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ABSTRACT

This paper presents to study the performance of machine learning techniques consisting of multivariate adaptive regression
spline (MARS), feed forward neural network-back propagation (FFNN-BP), and decision tree regression (DTR) for estimating
the physico-chemical properties of groundwater in the coastal plain area in Vinh Linh and Gio Linh districts of Quang Tri province
of Vietham. With 290 groundwater samples collected in two districts, this study has identified three main elements CO,, Ca,
CaCo; for simulation. Quantitative analysis results have shown that these three components are such as CaCO3z with from 0
to 25.8 mg/l, Ca from 0 to 87.55mg/l and CO, from 0 to 12mg/l. In the present examination, groundwater quality index
(GQI) values and their representative categories have been referred by the Vietnam Groundwater Standard (QCVNO1). Further-
more, the statistical accuracy parameters were used to compare among models. To deploy FFNN-BP and DTR, different types of
transfer and kernel functions were tested, respectively. Determining the results of MARS, FFNN-BP and DTR showed that three
models have suitable carrying out for forecasting water quality components. Comparison of outcomes of MARS model with the
FFNN-BP and DTR models indicated that this model has good performance for forecasting the elements of water quality, its
level of accuracy was slightly more than the other. To assess the accurate values of the models according to the measurement
parameters for training phase illustrated that the order of the models was MARS to give the best result, followed by DTR and
finally FFNN-BP, respectively.
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HIGHLIGHTS

Machine learning methods are used for spatial modeling of physico-chemical properties of groundwater.

MARS performances suitable precision compared to the DTR and FFNN-BP models.

Total CaCOj3 value in the experiment samples adapted the regular limit of QCVNO1 with ‘Excellent’ point.

The quality of water parameters (i.e., CaCOs3, Ca, and CO,) of the coastal plain area was predicted.

The study results have shown that the water quality in these two districts is usable for humans, livestock, and agriculture
activities.

1. INTRODUCTION

The presence of contaminants in natural freshwater is considered one of the most crucial environmental pro-
blems in many areas of developing countries, where several communities are hardly approaching a potable
water supply (Organisation mondiale de la santé, Swiatowa Organizacja Zdrowia, World Health Organization,
& World Health Organisation Staff 2004; Giang ef al. 2021). Low-income communities, which lean on untreated
surface and groundwater supplies for domestic and agricultural purposes are the most affected by poor water
quality (Ayoko et al. 2007). Unfortunately, they also do not have adequate tools to monitor quality of water reg-
ularly (Resh 2008; Omarova et al. 2018; Najafzadeh & Niazmardi 2021). Thus, they are increasingly expected to
obtain reliable assessments of quality of water, which can be used (Bonansea ef al. 2015).

Climate change leads to seawater intrusion affecting groundwater resources of coastal cities (Kumar 2012;
Alfarrah & Walraevens 2018). Urbanization and industrialization have caused uncontrolled over-exploitation
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and depletion of groundwater consequently (Kanwal ef al. 2015; Sunardi et al. 2021). Furthermore, untreated
wastewater from residential areas and industrial zones has seeped into the ground leading to an increasing
amount and content of chemical elements in groundwater (Mukate et al. 2018; Khan ef al. 2020a).

The chemical element of groundwater is considered a standard of measurement to show the capable level of
groundwater for plenty of targets such as human and animal drinking, agricultural, and industrial activities. It
has been shown in practice that the uses of groundwater sources require different standard indicators to distinct
water quality circumstances (Loaiciga ef al. 1992). The groundwater quality concept is an integrative index com-
posed of chemical, physical, and biological features which maintain expected groundwater utilizations. Hence,
groundwater is divided by composition as groundwater quality index (GQI) for the management and consump-
tion of groundwater resources (Najafzadeh ef al. 2021a).

To evaluate the quality of water for drinking and agricultural irrigation, several variables are routinely moni-
tored. This process makes a big database, but it can be time-consuming for data acquisition while the accurate
rendering of the multivariate data may be challenging.

