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Estuary salinity prediction using a coupled GA-SVM model:

a case study of the Min River Estuary, China

Yihui Fang, Xingwei Chen and Nian-Sheng Cheng
ABSTRACT
Estuary salinity predictions can help to improve water safety in coastal areas. Coupled genetic

algorithm-support vector machine (GA-SVM) models, which adopt a GA to optimize the SVM

parameters, have been successfully applied in some research fields. In light of previous research

findings, an application of a GA-SVM model for tidal estuary salinity prediction is proposed in this

paper. The corresponding model is developed to predict the salinity of the Min River Estuary (MRE).

By conducting an analysis of the time series of daily salinity and the results of simulation

experiments, the high-tide level, runoff and previous salinity are considered as the major factors that

influence salinity variation. The prediction accuracy of the GA-SVM model is satisfactory, with

coefficient of determination (R2) of 0.85, Nash–Sutcliffe efficiency of 0.84 and root mean square error

of 119 (μS/cm). The proposed model performs significantly better than the traditional SVM model in

terms of prediction accuracy and computing time. It can be concluded that the proposed model can

successfully predict the salinity of MRE based on the high-tide level, runoff and previous salinity.
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LIST OF ACRONYMS
ANN
 artificial neural network
b
 scalar threshold
C
 the penalty factor, the penalty degree of the

sample with error exceeding ε
Cf
 average values of the Cf(i) data series
Cf(i)
 predicted value
Co
 average values of the Co(i) data series
Co(i)
 observed value
Ct
 the t-day salinity
ENS
 Nash–Sutcliffe efficiency coefficient
f(x)
 target function
GA
 genetic algorithm
GA-SVM
 a coupled model of genetic algorithm and sup-

port vector machine
l
 number of input vectors
LIBSVM
 the open source software for SVM, developed by

National Taiwan University
LK
 linear kernel
Lt
 the t-day high-tide level
K(xi, xj)
 kernel function
MRE
 Min River Estuary
n
 size of the data series
OOP
 object-oriented programming
PK
 polynomial kernel
Qt
 the t-day runoff
R2
 coefficient of determination
RBF
 radial basis function
RMSE
 root mean square error
SVM
 support vector machine
w
 weight vector
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input vector
αi, αi*
 Lagrangian multipliers
ε
 an error tolerance
ξi, ξi*
 slack variables that specify the upper and the

lower training errors subject to ε
INTRODUCTION

Saltwater intrusion is a common natural phenomenon in

tidal estuaries which exerts great impact on the estuary’s

ecological environment (Soetaert et al. ; Thomas &

Tris ) and on urban drinking water safety (Nowroozi

et al. ; Wen et al. ). Accurate predictions of estuary

salinity can alleviate the adverse impacts caused by

saltwater intrusion. However, accurate predictions are diffi-

cult to ascertain because estuary salinity is directly or

indirectly affected by a variety of temporally and spatially

variable factors, including runoff, tides, channel topography

and human activities (Savenije ; Nguyen & Savenije

; Wen et al. ).

There are two approaches mainly used to predict estuary

salinity. The first approach develops models based on

dynamic salinity variation processes (Reddy & Ghosh

; Chevalier et al. ). The second applies statistical

or data mining methods to establish relationships between

the salinity and the influencing factors. The first approach

can be considered as a ‘white-box’ method based on a com-

plex process analysis, which requires large amounts of high

quality data. In comparison, the second is a ‘black-box’

method, which requires fewer data and thus is more appli-

cable in practice. Data mining methods based on artificial

neural networks (ANN) have been widely used for salinity

predictions. For example, Huang & Foo () applied an

ANN method to assess salinity variation responding to the

multiple forcing functions of freshwater, tide, and wind in

Apalachicola River, Florida. However, ANN methods may

incorporate various issues, such as over-fitting, a weak gen-

eralization ability and lack of suitability for large datasets

(Guan et al. ; Li & Kong ). The support vector

machine (SVM) attempts to achieve a compromise between

complexity (the learning accuracies of certain training

samples) and learning capacity (the prediction ability for
/ws/article-pdf/17/1/52/410518/ws017010052.pdf
samples) according to a limited sample dataset, while

obtaining an optimal generalization ability (Vapnik ).

The SVM can effectively resolve nonlinear problems in

small and high dimension samples. Yu et al. () adopted

the SVM to establish a real-time stage forecasting model.

