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ABSTRACT

Weirs are one of the most common hydraulic structures used in water engineering projects. In this research, a group method of

data handling (GMDH) was developed to estimate the energy dissipation of the flow passing over the labyrinth weirs with tri-

angular and trapezoidal plans. To compare the performance of this model with other types of soft computing models, a

multilayer perceptron neural network (MLPNN) was developed. The dimensionless parameters derived from dimensional analy-

sis, including the relative upstream head (ho/P), the number of cycles (Ncy), the Froude number ( Fr), and the magnification ratio

(Mr) were used as input variables. The error statistical indicators of the GMDH model in the training phase were R2¼ 0.913,

RMSE¼ 0.010, and in the testing phase were R2¼ 0.829, RMSE¼ 0.015. The error statistical indicators of the MLPNN in the train-

ing phase were R2¼ 0.957, RMSE¼ 0.007, and in the testing phase were R2¼ 0.945, RMSE¼ 0.009. Examining the structure of

the GMDH network shows that ho/P, Ncy, and Mr play more meaningful roles in the development network.

Key words: GMDH, labyrinth weir, magnification ratio, MLPNN, soft computing models

HIGHLIGHTS

• Development of GMDH to predict the energy dissipation of the flow passing over the labyrinth weirs.

• Developing the MLPNN model to predict the energy dissipation of the flow passing over the labyrinth weirs.

• Definition of most effective parameters on the mechanism of energy dissipation of flow.

• Comparison of the performance of MLPNN and GMDH models based on the Taylor diagram.

NOTATIONS

ho=P Relative upstream head
ho Head of flow over the crest
Fr Froude number
Lcr Total crest length
Lcy Length of one key-cycle
Mr Magnification ratio
Ncy Number of cycles
R2 Coefficient of determination
Cd Discharge coefficient
E Total flow energy
EDR Energy dissipation ratio
g Acceleration due to gravity
GMDH Group method of data handling
MLPNN Multilayer perceptron neural network
P Weir height
RMSE Root mean square error
V Flow velocity
q Discharge per channel unit width
r Density
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1. INTRODUCTION

Weirs are one of the most commonly used hydraulic structures for flowmeasurement, water level regulation, flow
control in water conveyance channels and irrigation and drainage networks, and water desalination and brine

treatment applications (Waller & Yitayew 2015; Panagopoulos & Giannika 2022). The weirs should be
chosen based on their discharge capacity and their ability to dissipate energy. The discharge capacity of weirs
is proportional to the crest length, upstream head, and discharge coefficient (Parsaie & Haghiabi 2019). One

way to increase the discharge capacity of weirs based on the crest length is to use nonlinear weirs. Usually,
due to the limitation of the width of the waterway, the crest length is increased (increasing the crest length at
a fixed width of the waterway) (Carollo Francesco et al. 2012). Recently, various types of labyrinth weirs such

as triangular, trapezoidal, diagonal, and parabolic have been proposed. Such weirs are usually made of one or
more key cycles. Tullis et al. (2007) conducted several experimental studies on the labyrinth weirs with a trape-
zoidal plan and crest angles of 6–18 degrees. They derived the stage-discharge curve and proposed a formula for

discharge coefficient (Cd) as a function of the upstream head, weir height, crest length, and angle between the key
cycles. Kumar et al. (2011) conducted an experimental study on a triangular plan labyrinth weir. They demon-
strated that, by decreasing the angle of the weir crest, the length of the interference zone increases, and the
Cd decreases significantly. They also presented a formula for calculating the Cd under different vertex angles.

However, weirs create a local disturbance in the flow structure, which causes flow energy dissipation. Estimating
this feature helps to calculate the amount of flow energy downstream of the weir, which is necessary for the design
of the downstream concrete slab (Haghiabi et al. 2022). The flow energy dissipation mechanism has been investi-

gated in many hydraulic structures such as stepped spillways (Salmasi & Abraham 2023) and ski jump buckets
(Daneshfaraz et al. 2021; Mollazadeh Sadeghion et al. 2022). Mohammadzadeh-Habili et al. (2018) investigated
the energy dissipation mechanism of the flow regime on labyrinth weirs. They declared that the flow energy dissipa-