With regard to use machine learning for forecasting physico-chemical parameters in water, using artificial
neural network (ANN)-estimated river water quality components (Niroobakhsh ef al. 2012; Emamgholizadeh
et al. 2014; Najah et al. 2014; Raheli et al. 2017; Haghiabi et al. 2018; ilhan et al. 2021; Najafzadeh et al.
2021b); employing multivariate adaptive regressive splines (MARS) to predict physico-chemicals in water
(Haghiabi 2016; Bhatt et al. 2017; Ahmadi et al. 2019; Esmaecilbeiki et al. 2020); deploying decision tree
regression (DTR) to forecast quality of water (Liao & Sun 2010; He ef al. 2012; Jaloree ef al. 2014; Chandanapalli
et al. 2018; Gakii & Jepkoech 2019; Jalal & Ezzedine 2020; Lu & Ma 2020). Furthermore. MARS, feed forward
neural network-back propagation (FFNN-BP), and DTR models also belong to nonparametric learning, and the
model is used in those areas (Bengio et al. 2010; Al Igbal ef al. 2012; Genuer ef al. 2017; Khaldi et al. 2019;
Kohler et al. 2019; Yurochkin ef al. 2019; Antoniadis et al. 2020; Devianto et al. 2020; Khan et al. 2020b;
Zheng et al. 2020; Amiri-Ardakani & Najafzadeh 2021). Najafzadeh & Ghaemi (2019) implemented the
LS-SVM and MARS models to estimate BOD5 and COD parameters through 200 samples collected from
Karoun River, in the southwest of Iran. The result showed that the MARS model has proved precise approxi-
mations compared with real data. Saghebian et al. (2014) applied a decision tree model to classify
groundwater quality in Ardebil, Iran. Research results have proved that this model can be acceptable range of
criteria for quality classification of groundwater. Khan ef al. (2021) used FFNN-BP model to estimate Escherichia
coli in groundwater with 1,301 groundwater samples were obtained from 348 villages and cities in from 2016 to
2019 in Rajasthan state, India. Consequently, deploying the model based on Grover’s algorithm was more effi-
cient in forecasting all patterns in the calculated E. coli in groundwater. Najafzadeh et al. (2021a) studied the
groundwater quality of the Rafsanjan Plain of Iran, quantifying it using artificial intelligence (AI) to assess
GQI values for 15 years. The results of the groundwater quality prediction analysis of the MARS model with
RMSE = 2.444 and SI = 0.0304. In addition, this result was also compared with the World Health Organization
groundwater standard which also showed that the entire area of Rafsanjan lacks water quality at the ‘Excellent’
level with a high probability. The chance for ‘Good” water quality varies from 1% (at GQI =50 worst cases) to
55% (at GQI = 100 best cases).

Groundwater quality prediction work has some errors for various reasons such as the quality of collected
groundwater samples, measurement of variability and the subjective opinion of groundwater sample analysts,
and other random parameters related to groundwater quality prediction that have not been studied yet. Therefore,
the problem of assessing reliability for implicit quality classifications. In addition, using analytical methods is also
subject to the bias of environmentalists, geologists, and experts.

This paper presents the prediction of the physico-chemical properties of groundwater using FFNN-BP, DTR,
and MARS models. The input vectors used in the models are leaned on 290 samples that were collected from
290 wells of households in coastal plain area in Gio Linh and Vinh Linh districts of Quang Tri province. With
the support of the collected data, the GQI values were analyzed based on the Vietnam Groundwater Standard
(QCVNO1) and their relevance for proposed use. After that, highlight comparison among three models that
base on the results of statistical accuracy parameters such as mean (M), bias (bias is shown by mean error),
root mean square error (RMSE), mean absolute error (MAE), standard deviation (St Dev), pearson correlation
coefficient (R), skewness coefficient (Skew), minimum (Min), maximum (Max), scatter index (SI), and Nash-
Sutcliffe efficiency (NSE). Finally, the collection of results of these three models may show the working efficiency
of the models for predicting the quality of water.
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The structure of the paper is organized as follows. Section 1 gives the paper’s introduction. Section 2 presents
study area, the MARS, FFNN-BP, and DTR models and explains them clearly for understanding use throughout
this paper. Section 3 describes the study results. Finally, Section 4, and Section 5 introduce the discussions and
conclusions.

2. STUDY AREA AND METHODOLOGY

2.1. Study area

The place of study is about 150 km? and covers the Gio Linh and Vinh Linh coastal plain of Quang Tri province
of Vietnam. It is surrounded by Quang Binh province in the north, Thach Han River in the south, 50-150 m high
hills in the west, and the East Sea (see Figure 1). The coastal plain is relatively flat with an elevation between 0
and 5 m except for coastal sand-dunes at 11-22 m high, which provide a natural embankment system for seawater
protection (Krutwagen 2007). During the dry season (from June to August), the saltwater pervades (i.e. where
total mineralization of water M = 1 g/l) and is often inspected at about 30 and 35 km from the main tributaries
of Ben Hai, Hieu, and Thach Han Rivers from the estuary (Tam ef al. 2014). Thus, groundwater from dug wells
and shallow wells scattered in the coastal is the main water source for drinking and domestic use for residents.