Guan et al. () used an SVM model to predict soil electri-

cal conductivity values in an irrigation district. However,

SVM models have rarely been used to predict estuary sal-

inity. Liu & Chen () used a coupling model based on

the partial least squares and SVM methods to predict

saltwater intrusion in the Pearl River Estuary, considering

runoff and downstream salinity as the factors that influence

the salinity variation.

However, the prediction accuracy of the SVM greatly

depends on the right selection of parameters (the penalty

factor C and kernel parameter δ) (Cherkassky & Ma

). Generally, the parameters are selected via cross-

validation and grid searching, which greatly limit the pre-

diction accuracy and generalization ability. The genetic

algorithm (GA) simulates biological evolution processes

and provides the optimal solution via global searching.

The GA is stochastic in nature and therefore capable of

running away from the local optimal. Researchers have

used GA to optimize SVM parameters and developed the

coupled GA-SVM model, which has been successfully

applied in some research fields. Liu & Lu () reported

that the GA-SVM model can be used to predict agricultural

non-point-source pollution with results better than the

ANN method. Li & Kong () successfully applied the

GA-SVM model to analyze landslides. Liu et al. ()

adopted the GA-SVM model to discriminate different trans-

genic cotton seeds with similar characteristics based on

terahertz spectroscopy. But it is observed that there are

hardly any applications of the GA-SVM model for tidal

estuary salinity prediction, so far.

This paper aims to apply the GA-SVM model to predict

the salinity of a tidal estuary based on previous research

findings (Harish et al. ; Li & Kong ). An application

of the GA-SVM model for tidal estuary salinity prediction

was proposed and the corresponding model was developed.

The Min River Estuary (MRE) was selected as the study

area, which is located in the coastal region of southeastern

China. The major factors influencing salinity variations

were determined by time-series analysis of daily salinity
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and simulation experiments. Finally, to evaluate its predic-

tion performance, the proposed model was compared with

a traditional SVM model.
METHODS

SVM

The principal idea of SVM is to represent the entire sample

set with a small number of support vectors (Vapnik ).

SVM models can be described by the following function:

f(x) ¼ w � xþ b (1)

Considering the existence of some permissible error,

Equation (1) can be incorporated in a convex optimization

problem as follows:

Minimize:
1
2
jjwjj2þC

Xl

i¼1

(ξi þ ξ�i ) (2)

Subject to:
yi � w � xi þ bð Þ � εþ ξi
w � xi þ bð Þ � yi � εþ ξ�i
ξi, ξ

�
i � 0, i ¼ 1, 2, . . . , l

8<
:

where ξi and ξi* are slack variables that specify the upper

and the lower training errors subject to an error tolerance

ε, and the constant C (>0) stands for the penalty degree of

the sample with error exceeding ϵ and is called the penalty

factor. In the feature space, the inner product operations of

the linear problem can be substituted for kernel functions.

Thus, the dual form of the SVM can be expressed as:

Minimize:
1
2

Xl

i,j¼1

(α�
i � αi)(α�

j � αj)K(xi, xj)

þ ε
Xl

i¼1

(α�
i þ αi)�

Xl

i¼1

yi(α�
i � αi) (3)

Subject to:
Pl
i¼1

(αi � α�
i ) ¼ 0

αi, α�
i � 0, i ¼ 1, 2, . . . , l

8><
>:
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where αi and αi
* are the Lagrangian multipliers and K(xi, xj)

is a kernel function.

Three primary kernel functions are widely used, includ-

ing the linear kernel, polynomial kernel and radial basis

function (RBF). This paper uses the RBF due to its strong

nonlinear mapping ability. The form of the RBF can be

expressed as:

K(xi, xj) ¼ exp (� δ � xi � xj
�� ��2) (4)

Here, δ is the kernel parameter that represents the

spatial extent that a particular training sample can reach.
GA

The GA was designed to simulate genetic evolution mechan-

isms and random information exchange. The algorithm is

guided by the fitness function, which is constructed based

on individual specific problems (Whitley ). Starting

from any initial population, step by step, new better-adapted

chromosomes can be generated by selection, copying, cross-

over and mutation operations and thus a best-adapted

chromosome can be acquired finally. Due to its global

optimality, implicit parallelism, high stability and wide

usability (Li & Kong ), the method is used to optimize

the SVM model parameters (C and δ) in this paper.
GA-SVM model

The performance of the SVM greatly depends on the right

selection of parameters, which greatly impact on the effi-

ciency and generalization performance of the SVM model.