tion decreases linearly with increasing critical depth. Ghaderi et al. (2020) investigated the discharge coefficient and
the flow energy dissipation of the labyrinth weir using the computational fluid dynamics technique using flow-3D
software. They stated that the discharge coefficient varies between 0.4 and 0.8 considering the range of relative

upstream head between 0.15 and 0.7. The labyrinth weir can dissipate between 0.6 and 0.3 of the upstream energy.
Literature review shows that a few studies have been conducted on the performance of soft computing models

to estimate the energy dissipation of flow passing over labyrinth weirs. Therefore, in this research, the soft com-
puting models including the group method of data handling (GMDH) and the artificial neural network (ANN)

model are developed to estimate the performance of labyrinth weirs with triangular and trapezoidal plans.
Noted that the mentioned soft computing models have already been successfully used in other aspects of hydrau-
lic engineering (Singh et al. 2021), especially the energy dissipation of flow over the other hydraulic structures

such as stepped spillways(Parsaie et al. 2018; Parsaie & Haghiabi 2021).

2. MATERIALS AND METHODS

The plan and side view of the labyrinth weirs with triangular and trapezoidal plans are shown in Figure 1. In this
figure, the important hydraulic and geometrical parameters involved in the flow energy dissipation mechanism
are presented, as well.

To calculate the performance of this structure, Bernoulli’s equation is used for the upstream (Equation (1)) and
downstream (Equation (2)) sections:

E0 ¼ y0 þ q2

2g(y20)
(1)

E1 ¼ y1 þ q2

2gy21
(2)

where q is the unit discharge per channel width. E0 and E1 are the total flow energy upstream and downstream of
the weir. The performance of labyrinth weirs in terms of energy dissipation ratio (EDR) is estimated using
Equation (3):

EDR ¼ DE
E0

¼ E0 � E1

E0
¼ 1� E1

E0
(3)
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The geometrical and hydraulic parameters involved in energy dissipation are summarized in Equation (4):

EDR ¼ f(Wc, Wcy, Lcy, Lcr, P, Vo, ho, g, r) (4)

where vo is the upstream flow velocity Lcy is the length of one key-cycle, and Lcr is the total crest length. Using

Buckingham’s theorem as a dimensional analysis technique and taking into account Vo and P as repeated

Figure 1 | Plan and side views of labyrinth weirs with triangular and trapezoidal plans, Wcy: width of a key-cycle, Wc: channel
width, P: weir height, ho: depth of flow on the crest, and yo and y1 are respectively the depth of flow upstream and downstream
of the weir (Haghiabi et al. 2022).
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parameters, the dimensionless parameters are obtained as Equations (5) and (6). Therefore, Equation (6) can be
rewritten as Equation (7):

Y
1

(ho) ¼ rVoP(ho) ¼ ho

P

Y
2

(Lcy) ¼ Lcy

P

Y
3

(Wc) ¼ Wc

P

Y
4

(Wcy) ¼ Wcy

P

Y
5

(Lcr) ¼ Lcr

P

Y
6

(g) ¼ V2
o

gP
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiY
4

(g)
r

¼ Voffiffiffiffiffiffi
gP

p ¼ Fr

Y
(Lcr)� 1Q

(Wc)
¼ Lcr

P
� P
Wc

¼ Lcr

Wc
¼ Mr

Y
(Lcr)� 1Q

(Lcy)
¼ Lc

Lcy
¼ Ncy

Y
(Wc)� 1Q

(Wcy)
¼ Wc

Wcy
¼ Ncy

(5)

�����!Subcritical flow DE
E0

¼ f
ho

P
, Ncy, Fr,

Lcy

Wcy
:Mr

� �
(6)

In Equation (6), ho=P,Ncy, andMr, respectively, indicate the ratio of flow head to weir height (relative upstream

head), number of cycles, and magnification ratio.

2.1. Group method of data handling

The GMDH is an inductive approach based on the perceptron theory, which has been developed to identify and
model complex systems (Ivakhnenko 1968). Unlike the perceptron-type structure, this model uses useful and non-
useful information classification and requires less observational data; consequently, the training time is reduced.

Figure 2 shows a schematic of the GMDH network. The governing function of each neuron in this model is a
polynomial of degreed (Equation (7)):

Y ¼ w0 þw1x1 þw2x2 þw3x21 þw4x22 þw5x1x2 (7)

In this equation, x1 and x2 are inputs and y is the output. The external criterion for determining the network
structure is defined using root mean square error (RMSE).

