, MY2, and P3 members exhibit good perfor-
mance in terms of bias in accumulated precipitation at the
0.01-in. threshold, with bias values ranging from 1.0 to 1.2
throughout the forecast period. The Morrison member
exhibits higher biases at the 0.01-in. threshold than to the
other three members (Fig. 4a); at many times these dif-
ferences are statistically significant, as the bias of the
Morrison member falls outside of the 5th–95th percentile
range of the other (P3, Thompson, MY2) members (based
on the bootstrap resampling utilized here). At the 0.50-in.
threshold (Fig. 4b), during the first 9 h, the control
(Thompson) member (arw_cn) has lower biases than most
other members, possibly because the unperturbed initial
conditions, produced by the cloud analysis and used by all

members of the physics-perturbation-only subensemble,
are more consistent with the microphysical scheme used
in the control member than in the other members. The
Thompson microphysical scheme used by the control
member is double moment for rain and cloud ice and
single moment for all other hydrometeor species,
which is more consistent with the forward operator of
the cloud analysis system (which, as run for this ex-
periment, initialized microphysics consistent with the
single moment Lin scheme). The other members of
the physics-perturbation-only subensemble use fully
double-moment schemes (MY2, Morrison) or more
complex schemes (P3). As all members of the physics-
perturbation-only subensemble share the control ini-
tial conditions, the substantially higher biases of the

FIG. 4. Frequency bias of 3-h accumulated precipitation, verified
against 3-h accumulations calculated from observed hourly MRMS
precipitation data for individual members of the ARW physics-
only subensemble from 2016 using the Thompson (red), P3 (blue),
Morrison (black), and Milbrandt and Yau two-moment (purple)
microphysics schemes, for precipitation exceeding (a) 0.01 in.
(0.25 mm) and (b) 0.50 in. (12.7 mm). The light colored shading
indicates the 5th–95th percentile range for each subensemble based
upon bootstrap resampling of cases using 10 000 samples. The
horizontal dash-dotted line in each panel indicates a bias value of
1.0 (unbiased).
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Morrison, MY2, and P3 members during the initial 9-h
period (Fig. 4b) suggests a strong sensitivity to the
choice of microphysical scheme in the initial hours
after the cloud analysis.

Sensitivity of forecast bias to the choice of micro-
physical and PBL schemes can also be considered by
dividing the 2016 and 2017 CAPS SSEF forecasts into
subensembles that share a common microphysical or
PBL scheme. Bias is plotted for subensembles of
CAPS SSEF members sharing a common microphysi-
cal scheme in Fig. 5, and for subensembles of members
sharing a common PBL scheme in Fig. 6. The NMMB
members of the 2016 CAPS SSEF used the MYNN PBL
scheme, and the FV3 member of the 2017 SSEF used the
Thompson microphysics scheme, in both of these cases
sharing a scheme with some of the ARW members run
that year. Despite this, the FV3 and NMMB members
are considered as separate subensembles to account for
difference in the model core (e.g., ARW versus FV3)

and differences in implementation of the schemes be-
tween the models.

Among subensembles of members sharing a common
microphysical scheme (Fig. 5), bias at the 0.01-in.
threshold in 2016 (Fig. 5a) is highest (among the ARW
subensembles) for members using the Thompson mi-
crophysical scheme at all hours, and except between
approximately 30 and 39 h of forecast time, these dif-
ferences are statistically significant in the 5th–95th per-
centile range calculated using bootstrap resampling.
During later forecast hours, bias is closer to 1.0 in
the Thompson subensemble than in the P3, MY2, and
Morrison subensembles (differences between these
other three ARW subensembles were not statistically
significant). In 2017 (Fig. 5c), when bias at the 0.01-in.
threshold was lower overall, the Thompson sub-
ensemble had bias similar to the Morrison and P3
subensembles, while the MY2 subensemble had the
most substantial low bias among ARW subensembles

FIG. 5. Frequency bias of 3-h accumulated precipitation, verified against 3-h accumulations calculated from
observed hourly MRMS precipitation data, for all operational days of the CAPS (a),(b) 2016 and (c),(d) 2017 HMT
ensemble forecasts for regions with precipitation (left) exceeding 0.01 in. (0.25 mm) and (right) exceeding 0.50 in.
(12.7 mm). Forecasts are grouped as subensembles containing members with the same microphysical parameter-
ization. The light colored shading indicates the 5th–95th percentile range for each subensemble based upon
bootstrap resampling of subensemble members and cases using 10 000 samples. The horizontal dash-dotted line in
each panel indicates a bias value of 1.0 (unbiased). Biases are plotted at 3-h intervals between 3 and 60 h of
forecast time.
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(this difference was statistically significant between 3
and 57 h of forecast time). At the 0.50-in. threshold,
the Morrison subensemble exhibits the largest nega-
tive bias during 2016 (Fig. 5b)—this difference is
significant for some but not all forecast hours—and
the P3 subensemble exhibits the smallest high bias in
2017 (even exhibiting a low bias at later forecast
hours), though the difference is not significant at most
forecast hours.

