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Abstract

Fluorescence quenching of proteinaceous substances by natural organic matter is a well-known phenomenon,
but there are no knownmethods for correcting it. The main objective of this research was to develop an empirical
equation to correct the fluorescence quenching of different concentrations of bovine serum albumin (BSA – 0.15,
0.25, 0.5, 0.75, 1, 1.25 μmol/L (μM)) by Suwannee river natural organic matter (SWNOM - 0,2,4,6,8,10 mg-C/L) using
the fluorescence titration method. The excitation emission matrix (EEM) data were analyzed by parallel factor analysis
with inner filter effect removal. With increasing SWNOM concentration, BSA peak intensity quenching was in the
range 29–85%, with a linear relationship for increment of either BSA or SWNOM concentration. A higher ratio of
SWNOM to BSA resulted in greater BSA peak intensity quenching. The unquenched BSA peak (BSA (RU)) is given
by the empirical equation.

BSA (RU) ¼ {2:052� peak C (RU)þ 2:522}� quenched peak T (RU)0:624

The calculated unquenched BSA peak intensities using the empirical equation agreed well with the actual
unquenched peak values (R2¼ 0.98, mean absolute error¼ 0.33 RU). The equation is expected to help in rapid esti-
mation of the quenching effect of SWNOM on BSA.

Key words: bovine serum albumin, dissolved organic matter, fluorescence titration, PARAFAC, protein-humic
substance complex, excitation emission matrix

Highlights

• Empirical equation to correct the fluorescence quenching of bovine serum albumin by Suwannee river natural

organic matter is discussed.

• The EEM data was analyzed by parallel factor analysis with inner filter effect removal.

• With an increase in SWNOM concentration, quenching of BSA peak intensity was in the range 29–85%.

• Higher ratio of SWNOM to BSA resulted in higher quenching of the peak intensity of BSA.
INTRODUCTION

Fluorescence quenching (quenching) is one of the commonest phenomena in fluorescence analysis,
whereby any component (quencher) present in a system or related physico-chemical process
reduces the intensity of fluorescence of a sample (fluorophore) (Lakowicz 1983; Eftink 1991).
Quenching mechanisms include excited-state reactions, molecular rearrangement, energy transfer,
ground-state complex formation, and collisional quenching. Collisional quenching can be further
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divided into static and dynamic quenching. Although there are numerous studies on quenching
mechanisms (Yuan et al. 1998; London & Ladokhin 2002; Soares et al. 2007; Keppler et al.
2014; Joye et al. 2015; Wang et al. 2015; Heo et al. 2016; Ali & Al-Lohedan 2018), an empirical
method for quenching correction to enable calculation of the actual concentration of proteinaceous
fluorophore substances quenched by humic substances in a sample matrix is still lacking. In earlier
studies, the post-chlorination fluorescence for trihalomethane formation potential was found to be
quenched by humic substances, leading to reduced accuracy in predicting trihalomethane formation
in water samples (Saipetch & Yoshimura 2019). In another experiment, multi-spectroscopic studies
revealed static quenching between humic and protein-like substances arising from rearrangement of
the secondary polypeptide carbonyl hydrogen bonding network of BSA (Saipetch et al. 2020 –

submitted).
In water sources, the amount of each component in dissolved organic matter (DOM) varies widely

(Carstea et al. 2016; Singh et al. 2017). The nature of the various DOMs affects the extent of fluor-
escence quenching, but no previous study has been designed to investigate the effect of DOM
concentration on the level of quenching (Wang et al. 2015; Lin et al. 2017). Saipetch et al. (2020 –

submitted) found that the protein fluorescence of bovine serum albumin (BSA) is quenched by inter-
action with Suwanee River natural organic matter (SWNOM), indicating the possibility that the
concentration of each of BSA and SWNOM can influence the quenching uniquely. No study has
yet demonstrated the correction accuracy of quenching by BSA and SWNOM using empirical
methods, however.
The relationships between BSA and SWNOM concentrations on quenching were investigated in

this study, leading to the proposal and verification of a method for correcting quenching.
MATERIALS AND METHODS