The six coefficients of the governing function of each neuron in the network are derived using the least squares
approach. These steps (Assigning pairs of input variables to each neuron and deriving their coefficients) are
repeated for all the neurons of the first layer and also for all the neurons of the next layers. After obtaining the

coefficients from the training data, the accuracy of the neurons is calculated using the RMSE index (RMSE is
calculated using the GMDH outputs and the observed data). Only the neurons with higher accuracy than the
threshold of error-index value are selected to contribute to the network making (Parsaie et al. 2021; Yonesi
et al. 2022).

2.2. Multilayer perceptron neural network

A neural network can be proposed as an alternative in many simulations that lead to solving a system of complex
equations to find the relationship between factors affecting the system. The multilayer perceptron neural network
(MLPNN) is the most widely used soft computing model in hydraulic engineering. The structure of the MLPNN

consists of an input layer, one or more hidden layer(s), and an output layer. The inputs of the MLPNN are
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multiplied by coefficients (weight) and then added with a fixed value (bias). Then the transfer function is acted on

its result. The design of the multilayer neural network model includes several steps, which include: defining the
number of model layers including the input layer, hidden layer(s), an output layer, the number of neurons in each
layer, defining the active transfer function, and finally choosing the training method. The purpose of MLPNN

training is to determine the values of weights and constants that are multiplied and added to each input (Nou
et al. 2022; Shen et al. 2022). An example of an MLPNN model is shown in Figure 3.

2.3. Approaches of modeling and data

Soft computing models are data-driven models. This means that to use a soft computing model, information and
data related to the under-study phenomenon be collected. In this regard, the results of Mohammadzadeh-Habili

et al. (2018) were used to develop (calibration: training and validation: testing) both applied soft computing
models. The collected data was divided into two categories: training and testing. According to the nature of
the problem, data can be randomly assigned to each category. Usually, 80% of the data is allocated to training

Figure 2 | The structure of the GMDH model developed to estimate EDR.

Figure 3 | Schematic view of the structure of an MLPNN.
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and the remainder (20%) to testing. The range of collected data in the training and testing phases of the model is
presented in Table 1.

3. RESULTS AND DISCUSSION

In this section, the results of modeling and estimating the energy dissipation of the flow passing over the labyrinth
weirs with triangular and trapezoidal plans using GMDH and MLPNN are presented. As mentioned, soft com-

puting models are data-driven, so in the first step, the statistical characteristics of the data collected from the
desired phenomenon and the correlation between the input and output variables should be determined. Statisti-
cal characteristics are given in Table 1 and the correlation coefficient is given in Table 2.

As it is clear from Table 2, the correlation coefficients of EDR (as the output variable) and independent dimen-
sionless parameters including ho=P, Ncy, Lcy=Ncy, and Fr (as input parameters) is negative. In other words, the
relationship between EDR and other parameters is inverse and as these parameters increase, the EDR decreases.

As mentioned in the review section of the GMDH model, only two variables can be entered in each neuron,

and considering that the number of input variables is four, therefore, a maximum of six neurons are prepared in
the first hidden layer. After evaluating the performance of these six neurons, four of them had an appropriate
accuracy and were chosen for forming the next layer. In the second layer, from the four neurons of the previous

layer, a maximum of six neurons can be prepared, but due to the stricter development criteria in the second layer,
only two of them were qualified. In the output layer, from these two neurons of the previously hidden layer
(second hidden layer), one neuron was prepared. The network of the GMDH model to estimate energy dissipa-

tion is shown in Figure 2. As shown in this figure, the GMDH network has two hidden layers, where there are
four and two neurons in the inner hidden layers. The performances of the GMDH model in different phases
of training and testing are shown in Figures 4 and 5. The statistical indicators of the GMDH model in the training

phase are R2¼ 0.913, RMSE¼ 0.010, and in the test phase R2¼ 0.829, RMSE¼ 0.015. Examining the structure of

Table 1 | Statistical characteristics of data allocated for the training phase

Parameters Min Max Average St. Dev.