The bias behavior of the subensemble composed of
the two NMMB members, which use the Ferrier-Aligo
microphysics scheme differs substantially from the ARW
subensembles (Figs. 5a,b), showing a somewhat different
diurnal cycle at the 0.01-in. threshold (Fig. 5a) and
much higher bias overall at the 0.50-in. threshold
(Fig. 5b). The 5th–95th percentile range, determined
using bootstrap resampling, is also much larger for
the NMMB subensemble than for any of the ARW
subensembles—a result of large day-to-day variability
in the biases of the NMMB members (though both
members tended to overpredict the prevalence of
heavy precipitation, as evidenced by the biases of this
subensemble approaching 2.0 at the 0.50-in. thresh-
old). The ARW members and the FV3 member of the

2017 SSEF (Figs. 5c,d) do not exhibit such large day-
to-day variations in bias.

As noted earlier, differences in overall bias behavior
between the 2016 and 2017 CAPS SSEFs may result
in part from seasonal differences in large-scale flow
and differences in the overall prevalence of convection
during these two years, as well as the relative frequency
of different modes of convection. The lack of a consis-
tent pattern in bias among the ARW microphysical
subensembles between 2016 and 2017 suggests that the
sensitivity to the microphysical scheme is also affected
by the factors such as those mentioned above; though
examining data from a larger set of years (including
future CAPS SSEFs) would likely be necessary to fur-
ther clarify such impacts.

Among subensembles of members sharing a common
PBL scheme (Fig. 6), bias in the 2016 ensemble is largest
in magnitude among ARW members for those using
the MYJ scheme at most forecast hours (Figs. 6a,b);
this difference is statistically significant from other
ARW subensembles after 12 h of forecast time at the
0.01-in. threshold (Fig. 6a). Later in the forecast period
(24–60 h), the higher bias in MYJ members results
in superior forecast performance, as the YSU and MYNN

FIG. 6. As in Fig. 5, but for subensembles of members sharing a common PBL parameterization scheme rather than
a common microphysical scheme.
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subensembles exhibit negative biases at both the 0.01-
and 0.50-in. thresholds (Figs. 6a,b). In the 2017 ensem-
ble, the YSU subensemble exhibits a significantly larger
low bias than the MYJ and MYNN subensembles during
the afternoon and evening hours (18–30 and 42–54 h of
forecast time) at both the 0.01- (Fig. 6c) and 0.50-in.
(Fig. 6d) thresholds.

While there is not a clear pattern in bias for sub-
ensembles sharing a common microphysical scheme, in
both 2016 and 2017, the subensemble of ARW members
with YSU PBL scheme consistently exhibits the most
substantial low bias (among ARW subensembles) at
both 0.01- and 0.50-in. thresholds (Fig. 6). Also of note,
in both years the MYJ subensemble exhibits either the
least or close to the least bias (i.e., remains closest to a
bias of 1.0).

In Fig. 7, ETS is plotted for 2016 and 2017 SSEF
forecasts of precipitation exceeding 0.01 in. (Figs. 7a,c)
and 0.50 in. (Figs. 7b,d). ETS can range from 20.33 to
1.0, with higher scores indicating more skillful forecasts.
Except for the two ensemble members that do not as-
similate radar observations (nmmb_m1 in 2016 and FV3
in 2017), ETS generally decreases with increasing fore-
cast time. This decrease is most rapid during the initial

3–6 h of forecast, as the immediate impact of radar data
assimilation decreases. In the two members that do not
assimilate radar observations, the ETS is initially much
lower than for the radar-assimilating members due to
the necessary precipitation spinup, but increases during
the first 12 h of the forecast, after which performance
is generally indistinguishable from radar-assimilating
members. These behaviors of radar data impact are simi-
lar to those documented for earlier CAPS SSEF forecasts
performed during prior HWT SFEs (e.g., Kain et al. 2010,
Xue et al. 2013).

At the 0.01-in. threshold, ETS declines from between
0.30 and 0.35 at 3 h of forecast time to between 0.10 and
0.20 by 60 h of forecast time; the range and evolution
of ETS scores are similar between the 2016 (Fig. 7a)
and 2017 (Fig. 7c) ensembles. In 2016, almost all ARW
members substantially outperform the NMMB mem-
bers throughout the forecast period (Fig. 7a). In 2017,
the FV3 member performs slightly better than most
ARW members at the 0.01-in. threshold after the first 9 h
(Fig. 7c). For this low threshold, the simple ensemble
mean has the highest ETS, especially in 2017, as a re-
sult of widespread light precipitation in the simple
mean. The PM mean slightly outperforms the best

FIG. 7. As in Fig. 3, but ETS of 3-h accumulated precipitation verified against 3-h accumulated precipitation from
MRMS data.
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ARW members, and the LPM mean outperforms all
ARW members except the control member.