Fluorescence titration was carried out between varying concentrations of SWNOM (0, 2, 4, 6, 8,
10 mg-C/L), and BSA (0.15, 0.25, 0.5, 0.75, 1, 1.25 μmol/L (μM)) was performed. The concentrations
of SWNOM and BSA were equivalent to NOM concentrations found in surface water samples. The
excitation emission matrix (EEM) data were analyzed using parallel factor analysis with inner filter
effect removal (drEEMtoolbox in MATLAB – Murphy et al. 2013). The effect of the BSA and/or
SWNOM concentration on BSA’s quenched fluorescence intensity was investigated using non-
linear regression, on the basis of the hypothesis that the fluorescence intensity of BSA (unquenched
BSA fluorescence, peak T location (Figure 1(a2))) in the absence of SWNOM is a function of BSA’s
quenched intensities in the presence of SWNOM, and the fluorescence intensity of SWNOM alone.
(Saipetch & Yoshimura 2019; Saipetch et al. 2020 – submitted).
Figure 1 | PARAFAC components of fluorescence titration between – (a1) BSA and SWNOM (peaks A and C); and (a2) fluor-
escence intensity of BSA only (in the absence of SWNOM) (peak T).
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RESULT AND DISCUSSION

Impact of SWNOM concentration on BSA fluorescence intensity

PARAFAC components of fluorescence titration between BSA–SWNOM mixtures and BSA alone are
shown in Figure 1(a1) and 1(a2). If the inner filter effect is removed by PARAFAC, three distinct
peaks, A (Ex/Em 240/448), C (Ex/Em 350/450), and T (Ex/Em 280/344) appear. A clear overlap
of BSA and SWNOM fluorescence intensity (Figure 2(a1)) is visible in the emission wavelength
range 330–450 nm. All three peaks – A, C and T – are within this wavelength range – Figures 1
and 2(a1). An increase in BSA concentration led to a distinct increase in peak T’s fluorescence
Figure 2 | (a1) Overlapping fluorescence spectrum of SWNOM and BSA, (a2) fluorescence peak intensity of BSA in the
presence of varying concentrations of SWNOM; (b) relationship between fluorescence peak intensity and varying concen-
trations of (b1) SWNOM, and (b2) BSA. (c) Quenching percentage of BSA fluorescence intensity at different concentrations of
BSA and SWNOM.
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intensity (Figure 2(a2)). The quenching effect of increases in SWNOM concentration can also be seen
in the BSA peak intensity (Figure 2(a2)). There was a linear relationship between SWNOM concen-
tration and the fluorescence intensity of peaks A (R2¼ 0.9987) and C (R2¼ 0.9991) (Figure 2(b1)), and
peak T’s fluorescence intensity (R2¼ 0.9886) with BSA concentration (Figure 2(b2)).
The fluorescence intensities of BSA at peak T, in the absence of SWNOM, and of SWNOM at peak

C were used to represent the concentrations of BSA and SWNOM due to their linear relationship
(Figure 2(b1) and 2(b2)). As the SWNOM concentration increased, the quenching of BSA’s peak
T was between 29 and 85% (Figure 2(c)), and the relationship was linear for every concentration
increment of either BSA or SWNOM. Hence, the hypothesis that BSA’s fluorescence intensity in
the absence of SWNOM is a function of the intensities of quenched fluorescence of BSA in the pres-
ence of SWNOM and the fluorescence intensity of SWNOM alone can be said to be true.
Empirical equation for the quantitative impact of SWNOM concentration on BSA fluorescence intensity

Higher ratios of quencher (SWNOM) to proteinaceous fluorophore (BSA) resulted in greater quench-
ing of the intensity of BSA’s peak T. The effects of BSA and SWNOM concentration on the quenched
and unquenched intensities of BSA’s peak T are shown in Figure 3. There were linear relationships
between BSA peak intensity and the concentrations of either BSA or a BSA-SWNOM mixture
(Figure 3(b)). At the same initial concentration of BSA, an increase in SWNOM concentration low-
ered the fluorescence intensity of peak T linearly (Figure 3). At fixed SWNOM concentration,
however, an increase in BSA concentration reduced the quenching of BSA’s peak T. The relationship
between the quenched intensity of peak T, and the concentration of either BSA or the BSA-SWNOM
mixture, can be explained by the power function Equation (1) (R2¼ 0.71).