Training

ho=P 0.012 0.063 0.034 0.015

Ncy 1.000 2.000 1.488 0.503

Lcy=Wcy 1.000 4.570 2.899 1.249

Fr 0.490 2.800 0.783 0.526

DE=Eo 0.670 0.862 0.748 0.032

Testing

ho=P 0.013 0.062 0.037 0.016

Ncy 1.000 2.000 1.333 0.483

Lcy=Wcy 1.000 4.570 2.849 1.102

Fr 0.490 2.620 0.806 0.545

DE=Eo 0.701 0.820 0.754 0.031

Table 2 | The correlation coefficient between involved parameters

ho=P Ncy Lcy/Wcy Fr EDR

ho=P 1

Ncy 0.109 1

Lcy/Wcy 0.115 0.886 1

Fr 0.010 �0.290 �0.489 1

EDR �0.325 �0.155 �0.103 �0.417 1
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GMDH shows that the ho=P, Ncy, and Mr play the greatest role in the development and formation of the GMDH
network.

To compare the performance of the GMDH model with other soft computing models, the MLPNN model was
chosen and developed in this regard. To establish the logical conditions of comparison, the MLPNN model with
two hidden layers was considered; so that there are four and two neurons in the first and second hidden layers,

respectively.

Figure 4 | The performance of the developed models in the training phase.

Figure 5 | The performance of the developed models in the test phase.
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Figure 6 | Taylor diagram of MLPNN and GMDH models in the training stage.

Figure 7 | Taylor diagram of MLPNN and GMDH models in the testing stage.
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The structure of the MLPNN model is shown in Figure 3. In the development of the MLPNN, the sigmoid tan-
gent function was used as the activation function for the neurons. The performances of the MLPNN model in the
training and testing phases are shown in Figures 4 and 5. The statistical indices of the MLPNN in the training

phase are R2¼ 0.957, RMSE¼ 0.007 and in the testing phase, they are R2¼ 0.945 and RMSE¼ 0.009. Comparing
the performance of these two models shows that, in the training phase, the performance of the models is almost
close together. However, in the testing phase, the accuracy of the GMDH model is slightly reduced. Of course,
the GMDH structure has a lower computational cost compared to the MLPNN.

To further investigate the performance of both models and also to make a more accurate comparison between
the MLPNN and GMDH models, Taylor’s diagram was drawn for both training (Figure 6) and testing (Figure 7)
stages. In this figure, observed data, and MLPNN and GMDH models are presented. According to Figure 6, the

results of the MLPNN model are closer to the observational data, and the results of the GMDHmodel are farther
away from the observational data even than the MLPNN model. It should be mentioned that Figure 7 also pres-
ents the same content.

3.1. Comparing the performance of soft computing models used in this study with models used in
previous studies

Mahdavi-Meymand & Sulisz (2022) developed a support vector machine (SVM) to predict the energy dissipation
downstream of labyrinth weirs. To train the SVM model, they applied three modern optimization techniques
including multi-tracker optimization algorithm (MTOA), particle swarm optimization (PSO), and differential

evolution (DE) algorithms. They declared that the average R2 of SVM models is 0.98 which is close to the
MLPNN model and is more accurate than the GMDH model.

Dutta et al. (2020) prepared three statistical and machine learning models including multiple linear regression

(MLR), SVM, and ANN to predict the performance of triangular plan labyrinth weirs regarding energy dissipa-
tion (DE). They stated that the best accuracy is related to the SVM model such as away its average value of R2 is
0.96 which like the results of Mahdavi-Meymand & Sulisz (2022) is close to the MLPNNmodel and is more accu-

rate than the GMDH model.

4. CONCLUSION

The performance of a labyrinth weir with triangular and trapezoidal plans in the energy dissipating of the passing

current was modeled and estimated using both a GMDH and an MLPNN. Our results showed that the GMDH
model with two hidden layers, in which there are four and two neurons in the first and second hidden layers
respectively, can predict the flow energy dissipation of such weirs in the validation phase with acceptable statisti-

cal indicators of R2¼ 0.829, RMSE¼ 0.015. The MLPNN model also like the GMDH model has two hidden
layers where the first and the second layers contain four and two neurons, respectively. Examining the perform-
ance of the MLPNN model shows that this model, with the sigmoid tangent function as the activation function of

the neurons, can predict the flow energy dissipation with the statistical indices R2¼ 0.945 and RMSE¼ 0.009. In
general, it was found that both models have an acceptable accuracy in estimating the flow energy dissipation,
however, the GMDH model is slightly less accurate.
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