At the 0.50-in. threshold, ETS scores are lower
throughout the forecast period, falling from between
0.1 and 0.2 at the start of the forecast to generally
below 0.1 by 60 h. As at the 0.01-in. threshold, ARW
members generally outperform NMMB members in
2016 (Fig. 7b). The 2017 FV3 member performs simi-
larly or slightly better than the ARW members (Fig. 7d).
At the 0.50-in. threshold, the PM mean outperforms the
simple mean after the first 12 h, and outperforms the
LPM mean throughout the forecast period (Figs. 7b,d).
Clark (2017) found that skill scores for PM mean fore-
casts using a large domain can be inflated as a result of
redistribution of precipitation; this is one possible rea-
son for the superior performance of the PM compared
to the LPM in terms of ETS. The LPM algorithm is
designed to retain local precipitation structures and
magnitude distributions, and thus would not exhibit the
type of skill score inflation noted for the PM mean by
Clark (2017).

ETS is considered for subensembles of the 2016 and
2017 sharing a common microphysical scheme and the
statistical significance of the differences is evaluated

using bootstrapping in Fig. 8. Among the ARW sub-
ensembles (divided into subensembles of members using
the Morrison, P3, MY2, and Thompson microphysical
schemes), there are some differences in ETS, but these
differences are not generally statistically significant,
either in 2016 or 2017 (Fig. 8). As with the bias (Fig. 4),
there is not a consistent pattern in ETS among mi-
crophysical subensembles between 2016 and 2017; in
2016 the Thompson and MY2 subensembles exhibit
slightly better ETS scores, particularly later in the
forecast period (Figs. 8a,b), while in 2017 the MY2
members exhibit the lowest ETS score overall and
the Thompson members are still at or near the top,
particularly at the 0.01-in. threshold (Fig. 8c), though
the differences are not statistically significant at most
forecast hours.

For subensembles of members sharing a common
PBL scheme, the MYJ subensemble consistently ex-
hibits the highest ETS among subensembles of ARW
members in both 2016 and 2017 (Fig. 9), particu-
larly at the 0.01-in. threshold (Figs. 9a,c), although
this difference is marginally significant, at best. The
MYNN subensemble consistently exhibits the lowest
ETS. The consistency in ETS behavior between 2016

FIG. 8. As in Fig. 5, but for ETS of 3-h accumulated precipitation verified against 3-h accumulated precipitation
from MRMS data.
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and 2017 for subensembles sharing a common PBL
scheme (and lack of similar consistency for sub-
ensembles sharing a common microphysical scheme),
similar to the pattern noted in precipitation bias
(Figs. 4 and 5), further suggests that sensitivity of
model performance to PBL scheme may be more
consistent year-to-year than sensitivity of model
performance to microphysical scheme, although ad-
ditional years of data would be needed to confirm this
tendency.

From Figs. 8 and 9 we can also note that the rela-
tively poor performance of the NMMB members of
the 2016 ensemble in terms of ETS is statistically sig-
nificant at most hours at the 0.01-in. threshold (Figs. 8a
and 9a), while the FV3 member of the 2017 ensemble
exhibits significantly better ETS performance at the
0.01-in. threshold at many forecast hours (Figs. 8c
and 9c). The better performance of the FV3 member
is particularly pronounced at the 0.01-in. threshold
during early morning hours (12–21 and 36–45 h of
forecast time), suggesting that the FV3 member better
handles the spatial distribution of light precipitation
during the diurnal convective minimum. During these
forecast hours, the FV3 member also exhibits a bias

closer to 1.0 compared to the ARW subensembles
(Figs. 3c and 5c).

b. Scale-dependent evaluations of precipitation
forecast skill

The skill scores presented in the previous subsection
are point based, and thus do not account for any posi-
tion/displacement errors, nor provide information about
the scales at which forecasts are skillful. The fractions
skill score (FSS; Roberts and Lean 2008), however,
provides information on both. The FSSs for the CAPS
2017 HMT forecasts are calculated for 3-h accumulated
precipitation exceeding 0.01 (Figs. 10a,c) and 0.50 in.
(Figs. 10b,d), for forecasts valid at 24 (Figs. 10a,b) and
36 h (Figs. 10c,d), over a range of spatial scales (neigh-
borhood radii) from 3 to 200 km. FSS can vary from 0 to
1, with higher scores indicating greater correspondence
between the forecast and observations (i.e., higher skill).
The minimum FSS considered to indicate useful skill is
dependent on the fraction of the domain for which the
forecast event is observed; this threshold is indicated by
the horizontal dotted lines in the panels of Fig. 10.

For 24-h forecasts, the FSS suggests individual mem-
bers and ensemble mean products exhibit useful skill for

FIG. 9. As in Fig. 6, but for ETS of 3-h accumulated precipitation verified against 3-h accumulated precipitation
from MRMS data.
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scales larger than approximately 40km at the 0.01-in.
threshold (Fig. 10a) and 70km at the 0.50-in. threshold
(Fig. 10b). The minimum skillful scale is slightly higher
(worse) for 36-h forecasts: as high as 120 km at the 0.01-in.
threshold (Fig. 10c) and 200 km at the 0.50-in. threshold
for some members (Fig. 10d). The minimum skillful scale
is generally lower (better) for ensemble mean products
than for most or all individual members at both thresh-
olds, particularly for 36-h forecasts. At the 0.01-in.
threshold, FV3 outperforms most or all ARW members
for scales less than approximately 300 km (Figs. 10a,c),
while at the 0.50-in. threshold it outperforms most ARW
members at scales less than about 150 km (Figs. 10b,d).