The GA is a prominent choice for optimizing the parameters

of the SVM model according to the results of various studies

(Harish et al. ; Li & Kong ). It can reduce the blind-

ness of human-made choice and thus improve the

performance of the model. In this paper, the GA-SVM algor-

ithm was implemented using the C# programming language.

The flow chart of the GA-SVM method is illustrated in

Figure 1, with the following steps implemented:

(1) Use the min–max normal to format the dataset and con-

struct vectors.



Figure 1 | Flow chart of the GA-SVM algorithm.
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(2) Initialize the GA parameters (the population size, maxi-

mum evolution number, population crossover rate and

mutation rate) and the value range of the SVM par-

ameters (C and δ). Then, choose the coefficient of

determination (R2) as the GA fitness function.

(3) Randomly generate a set of SVMparameter value chromo-

somes with binary coding. A single chromosome is

constructed via the binary-string concatenation of C and δ.

(4) Generate new better-adapted chromosomes using selec-

tion, copying, crossover and mutation operations.

(5) Train the SVM model, and calculate the fitness function

value of each individual population, and save the best

chromosome.

(6) Determine if the end conditions are satisfied (the loop

number is greater than the maximum evolution

number). If it is true, output the optimal individual

chromosome and go to step (7). Otherwise, generate a

new population and proceed to step (4).
://iwaponline.com/ws/article-pdf/17/1/52/410518/ws017010052.pdf
(7) Decode the optimal chromosome to obtain the optimal

SVM parameters C and δ.

The program of theGA-SVMmodel for salinity prediction

was implemented based on theC#.NET platform and the open

source software LIBSVM toolkit, which was developed by

National Taiwan University (CSIE ). The code was orga-

nized based on classes using object-oriented programming

technology. In order to improve the running speed of the

GA-SVM model, multithreading technology was adopted to

instantiate threads, which were saved in a multithread pool.

Model evaluation

The prediction accuracy of the GA-SVM model was evalu-

ated by three indexes, including the coefficient of

determination (R2), Nash–Sutcliffe efficiency (ENS) coeffi-

cient and root mean square error (RMSE), which are
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defined as:

R2 ¼

Pn
i¼1

Co(i)� Co
� �

Cf(i)� Cf
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Co(i)� Co
� �2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Cf(i)� Cf
� �2

s
2
66664

3
77775

2

ENS ¼ 1�

Pn
i¼1

Co(i)� Cf(i)ð Þ2

Pn
i¼1

Co(i)� Co
� �2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Cf(i)� Co(i)ð Þ2
vuut

where Co(i) is the observed value, Cf(i) is the predicted

value, Co and Cf represent the average values of the Co(i)

and Cf(i) data series, respectively, and n represents the

size of the data series. Generally, the higher the R2 and

ENS and the smaller the RMSE, the higher the accuracy

of the model is.
CASE STUDY

Study area description and dataset

The Min River is located in the Fujian province of China,

encompassing a total catchment basin of 60,992 km2

(Figure 2). The Min River is the main water resource for

Fuzhou city, the capital of Fujian province, with a popu-

lation of over seven million. The catchment is

characterized by a typical subtropical monsoon climate.

The annual runoff distribution is uneven due to seasonal

variations between the wet season, which occurs from

June to August, and the dry season from November to Feb-

ruary. The MRE salinity significantly rises during the dry

season due to a dramatic runoff decrease. The tide in the

MRE is an irregular semi-diurnal tide. The annual mean of

the daily tidal range is 4.14 m, as recorded at the Baiyantan

Tide Station (from 1980 to 2013), which is located near the

Min River mouth. Recently, riverbed incision has caused
om http://iwaponline.com/ws/article-pdf/17/1/52/410518/ws017010052.pdf
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saltwater intrusion, which poses a threat to drinking water

safety in Fuzhou city. The most significant saltwater intru-

sions occurred in 2009 and 2013.