Legend:
@ Groundwater sample
obtained location

Figure 1 | The location for samples collection.

2.2. MARS

The MARS model is a novel approach in soft computing, and it is a nonparametric regression model, introduced
by Friedman (Friedman ef al. 2010). MARS seems like a method for a fitted relationship between independent
and dependent variables in each desired phenomenon. MARS supports techniques for modelling systems with
high accuracy, which is based on a dataset (Sekulic & Kowalski 1992; Steinberg 2001; Gutiérrez et al. 2009).
The MARS algorithm feature is the procedure of the backward and forwards stepwise, at the same time may
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explain and control the complex nonlinear mapping between the inputs and output variables. MARS model high-
lights input variables that have a note worthy effect on the output variables. The general form of MARS is
described as below:

y=Bo+ > Buhm®) (1)

where, y is output variables, 8, is constant value, M is the number of functions, #,,(x) is My, basis function and
B,, is the corresponding coefficient of A, (x). Furthermore, %,,(x) shows information about the relationship
between input and output variables, and it is described as below:

hm(x) = Max(0, C —x) or hy,(x) = Max(C — x, 0) 2)

where 4 is the basis function, x is the input variables, and C is the threshold value of the independent (input) vari-
ables of x. It is notable that C is called ‘knots’ or ‘hinges’.

The function of backward stepwise function relates to removing basis functions one at a time until the criterion
of ‘lack of fit’ is a minimum. In the deletion of backward stepwise, the last important basic functions are destroyed
one at a time. The lack of used fitting measurement is based on generalized cross-validation (GCV) (Attoh-Okine
et al. 2009):

P
CGV = A *

i — f(x)/N 3)

j=1

where A = {1 — and C(M) = 1 trace[B(B~B) 'B/| are the complexity function (Friedman et al. 2010).

cm))
=
The GCV criterion is considered the average of residual error multiplied by a penalty to modify for the variability
associated with more parameters estimation in the model (LeBlanc & Tibshirani 1994).

2.3. Feed forward neural network-back propagation

FFNN-BP model is a member of neural network method (Khoshhal & Mokarram 2012). It may simulate arbitra-
rily complex nonlinear processes for any systems in terms of inputs and outputs. A FENN-BP structure in Figure 2
demonstrates a three-layer neural network consisting of inputs layer, hidden layer (layers) and outputs layer
(Ramchoun et al. 2016; Ashiquzzaman & Tushar 2017). The physico-chemical properties groundwater presents
neural network that have trained for its FENN-BP regression. The input layer has 290 input nodes from e; to exq,
one neuron of the output layer has deputized the values of physico-chemical properties groundwater. There are
four hidden layers include the first hidden layer contains neurons from Hi; to Hi19, the second layer is from Hy;
to Hz100, the third layer is from Hs; to Hs;00, and the last one is from Hy; to Hy100. Each neuron of the hidden and
output layers get a corresponding weight and bias, as w?,, B(lz) and w?,, B(22) are the weight and bias to represent
for neurons of Hy; and H;», so on. The values of weight and bias can be assigned progressively and corrected
during the training process in order to compare predicted outputs with known outputs. As networks are often
trained using a backpropagation algorithm (Ashiquzzaman & Tushar 2017). Each neuron of the hidden layers
attains the output from all neurons of the previous layers and converts these values with a weighted linear
sum into the output layer. The output layer receives the values from the last hidden layer. The ReLU function
is deployed as the activation function for the hidden layers. Adam method is stochastic optimizations to the
solver of weight optimization.

2.4. DTR

A decision tree is a data structure that includes an arbitrary number of nodes and branches at each node (Pekel
2020). The values of the input variable(s) consider a particular function in the training stage (Loh 2011). The
stimulant of the decision tree is an algorithm that generates a decision tree from given instances. The structure
of decision tree regression is as below, assuming X=X, X, ..., Xy, mn are estimator variables, a total
number of estimator variables, respectively. At the same time, n and Y=Y, Y5, ..., Y,, describe the number of
observations and a goal variable that doing continuous values, respectively. In addition, vf, th, t, and vy (y = (vf,
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Figure 2 | Structure of FFNN-BP network for physico-chemical properties groundwater prediction.

thy)) are a characteristic of a variable, a value of threshold, a node, and a candidate split, respectively. Q; is rea-
lized by splitting the data into y. Q; and Q, are calculated in Equations (4) and (5) declare the left and right sides
in the decision tree of Q.