Among the ensemble mean products, the simple mean
has the smallest minimum skillful scale at the 0.50-in.
threshold, but is substantially outperformed by the PM
and LPM means at the 0.01-in. threshold, particularly at
larger scales (Fig. 10). The poor performance of the
simple ensemble mean at this low threshold is largely
due to the extremely high bias in the coverage of 0.01-in.

precipitation (see Fig. 3c) resulting from smoothing of
the precipitation field when averaging members with
spatially disparate precipitation. This smoothing leads
to overly large precipitation fractions, causing a direct
negative impact on the FSS. At the 0.50-in. threshold,
the simple ensemble mean outperforms the PM and
LPM at all scales in the 36-h forecast (Fig. 10d). The
LPM generally outperforms the PM and simple mean at
scales larger than around 20 km at the 0.01-in. threshold
(Figs. 10a,c), and outperforms them at all scales in the
24-h forecast at the 0.50-in. threshold (Fig. 10b). The
generally good performance of the LPM compared to
the PM suggests that the localization used by the LPM
algorithm is succeeding in improving the spatial struc-
ture of this forecast product (in terms of matching the
spatial structure of precipitation in the observations).

When the microphysical scheme is considered (Fig. 11),
two notable features become apparent. First, FV3,
which uses an implementation of the Thompson mi-
crophysics scheme, generally has among the highest

FIG. 10. Fractions skill score of 3-h accumulated precipitation forecasts for scales up to 200 km, averaged over all
days for which the CAPS SSEF was run during the 2017 HMT FFaIR, for 3-h accumulated precipitation forecasts
valid at (a),(b) 24 and (c),(d) 36 h of forecast time, for accumulated precipitation exceeding (left) 0.01 and (right)
0.50 in. Shown are individual ARW members (gray), the single FV3 member (green), and three different variants of
the ensemble mean (varying shades of red) including the simple ensemble mean, the probability-matched mean
(PM), and the localized probability matched mean (LPM).
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FSS of all the members at the 0.01-in. threshold for all
scales less than 200 km (Figs. 11a,c). The good per-
formance of FV3 at small scales will be discussed in
more detail below. Second, among the ARW mem-
bers, those using MY2 generally perform relatively
poorly in terms of FSS, having among the largest
minimum skillful scale of all members at both the
0.01- and 0.50-in. thresholds in 24- and 36-h forecasts
(Fig. 11).

Another way of examining the scale-dependent prop-
erties of forecasts is examination of variance spectra.
Spectra of forecast fields contain information on whether
the model is correctly simulating and distributing the
variance (colloquially ‘‘power’’) of a forecast field
across its resolvable scales (e.g., Skamarock 2004;
Surcel et al. 2014). We consider spectra of 3-h accu-
mulated precipitation (Fig. 12) over the verification
domain (see Fig. 13), calculated using a 2D discrete
cosine transform method (Denis et al. 2002; Surcel
et al. 2014) and verified against observed 3-h MRMS
accumulated precipitation (Fig. 12). Spectra are cal-
culated for accumulated 3-h precipitation between
0900 and 01200 UTC (12 h of forecast time; Fig. 12a)

and between 2100 and 0000 UTC (24 h of forecast
time; Fig. 12b), averaged over all days of the 2017
HMT FFaIR period.

The total power present in the observed MRMS ac-
cumulated precipitation field is greater, particularly at
small scales, at 0000 UTC (Fig. 12b) than at 1200 UTC
(Fig. 12a); this is expected, as the 0000 UTC forecasts
correspond to late afternoon, when convective storms
are often more abundant over the CONUS region, while
the 1200 UTC forecasts correspond to early morning
hours when convection is less prevalent. In general,
ARW members exhibit slightly higher power in the
precipitation spectrum than MRMS observations for
both 0000 and 1200 UTC forecasts at scales larger than
20 km (Fig. 12). At scales less than 20 km, power quickly
drops off both in the ARW members and in the en-
semble mean products, as the model fails to capture
power in the precipitation field at the smallest scales (at
wavelengths less than about 6Dx). Interestingly, FV3
does not exhibit as much drop-off in power at the small
scales; compared to MRMS, the power starts to drop off
at about 10-km wavelength that is close to 4Dx (Fig. 12).
While this could be in part due to the tendency for this

FIG. 11. As in Fig. 10, but for individual WRF-ARW members and the FV3 member of the 2017 ensemble, color-
coded by microphysical scheme used.