The Zhuqi Hydrological Station is located at the head of

the estuary. It is the major mainstream hydrological obser-

vation station available for the Min River. The tidal

stations are located at Wenshanli, Jiefang Bridge, Baiyantan

and Guantou. The water supply department of Fujian

Province has conducted long-term, continuous and simul-

taneous salinity observations at some river cross-

sections, including at the intake of the Changle Water

Plant. Large amounts of observational data have been col-

lected over time to provide basic information for

controlling saltwater intrusion. The observational data

used for this study include the following:

1. Daily salinity series collected at the Changle Water Plant,

which is 14 km from the estuary mouth. The salinity is

measured as electrical conductivity.

2. Daily tide-level series collected at the Baiyantan Station,

which is adjacent to the Changle Water Plant.

3. Average daily runoff series collected at the Zhuqi Station,

which is located 41 km upstream of the Changle Water

Plant.

The computing time of the GA-SVM model was

improved by formatting the dataset using a min–max

normal form. Supposing that mina and maxa represent the

minimum and maximum values for attribute a respectively,

then the model maps a value v of a to v’ in the range [0, 1]

by computing:

v0 ¼ (v�mina)
(maxa �mina)
Analysis of the factors that influence salinity

Numerous studies have shown that tides and runoff are the

main contributors to salinity variations (Savenije ;

Nguyen & Savenije ; Fei et al. ; Chevalier et al.

). Savenije suggests that the main factors influencing sal-

inity variations are the tide, runoff and channel topography.

In addition, Savenije () successfully applied an empiri-

cal model to compute the longitudinal salinity variations



Figure 2 | Map of the MRE.

Figure 3 | The relationships between the salinity at the Changle Water Plant, runoff at the

Zhuqi Station and high-tide level at the Baiyantan Station from January 5 to

March 4, 2009.
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in 15 estuaries worldwide. Nguyen & Savenije ()

adapted Savenije’s model to a multi-channel estuary, deter-

mining that salinity variations lag behind the tidal and

runoff variations by several days. Fei et al. () studied

the time–frequency characteristics and multiscale corre-

lations between runoff, tidal range and salinity in the

Changjiang Estuary. The Zhuqi Station is the chief main-

stream hydrological station, which is impacted by a

watershed area of 54,500 km2, accounting for 89.6% of the

entire watershed area. The Baiyantan Tide Station is adja-

cent to the Changle Water Plant. Therefore, the Baiyantan

observational data can accurately reflect the tidal variations

of the Changle Water Plant.

The relationships between the salinity, runoff and high-tide

level fromJanuary5 toMarch4, 2009, are illustrated inFigure3.

There is correlation between high-tide level, runoff and salinity
://iwaponline.com/ws/article-pdf/17/1/52/410518/ws017010052.pdf
(correlation coefficient between high-tide level and salinity:

0.51; between runoff and salinity: 0.37). Four salinity variation
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processes occur over the time period due to biweekly spring

and neap tidal cycles. In general, the salinity rises and falls

based on high-tide level fluctuations. The tide is the primary

factor influencing salinity variation. However, the highest

tide level appears at an early time, while the early-time salinity

is lower than the late-time salinity. This relationship is mainly

because the early-time runoff is significantly higher than the

other processes, and large runoff prevents salinity surges. The

late-time runoff is high from January 23 to January 25, which

inhibits the salinity. In addition, salinity variation lags behind

the corresponding runoff and tide-level variations by 1 to 2

days over the entire time period. Similar findings have been

reported in previous studies (Nguyen & Savenije ; Fei

et al. ), but the causes of such a lag are rather complicated

and still remain unclear.

An observational dataset collected in 2009, including

the salinity at the Changle water plant, runoff at the Zhuqi

Station and high tide level at the Baiyantan Station, was

used to further determine the time lag between the salinity,

runoff, and high-tide level. The previous salinity at the Chan-

gle Water Plant was also concerned, because current salinity

is strongly correlated with previous salinity. Various combi-

nations of the previous salinity, runoff and high-tide-level

time series were fed into the GA-SVM model, which pre-

dicted the t-day salinity.