Q = (% y)xyt < thy) 4
Q, = (%, y)[xyt > thy) ®)

Let calling n; and n, are the number of a sampling of left and right sides; I is a function of impurity. Equation (6)
indicates how the function of impurity is computed. The function of impurity is minimized by pondering Q and y
indicators as:

1Q V) =TSQ0) + SQi) ®)

2.5. Performance metrics

Forecasting results are based on the calculation and comparison of the actual values to the forecasted values.
These metrics of the accuracy measurement parameters include MAE, RMSE, NSE, bias, SI. Furthermore, the
error metrics are defined as follows (Yang & Yang 2005; Touzani ef al. 2018; Kardani et al. 2020):

n
> | — i
MAE :tzlT 7)

RMSE =
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" average observed values

where x4, x; are the estimated value and observed value in the period time #, and 7 is the number of the observed
values in the testing data. x, x’ are mean of the observed value. The NSE, R should be approaching 1 to indicate
strong model performance, and the bias, MAE, and RMSE should be as close to zero as possible.

2.6. Data collection

Study data includes 290 groundwater samples obtained at wells of households in coastal plain area of Vinh Linh
and Gio Linh districts. The predominant chemical compositions in these samples consisted of three main ingre-
dients as calcium carbonate (CaCOs) calcium (Ca), and carbon dioxide (COy). In addition, there were some
other physico-chemical components (as ammonia, magnesium, and iron oxide), but their contents were not sig-
nificant in these samples. Three input variables include Ca, CO,, and CaCQOs, which was collected from 290
wells of two districts’ households. The statistical characteristic results are also pointed out in Table 1. The
range of the following characteristics was computed from the observation: the mean, min, and max values, St
Dev, skew. The mean and standard deviation of the CaCOs, Ca and CO, were 1.30 mg/l and 4.23 mg/l,
6.05 mg/1 and 16.1 mg/l, 0.79 mg/l and 2.42 mg/l, respectively. The skewness for a normal distribution is
zero, and any symmetric data should have a skewness near zero. Negative values for the skewness indicate
skewed left data, and positive values for the skewness indicate skewed right data (Sahu ef al. 2003; Brys et al.
2004). Hence, the skew of data fluctuating from 1.56 mg/1 to 2.06 mg/1 could be considered acceptable for pre-
diction through these models. The input data patterns of 290 items were randomly selected with two parts. The
first part was used for the training phase, which contained about 70% of the entire data. The second part was
used for the test phase, which contained about the remaining 30%. In addition, the methodology of this study
is described by the diagram in Figure 3. The process was summarized by experimental stages as below. Firstly,
the collected dataset is preprocessed and tested statistical procedure, and the data is also divided into training
phase and testing phase. Secondly, the FFBB-PB, MARS, and DTR models are employed based on the training
samples, and to acquire the best network parameters. Finally, the performances of the algorithms are compared
by using metrics of the accuracy parameters, and looking for the most suitable forecasting model is found for the
study.

Table 1 | Statistical characteristics of physico-chemical components data

Item St Dev Mean Min Max Skew
CaCOs 4.23 1.30 0 25.80 2.06
Ca 16.1 6.05 0 87.55 1.57
CO, 2.42 0.79 0 12 1.56
Unit: mg/I.
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Figure 3 | Flowchart of the experimental steps conducted in this study.

3. RESULTS

The output function of MARS is presented as below:

MARS =7.907-0.249F;-0.129F,, where F; = max(0, Ca — 55.79), F, = max(0, 55.79 — Ca).

F; is the basis function. F; may be explained as the maximum value of 0 and Ca — 55.79. The minus sign ahead
of the maximum value is equivalent to a minimum value. In addition, the MARS analysis indicates that the most
important is Ca. Furthermore, the output function for FENN-BP and DTR do not occur.