JUNE 2019 S N O O K E T A L . 795

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/3/781/4866896/w

af-d-18-0155_1.pdf by guest on 29 Septem
ber 2020



implementation of FV3 to produce relatively small
convective cells (Potvin et al. 2018), it also suggests that
FV3 better replicates the types of structures seen at
small scales in the precipitation field compared to ARW.
The difference in the behavior of the FV3 member and
the ARW members is at least partially due to the pres-
ence of relatively aggressive damping and diffusion used
in the ARW members [set to be consistent with those
used in the operational High-Resolution Rapid Refresh
(HRRR) model, made necessary by its relatively small
vertical spacings near the tropopause]. FV3 also exhibits
slightly lower overall power than both the ARW mem-
bers and the MRMS observations in the 2100–0000 UTC
forecasts, again resulting in part from the low bias in
heavy convective precipitation in the FV3 forecasts (see
Fig. 3d).

Among the ensemble mean products, the simple en-
semble mean exhibits a very substantial low bias in
terms of power in the accumulated precipitation field at
scales up to around 300 km in the 12-h forecast (Fig. 12a)
and 500 km in the 24-h forecast (Fig. 12b). This result is
consistent with Surcel et al. (2014), who found that
spatial smoothing resulted in a loss of power in the en-
semble mean for small scales, and furthermore at the
largest scale at which the ensemble mean lost power due
to spatial averaging that increased with increasing
forecast lead time. In contrast, the PM and LPM means
exhibit similar accumulated precipitation spectra to
MRMS for scales greater than 20 km. Below 20 km, the
PM mean spectra drop off slightly slower than those of

the individual ARW members, presumably because
the largest values among all ensemble members are
concentrated near common grid points the value of the
ensemble mean is largest, creating extra power near
the grid scale. For the LPM mean, the drop-off rate is
somewhat faster than that of individual ARW mem-
bers, reaching similar levels to the simple mean at the
smallest scales, suggesting that the recovery of small-
scale structures is limited by the use of local patches,
and the smoothing effect of the ensemble mean at the
smallest scales remains.

The PM, however, exhibits excess power in the pre-
cipitation spectrum at large scales (.200km), particularly
during the convectively active evening hours (Fig. 12b).
This excess can result from the reassignment of the values
of the PM based upon the distribution of values in the
individual ensemble members (Ebert 2001), which tend
to overpredict heavy precipitation, while retaining the
smoothed spatial structure of the ensemble mean. The
LPM, in contrast, does not exhibit excess power at large
scales, but produces power that is slightly below that
of MRMS (Fig. 12b). This could be due to the use of
neighborhood regions in the LPM calculations, resulting
in less power on scales larger than that of the LPM do-
main size (180 km 3 180 km). These results suggest that
the LPM mean generally preserves the power spectra of
the individual ensemble members, while overcoming the
significant deficiencies of the simple ensemble mean.

Differences in spatial structure among the ensemble
mean forecast products can also be seen directly in 2D

FIG. 12. Normalized variance spectra, averaged over all days for which the CAPS SSEF was run during the 2017
HMT FFaIR, for (a) 12-h forecasts of 3-h precipitation accumulation between 0900 and 01200 UTC and (b) 24-h
forecasts of 3-h precipitation accumulation between 2100 and 0000 UTC. Individual ensemble members are plotted
in gray (ARW) and green (FV3), while ensemble mean products (including PM and LPM) are plotted in red.
Observed 3-h precipitation accumulation from MRMS is plotted in black. For reference, blue vertical lines are
plotted at wavelengths equivalent to 4 (lighter blue) and 6 (darker blue) times the grid spacing.
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spatial QPF fields. In Fig. 13, 12-h forecasts of 3-h ac-
cumulated precipitation valid at 1200 UTC 23 June 2017
are plotted for the simple (Fig. 13a), PM (Fig. 13b), and
LPM (Fig. 13c) means, along with MRMS estimated
precipitation accumulation (Fig. 13d). In general, all of
the ensemble mean products (Figs. 13a–c) accurately
capture the large-scale precipitation features present in
the MRMS observations (Fig. 13d), including heavy
rainfall associated with thunderstorms over eastern
Arkansas and northern Louisiana, and a broad swath of
more moderate precipitation extending from northern
Missouri across the Great Lakes. The ensemble mean
products do, however, exhibit notable differences in
smaller-scale features and in the intensity of pre-
cipitation. In the MRMS observations (Fig. 13d), for
example, heavy rainfall over Arkansas and Louisiana
exhibits local maxima following individual convective
storm tracks with maximum 3-h accumulated rainfall
values of over 150 mm embedded in a larger region of
20–30-mm accumulations. In the simple mean (Fig. 13a),
some smaller-scale features are evident within the pre-
cipitation maximum over Arkansas and Louisiana,
though they manifest as 40–60-mm accumulations in
a larger region of 25–35-mm accumulations—small-
scale, local precipitation gradients are much less pro-
nounced than in the observations (Fig. 13d). The PM
mean (Fig. 13b) and LPM mean (Fig. 13c) exhibit

much stronger local maxima, with rainfall accumula-
tions exceeding 100 mm, which more closely match the
maxima of the observed rainfall field. The PM mean
(Fig. 13b), however, overestimates the precipitation
falling outside of the local maxima, predicting a large
swath of precipitation exceeding 30 mm, while the
observed rainfall in this region, outside of the local
maxima (Fig. 13f) does not typically exceed 25 mm.
The LPM mean (Fig. 13c), does not suffer as severely
from this overprediction.