The performance statistics of the model are shown in

Table 1, where Ct, Qt and Lt denote the t-day salinity,

runoff and high-tide level, respectively. As seen in Table 1,

the number of influence factors increases from experiments

1 to 4. In addition, the GA-SVM model prediction accuracy

improved for experiments 1 to 4 based on the R2, ENS and

RMSE values. However, the prediction accuracy of the
Table 1 | Experimental analysis of the salinity prediction results influenced by different

combinations of factors

Evaluation index

ID Influence factors R2 ENS RMSE(μS/cm)

1 Ct-1,Qt-2,Lt-1 0.49 0.53 193

2 Ct-1, Qt-1, Lt 0.60 0.62 174

3 Ct-1, Qt-1, Qt-2, Lt, Lt-1 0.76 0.78 142

4 Ct-1, Ct-2, Qt-1, Qt-2, Lt, Lt-1 0.83 0.84 126

5 Ct-1, Ct-2, Ct-3, Qt-1, Qt-2, Qt-3, Lt,
Lt-1, Lt-2

0.78 0.80 138
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GA-SVM model decreased after adding the t-3 day salinity,

t-3 day runoff and t-2 day high-tide level in experiment

5. Experiment 4 provides the best prediction accuracies

based on the R2, ENS and RMSE.

Therefore, the model inputs for the t-day salinity predic-

tion at the Changle Water Plant include these six factors:

1. the t-1 and t-2 day salinities at the Changle Water Plant;

2. the t-1 and t-2 day runoffs at the Zhuqi Station;

3. the t and t-1 day high-tide levels at the Baiyantan Station.

Experimental validation

The GA is used to optimize the SVM parameters in the

GA-SVM model. The optimization process curve is shown in

Figure 4. The two curves represent the optimal accuracy rate

and the average accuracy rate. The best accuracy increases sig-

nificantly in the early stage and gradually reaches a stable state

when the evolutionary sequence value exceeds 350.

After decoding the best chromosome to obtain the opti-

mal parameter values (C¼ 2.017, δ¼ 5.953) for the GA-

SVM model, the model predicted the salinity of the MRE.

The observation data used to validate the model contained

the salinity at the Changle Water Plant, runoff at the

Zhuqi Station and high-tide level at the Baiyantan Station.

Observational data collected in 2009 were chosen for train-

ing, while those in 2013 were chosen as the test dataset. The

prediction results of the GA-SVM model are shown in

Figure 5. The model exhibits a satisfactory accuracy, with

R2, ENS and RMSE values of 0.99, 0.99 and 7.88 (μS/cm)

during the training period, and 0.85, 0.84 and 119 (μS/cm)

during the test period, respectively.
Figure 4 | The optimization process curves.



Figure 5 | The 2009 training and 2013 prediction of the GA-SVM model.
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Comparison of the model performance of GA-SVM with

traditional SVM

The prediction performance of the GA-SVM model was

evaluated by using a traditional SVM model with optimized

grid-search-based parameters. The performance statistics of

the two models are shown in Table 2. The computing time

for the GA-SVM model is approximately half of that for

the SVM model, but the prediction accuracy of the GA-

SVM model is significantly better. These results suggest

that the GA-SVM model provides improved feasibility and

practicability compared to the SVM model.
CONCLUSIONS

An application of GA-SVM for tidal estuary salinity predic-

tion was proposed in this paper. First, by conducting an
Table 2 | Prediction results of the GA-SVM compared to the traditional SVM

Year

GA-SVM Traditional SVM

R2 Computing time (s) R2 Computing time (s)

2009 0.83 1,029.26 0.67 2,062.52

2013 0.85 1,026.64 0.67 2,061.74

://iwaponline.com/ws/article-pdf/17/1/52/410518/ws017010052.pdf
analysis of a time-series of daily salinity in 2009 and the

results of simulation experiments, the t-1 and t-2 day sali-

nities, t and t-1 day high-tide levels and t-1 and t-2 day

runoffs were determined to be the major factors that influ-

ence the t-day salinity predictions. Then, a coupled GA-

SVM model was developed to predict the typical salinity

process of the MRE in 2013. The results show that the

model prediction achieves a satisfactory accuracy, with R2

of 0.85, ENS of 0.84 and RMSE of 119 (μS/cm). The pro-

posed model performs significantly better than the

traditional SVM model in terms of prediction accuracy

and computing time. It can be concluded that the proposed

model can successfully predict the salinity of the MRE based

on the high-tide level, runoff and previous salinity.

This coupled GA-SVM modelling approach can be

easily applied to other estuary systems. Since the major fac-

tors that influence tidal estuary salinity may be different

from one estuary to another, efforts should be spent on

first identifying the major factors when using the model.
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