The data in Figure 4(a)-4(c) shows the relationship between the three variables. The content of CO, and Ca
increase lead to the content of CaCOs5 increase. The FFNN-BP model makes a forecasting form that resembles

(a) (b) (c)

g 8
G o ‘ L 8
¢ 3 ° 0
% 0 0 5
» 2 P ?
¥ v
[ » ¢ 5
G ¢ 3 G ¢ ¢ Co2 0

Figure 4 | Physico-chemical properties prediction with (a) MARS model, (b) FFNN-BP model, and (c) DTR model (Unit: mg/l).
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a cone shape. In the meantime, the DTR and MARS charts look like the image of papers with some folds.
Through these three images, it is hard to judge which model gives the best estimating. Hence, the values of per-
formance metrics of the three models are presented in Table 2, Figure 5. The NSE of the three models for the
training and testing phases are from 0.89 to 0.95 and are closer to 1. The MAE, RMSE, and bias values are
also from —0.12 mg/1 to —0.09 mg/1 and are closer to 0. In addition, the values of the SI statistical indicator
are simulated fluctuation from 0.21 mg/1 to 2.23 mg/l. These show that the forecast results are very consistent
compared with the actual data. As for the experimental results for each specific model, it indicates that the
MARS model for training phase with NSE, MAE, RMSE, bias, and SI values are 0.95, 0.14 mg/l, 0.24 mg/l,
0.00 mg/1, and 0.26 mg/1 respectively, and these properties are better than DTR and FFNN-BP models. Regarding
the testing phase results, the highest accuracy for forecast is MARS model with NSE = 0.95, the second-highest is
FFNN-BP model with NSE = 0.91, and the lowest is DTR model with NSE = 0.89.

The Taylor charts check the performance of estimated and actual values based on the standard deviation and
Pearson Correlation Coefficient (Qin & Xiao 2018), which are contained simultaneously in assessing the

Table 2 | Accuracy parameters for physico-chemical components prediction

DTR FFNN-BP MARS
Parameter Testing Training Testing Training Testing Training
MAE (mg/1) 0.25 0.25 0.50 0.46 0.21 0.14
RMSE (mg/1) 0.34 0.33 0.99 0.90 0.41 0.24
Bias (mg/1) —0.09 -0.19 -0.12 0.01 —0.04 0.00
SI (mg/1) 3.23 3.10 1.53 1.19 0.21 0.26
R 0.91 0.93 0.92 0.91 0.93 0.94
NSE 0.89 0.94 0.91 0.90 0.95 0.95
GCV (mg/1) 0.14 0.14

(a)25 MARS training model (b) 2% 1 FFNN-BP training model
1 =0.260 mg/l

PR e =  [s1=1.190 mgn
S _ |NsE=0950 S lnce =000
E 20 1 MAE = 0.140 mgn Szo‘MAE:O-460mgﬂ
P RMSE = 0.240 mg/l bt :
2 Bias= 0.000 mg/l 2 MG = 0.0 e
815 . mo 2 15 {gias= 0.010 mgn
: g
(¥ -1
E 10 b 10 1
= -
~m
3 s g 51
3 8]

0 01

0 5 10 5 20 P 0 5 10 15 20 b3
CaCo3 actual values (mg/l) CaCo3 actual values (mg/l)
(c) —
2% DTR training model

Sl = 3,100 mg/l
NSE = 0.940
20 {MAE = 0.250 mg/l
RMSE = 0.330 mg/l
Bias= -0.190 mg/

15 A

10

CaCo3 Predicted values (mg/l)

0 5 10 15 20 >
CaCo3 actual values (mg/1)

Figure 5 | The best performance indicators for CaCOs prediction (a) MARS training model, (b) FFNN-BP training model, (c) DRT
training model.
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respective models (Taylor 2001; Ghorbani et al. 2018). The standard deviation and CC between the actual and
predicted datasets for the models are present in the Taylor diagram, and it also can be seen overall consistency
between observed and estimated values when the CC value is approaching up to 1, as pointed in Figure 6. This
can be considered for the MARS model with CCiaining phase = 0.94, CClesting phase = 0.93, FENN-BP model with
CCtraining phase:0-91; CCtesting phase:0-927 and DTR model with CCtraining phase:0~937 CCtesting phase:O-91~
The large number of correlation coefficients indicate that there is a strong relationship. The Taylor plot also
shows that these models are optimal with the highest accuracy (Taylor 2001). In other words, if the standard devi-
ation of the predicted value of the higher standard deviation of the observed value, it will lead to an over
estimation and vice versa (Abba et al. 2020). Furthermore, the GCV indicator of MARS brings about equilibrium
between flexibility and generalization ability of the function of MARS model (Deo et al. 2016).