Differences in behavior between the LPM mean and
the other ensemble mean products are even more pro-
nounced in the narrow band of precipitation extending
from near New Orleans, Louisiana, to West Virginia.
In the observations (Fig. 13d), this band is quite thin,
with maximum rainfall accumulations of around 50 mm
over Mississippi. The LPM mean (Fig. 13c) predicts a
thin band of precipitation relatively consistent with ob-
servations, with maximum accumulations of around
50 mm located in Mississippi. In contrast, the PM mean
(Fig. 13b) and simple mean (Fig. 13a) predict a wider
swath of precipitation with maximum accumulation of
only about 10 mm. This is because in the PM calculation,
similar values of lower percentiles among predicted
values from the entire model domain of all ensemble
members are used to assign to this region of relatively
smooth band of precipitation, resulting in a band of

FIG. 13. The 12-h forecasts, valid at 1200 UTC 23 Jun 2017, of 3-h accumulated precipitation. Shown are (a) the
simple ensemble mean, (b) the probability-matched mean, and (c) the localized probability-matched mean. Also
shown is (d) observed 3-h accumulated precipitation from MRMS, also valid at 1200 UTC 23 Jun 2017. The plotted
region corresponds to the subdomain used to calculate verification statistics (including those shown in Figs. 3–11).
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smooth light precipitation. This is also why the PM mean
significantly over predicts power at the larger scales. In
contrast, the LPM mean more accurately represents the
width and intensity of this precipitation band.

c. Verification of probabilistic forecasts for
precipitation exceeding FFG and RI

For the 2017 SSEF, forecast products were produced
for the first time predicting probability of precipitation
exceeding flash flood guidance and probability of pre-
cipitation exceeding thresholds associated with re-
currence intervals ranging from 5 to 100 years. These
products are of operational interest as they take into
account geographic differences in rainfall climatology,
local infrastructure, and, in the case of FFG, anteced-
ent hydrological conditions. Products were calculated
for all ARW SSEF members, and are verified over the
verification subdomain (see Fig. 1).

Reliability diagrams are presented for 12-, 24-, 36-,
and 48-h forecasts of 3-h accumulated precipitation ex-
ceeding FFG in Fig. 14, using data from the 2017 SSEF
operational period. In these diagrams, the forecast
probability of rainfall exceeding FFG is plotted against
the observed frequency of such events (verified against
3-h accumulated MRMS QPE interpolated to the model
grid); the dashed diagonal line indicates perfect re-
liability, while the shaded region indicates a skillful

forecast. Overall, the SSEF forecasts are marginally
skillful at most hours; the SSEF substantially over-
predicts the occurrence of rainfall exceeding FFG
(Fig. 14). The anomalous behavior of the 36-h forecasts
at high forecast probabilities (Fig. 14c), where pre-
cipitation exceeding FFG is actually underpredicted, is
an artifact of the small sample size of high forecast
probabilities (i.e., probabilities exceeding 0.5).

Precipitation exceeding FFG is quite a rare event;
sample climatology for QPE exceeding FFG within
25 km of a location ranges between 0.2% and 0.8% of
total grid points. Occurrences of QPE exceeding FFG,
and of areas where model QPF exceeds FFG are also
often quite localized, many times consisting of just one
or two model grid points. To illustrate this, MRMS QPE,
regions where QPE exceeds FFG, and probability of
SSEF QPF exceeding FFG are plotted for one case—3-h
accumulated precipitation valid at 0000 UTC 15 July
2017—in Fig. 15. In this case, isolated convection oc-
curred over the western United States, with heavy
rainfall from thunderstorms exceeding FFG over local-
ized regions of Arizona, New Mexico, and Colorado.
More widespread convection also occurred over the
southeastern United States, with QPF exceeding FFG
at a few isolated points (Figs. 15a,b).

Overall, the model captured the general pattern of
regions where precipitation exceeded FFG, correctly

FIG. 14. Reliability diagrams for (a) 12-, (b) 24-, (c) 36-, and (d) 48-h forecasts of the
probability of 3-h accumulated precipitation exceeding FFG verified over the verification
subdomain (see Fig. 1) for the duration of the 2017 HMT FFaIR operational period.
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identifying the regions of heavy precipitation over
Colorado, and indicating areas of precipitation ex-
ceeding flash flood guidance in the southeastern
United States (Fig. 15c), although these regions were in
many cases somewhat displaced (such as over south-
ern Louisiana, and over eastern Colorado and western
Kansas). Maximum QPF from the SSEF was also higher
than observed QPE in the areas of heaviest precipitation,
resulting in the geographic extent of predicted probabili-
ties of precipitation exceeding FFG being much greater
than the extent of areas where QPE actually exceeded
FFG. Combined, these two tendencies (overprediction
and displacement) result in many false alarms and misses,
and contribute to the overall poor objective skill of these
forecasts, particularly for measures such as area under the
ROC curve (AUC; Mason 1982). Despite the subjective
usefulness of the forecasts; AUC for forecasts of the
probability of 3-h accumulated precipitation exceeding
FFG ranged between 0.00 and 0.03.