T (RU) ¼ {� 0:4367� SWNOM(mg� C=L)}þ 5:4806)� BSA concentration (mM)1:5437 (1)
Figure 3 | (a) Effect of BSA and SWNOM concentration on peak T’s quenched intensity. BSA concentration presented in terms
of peak T’s unquenched intensity, T (RU); SWNOM concentration in terms of peak C (RU). (b) Relationship between BSA’s
unquenched peak T and its quenched peak T and peak C (the grid pane is for visualization of the data pattern).
Correction of fluorescence quenching by SWNOM

In order to develop the correction method, the term α was defined to represent the ratio between
BSA’s unquenched and quenched peak Ts, and assumed to be a function of quenched peak T intensity
and peak A intensity (Equation (2)). The plots derived using Equation (2) are shown in Figure 4(a).
which shows clearly that α is a power function of quenched peak T. The values of the constants in
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Figure 4 | (a) Relationship between unquenched peak T/quenched peak T vs. quenched peak at different peak C levels, (b)
modelled vs. actual unquenched peak T fluorescence intensity.
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Equation (2) were derived by selecting the empirical values of the slope (a) and constant (b) from
Figure 4(a) – Table 1. It is to be noted that peak C is the direct representative of SWNOM concen-
tration, as the intensity of SWNOM’s peak C is not quenched by BSA addition.

/ ¼ Unquenched peak T
Quenched peak T

¼ f(quenched peak T, peakA) ¼ a� quenched peak Tb (2)

where a and b are constants.
Table 1 | Values of empirical constants for correcting fluorescence quenching by SWNOM

Peak C (relative unit) a B

0.48 3.3006 �0.375

0.94 4.6083 �0.362

1.4 5.5677 �0.350

1.87 6.3514 �0.364

2.25 7.0224 �0.402
Values of both the empirical constants ‘a’ and ‘b’ changed with an increase in peak C’s relative
intensity (Table 1). Coefficient ‘a’ was a linear function of peak C, whereas ‘b’ was a third-order of
a polynomial function. Application of a polynomial function of peak C for ‘b’ was considered
unnecessary as it produced no improvement in R2 between the modelled and actual fluorescence
intensities of unquenched peak T compared to the use of an average value for ‘a’. The calculated inten-
sities of unquenched peak T also agreed well with its actual intensities (R2¼ 0.98 and mean absolute
error 0.33 RU (Figure 4(b))).
At lower intensities of unquenched peak T fluorescence (1.4–5.7 RU), the variation in modelled

unquenched peak T was lower than that at unquenched intensities of 7.7–10.7 RU. The fluorescence
intensities in the lower range are comparable to the protein fluorescence intensity of clean water
(Tama River, Japan), while intensities higher than that can be considered to arise from increases in
organic quencher concentrations from wastewater.
Use of Equation (3) is expected to improve the quality of estimates of the unquenched intensity of

peak T in surface waters. The proposed empirical correction equation (Equation (3)) is also expected
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to be applicable to various types of protein-related compound other than BSA, as BSA is the standard
used to represent substances like algae cell proteins (Hong et al. 2009; Wei et al. 2011), cyanobacter-
ium (Microcystis aeruginosa) (Pivokonsky et al. 2015) and membrane foulants (Guan et al. 2018).

T (RU) ¼ {2:052� peak C (RU)þ 2:522}� quenched peak T (RU)0:624 (3)
CONCLUSIONS

The impact of natural organic matter (SWNOM) concentrations on the fluorescence quenching of a
proteinaceous substance (BSA) was studied using fluorescence titration. Increasing the concentration
of SWNOM increased its quenching effect on BSA fluorescence intensity, and the magnitude of the
quenching was proportional to the SWNOM/BSA ratio in solution. At fixed BSA concentrations, a
linear increase in SWNOM concentration lowered the intensity of BSA’s peak T fluorescence,
while, at fixed SWNOM concentration, an increase in BSA concentration reduced the fluorescence
quenching level in line with a power function. When used to correct for fluorescence quenching,
Equation (3) fitted well with the actual unquenched and modelled intensities of peak T (Figure 4).
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