0.00.10,20_3T£ai“i”9 0_00.10'20131(‘)esting
5.6 205 5.6 '
4.8 ' 4.8
4.0F 4.0
3.2 3.2 )
2.4t > 2.4 %
1.6f ‘ W 1.6 i
0.8+ Qo8 9

0.0 L L 0.0 1 ! !
0.0081.62.43.24.04.85.6 0.0081.62.43.24.04.85.6
Standard deviation s observe Standard deviation
1 DTR model
2 FFNN_BP model
3 MARS model

Figure 6 | The best performance indicators for CaCos prediction for Training, and Testing.

4. DISCUSSIONS

Invasive seawater, untreated wastewater from residential areas and industrial zones, and over-exploitation of
groundwater have been seriously affecting the quality and quantity of the underground water system. Therefore,
a water quality assessment is a regular and continuous work to help people and authorities show solutions to treat
groundwater to serve daily life. Hence, this paper described a comparative study and analysis of MARS, FFNN-BP,
and DTR models in estimating physico-chemical properties of groundwater. The different circumstances, influen-
tial factors, and indicators have been observed for the experimentation. The following key findings are as the
predictive errors in the case of the models decreased if the testing set decreased; MARS was the highlight in com-
parison to other models. Furthermore, to compare RMSE and MAE using MARS model of this study result with
the study result of Najafzadeh et al. (2021a) about the groundwater quality indicate that their RMSE = 0.55 mg/],
and MAE = 0.00 mg/1 are equivalent this study with RMSE = 0.41 mg/l, MAE = 0.21 mg/L.

According to QCVNO1, the groundwater index of CaCOj is from 0 to 300 mg/1 (National technical regulation
on domestic water quality of Vietnam, QCVN 01: 2009/BYT 2021). The indicators in Table 3 show the range of
water quality categorization based on the quality index of weight groundwater for human consumption. However,
the total CaCOj3 value in the experiment samples ranged from 0 to 25.8 mg/l, and the mean value was 1.3 mg/l,
this point illustrated that adapted the regular limit of QCVINO1 with ‘Excellent’. These points indicate that the

Table 3 | Water quality categorization based on the quality index of weight groundwater (GWQI)

GWQl <50 50 — 100 100-200 200-300 > 300
Quality categorization Excellent Good Bad Very bad Unsuitable for drinking
Unit: mg/I.
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water quality in these two districts is usable for humans, livestock, and agriculture activities. Rapid urbanization,
industrialization, and climate change will negatively affect the groundwater resource in the areas. Therefore,
households need to build a water purification system for drinking; at the same time, the local government
needs to supply a clean water system so that people have clean water for daily living. In addition, local authorities
and households should install early warning sensors for changes in chemical content in groundwater at some
wells. The work periodically checks and advises on pollution levels of groundwater.

The groundwater samples for the study were mainly collected at the beginning of the dry season, so the hydro-
dynamic coefficient is dissimilar from the rainy season. The groundwater analysis equipment had an effect on the
study because the equipment did not detect any more chemicals in the water that affect public health in these two
areas. However, the results of this study also contribute to supporting local authorities to have appropriate sol-
utions to help households use clean water.

5. CONCLUSIONS

Assessing and estimating water quality is a difficult and complex task, this result will give warnings to users and
authorities to have appropriate treatment solutions. Hence, this study has deployed the MARS, DTR, and FFNN-
BP predicted physico-chemical properties groundwater in the coastal plain of Vinh Linh and Gio Linh, which is
located in the north middle of Vietnam. For phases of training and testing carried out in the models, the observed
data consisting of CO, and Ca was used as inputs, while CaCO3 was used as output. The stimulated results
pointed out that the three models have a high suitable presentation for forecasting water quality components.
The best performance was related to the MARS. The results of DTR and FFNN-BP also showed that their accu-
racy is a suitable presentation for practical purposes. Furthermore, the conducting of a comparison of three
models showed that the outcomes of MARS and DTR models were slightly more reliable in comparing with
FFNN-BP. The qualitative description of the GWQI found that the whole region of Vinh Linh and Gio Linh dis-
tricts gained ‘Excellent’ water quality with 100% cases. At the same time, the study results have shown that the
water quality in these two districts is usable for humans, livestock, and agriculture.

In addition, this study demostrated that machine learning models play a key role in the decision-making pro-
gress for carring out an effects of climate changes, urbanization, and industrialization on quality of groundwater.
Another possible future work is to enhance quality of groundwater analysis equipment may finding other
elements in the groundwater, and samples should be collected evenly throughout the seasons of the year.
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