For forecasts of rainfall exceeding thresholds associ-
ated with 10–100-yr recurrence intervals, overprediction
by the SSEF is even more pronounced, again resulting in
very low AUC values (generally below 0.02). For 6-h
accumulated precipitation exceeding the threshold as-
sociated with the 10-yr recurrence interval, the sample
climatology in MRMS QPE data ranges between 0.2%
and 1.1%. The 10-yr recurrence intervals for 6-h accu-
mulated precipitation vary greatly geographically, and
are much lower over the Rocky Mountains and western
United States than over the southeastern United States
(FFG also exhibits geographic variations, but these
variations are less extreme and also take into account
antecedent precipitation). The impacts of this geo-
graphic variation can be seen for the 15 July 2017 case in
Fig. 16; 6-h accumulated precipitation exceeds the 10-yr
RI in MRMS QPE at a number of isolated locations over

the Rocky Mountains for accumulations of 20–50 mm,
while widespread heavier accumulations of up to 100 mm
only exceed the 10-yr RI at four isolated points over the
southeastern United States (Figs. 16a,b). The SSEF cor-
rectly predicts that the 10-yr RI will be exceeded over
Colorado, but misses many of the other occurrences of
precipitation exceeding the 10-yr RI over the Rockies,
while erroneously predicting a wide swath of low proba-
bility of RI exceedance over the Ohio valley (Fig. 16c).
For these reasons, SSEF predictions of precipitation ex-
ceeding FFG were generally more skillful than those of
precipitation exceeding RI thresholds.

4. Summary and discussion

During 2016 and 2017, CAPS produced real-time,
CONUS-scale storm-scale ensemble forecasts (SSEFs)
for the HMT FFaIR experiments, using WRF ARW and
NNMB in 2016, and WRF ARW and FV3 in 2017,
allowing for generation and verification of new forecast
products focused on QPF and flash flood potential. A
wide range of precipitation-focused 2D forecast fields
were provided for evaluation by HMT participants, in-
cluding traditional ensemble and probability-matched
mean forecasts of precipitation accumulation, probabil-
ity of exceedance of flash flood guidance, and probability
of exceedance of precipitation values corresponding to
recurrence intervals ranging from 5 to 100 years. During
2017, a new localized probability matched mean (LPM)
algorithm that employs a series of overlapping patches to
constrain the probability-matched mean to use only
spatially nearby information, was developed, and LPM
precipitation forecasts were generated in real-time for the
2017 CAPS HMT ensemble.

Overall, the 2016 and 2017 CAPS SSEFs generally
produce skillful forecasts of 3-h accumulated rainfall.

FIG. 15. (a) MRMS 3-h accumulated rainfall for the period of 2100 UTC 14 Jul 2017–0000 UTC 15 Jul 2017. (b) Shaded regions indicate
areas where MRMS 3-h accumulated during this period exceeded flash flood guidance within 25 km of that location. (c) Probability of
exceeding flash flood guidance within 25 km of a point for the same period calculated from 3-h accumulated rainfall in the 24-h forecasts of
the 2017 CAPS SSEF ARW members valid 0000 UTC 15 Jul 2017.
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PM and LPM mean forecasts exhibit little bias for pre-
cipitation exceeding 0.01 in.; at a higher threshold of 0.50
in., the LPM mean exhibits a modest low bias after about
12 h of forecast time, while the regular PM mean exhibits
very little bias, particularly in the 2017 ensemble. Skill
measured by the equitable threat score (ETS) is positive
throughout the forecast period, with ensemble mean
products generally outperforming most (if not all) in-
dividual ensemble members. We note that for ETS skill
scores and related statistical significance testing, we did
not apply bias correction before calculating the scores.
Without bias correction, larger positive bias may reward
the forecast in terms of ETS (Hamill 1999), but bias
correction can unfairly reward forecasts with large bia-
ses, particularly those with large negative biases (Zhu
et al. 2018). Therefore we choose to present ETS scores
without bias correction while presenting and discussing
frequency biases corresponding to all the ETS scores.

In 2016, the NMMB members generally perform signifi-
cantly less skillfully than the WRF-ARW members,
exhibiting a large high bias in heavy precipitation and sig-
nificantly lower ETS. In 2017, the single FV3 member gen-
erally outperforms most WRF-ARW members, exhibiting
higher ETS, and relatively little bias. For a subensemble of
2016 WRF-ARW members differing only in their micro-
physical scheme, the Morrison member exhibits a signifi-
cantly higher bias in light precipitation, and the Thompson
member exhibits a significantly lower bias in heavy pre-
cipitation, though ETS does not differ significantly among
these members.

When the full SSEF is broken into subensembles using
the same microphysical or PBL scheme, greater con-
sistency between 2016 and 2017 is noted for the sub-
ensembles sharing a common PBL scheme than for
those sharing a common microphysics scheme. We

speculate that this greater year-to-year consistency may
be at least in part because the PBL scheme within the
model (which is active over the full extent of the do-
main) has more widespread influence than the micro-
physical scheme (which is active primarily where clouds
and precipitation are occurring), and because the PBL
scheme could lead to consistent biases in, for example,
near-surface temperature or moisture that would
consistently impact the initiation and extent of con-
vection, while sensitivities of model performance to
the microphysical scheme would likely depend on
factors such as convective mode, distribution and ex-
tent of precipitation, and large-scale flow pattern that
are more likely to vary from year to year.

The skill of 3-h accumulated rainfall forecasts from
the 2017 CAPS HMT ensemble is also evaluated in
terms of ability to accurately represent features of
varying length scales using fractions skill score (FSS)
and variance spectra. In terms of FSS, the forecasts ex-
hibit skill on scales larger than approximately 20–70 km
at the 0.01-in. threshold and 30–120 km at the 0.50-in.
threshold; the minimum skillful scale is smaller (better)
for ensemble mean products and the FV3 member than
for WRF-ARW members. The improved performance
of the ensemble mean products over individual mem-
bers is likely due at least in part to reduced overall
spatial/displacement error when averaging members. In
terms of variance spectra, FV3 exhibits variance much
closer to that of MRMS observations at small scales
compared to the WRF-ARW members—unlike the
MRMS observations or the FV3 member, the WRF-
ARW members exhibited a substantial drop in variance
at scales less than about 15 km. The variance spectra of
individual members are otherwise qualitatively similar
to those of MRMS observations, both for early morning

FIG. 16. (a) MRMS 6-h accumulated rainfall during the period of 1800 UTC 14 Jul 2017–0000 UTC 15 Jul 2017. (b) Shaded regions
indicate areas where 6-h accumulated MRMS rainfall during this period exceeded the 10-yr recurrence interval for 6-h rainfall accu-
mulation within 25 km of that location. (c) Probability of exceeding the 10-yr recurrence interval for 6-h accumulated rainfall within 25 km
of a point for the same period calculated from 6-h accumulated rainfall in the 24-h forecasts of the 2017 CAPS SSEF ARW members valid
0000 UTC 15 Jul. 2017.
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(12 h; 1200 UTC) and evening (24 h; 0000 UTC) fore-
casts. The better spectral properties of FV3 at small
scales are due in large part to the absence of aggressive
damping, which was used in the ARW members utilizing
the operational configuration of HRRR as prescribed
for CLUE.

Compared to individual members and MRMS, the
simple ensemble mean exhibits substantial loss of vari-
ance at scales less than 400 km, largely due to smoothing
of precipitation resulting from averaging spatially dis-
parate members. The variance of the PM mean is similar
to that of MRMS at scales between 20 and 150 km, but
larger than that of MRMS at larger scales. The variance
spectra of LPM mean forecasts best agree with those of
MRMS observations, producing similar values at all
scales above 20 km, with slight underprediction at the
largest scales. The variance spectra of LPM mean fore-
casts do, however, exhibit a rapid drop off in variance
below 20 km, which may be partially due to the Gaussian
smoother applied during LPM forecast generation.

Probabilistic forecasts of precipitation exceeding
FFG or thresholds associated with recurrence intervals
ranging from 10 to 100 years generally overpredict the
occurrence of such events; this tendency is particularly
pronounced for RI exceedance forecasts. Precipitation
exceeding FFG or RI thresholds is a relatively rare
event, and generally occurs in isolated regions only a few
model grid volumes in size, resulting in displacement
errors in the forecasts and overall low objective skill
scores, although examining individual cases indicates
that the SSEF does exhibit some subjective skill in
identifying areas where FFG or RI thresholds are likely
to be exceeded. These results suggest that traditional
objective skill scores, such as AUC, may not be well
suited to measure the subjective utility of forecasts of
very rare events. That said, taking into account the
rarity of such events and the likely uncertainties and
displacement errors for such rare events being pre-
dicted many hours or even days in advance, it may be
beneficial to apply greater smoothing or increase the
neighborhood associated with forecasts of these events
in the future.

Producing skillful ensemble-based QPF products re-
mains an active area of research, and further investi-
gation into how to best represent ensemble output is
needed. In future CAPS HMT forecast ensembles, we
will continue to develop and verify LPM and other
products. Possible avenues for improvement to the
LPM include the use of differently shaped or flow-
dependent patches, and further evaluation of LPM
parameters (e.g., size of patches and LPM domains,
smoother settings). Work is also ongoing to develop
and tune a new spatially aligned mean method that

reduces spatial offsets among ensemble members be-
fore averaging using methods developed for phase cor-
recting data assimilation (Brewster 2003). This approach
could also improve retention of small-scale details in the
ensemble mean and improve forecast skill. Finally, we
note that it will be important to integrate these products
into new and emerging ensemble forecast systems, such
as convection-allowing ensembles composed of FV3
members, and to evaluate such forecasts in terms of
sensitivity to model physics (Zhang et al. 2019).
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